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Zero-shot learning (ZSL) aims to recognize unseen objects (test classes)
given some other seen objects (training classes) by sharing information
of attributes between different objects. Attributes are artificially anno-
tated for objects and treated equally in recent ZSL tasks. However, some
inferior attributes with poor predictability or poor discriminability may
have negative impacts on the ZSL system performance. This letter first
derives a generalization error bound for ZSL tasks. Our theoretical anal-
ysis verifies that selecting the subset of key attributes can improve the
generalization performance of the original ZSL model, which uses all the
attributes. Unfortunately, previous attribute selection methods have been
conducted based on the seen data, and their selected attributes have poor
generalization capability to the unseen data, which is unavailable in the
training stage of ZSL tasks. Inspired by learning from pseudo-relevance
feedback, this letter introduces out-of-the-box data—pseudo-data gener-
ated by an attribute-guided generative model—to mimic the unseen data.
We then present an iterative attribute selection (IAS) strategy that itera-
tively selects key attributes based on the out-of-the-box data. Since the
distribution of the generated out-of-the-box data is similar to that of the
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test data, the key attributes selected by IAS can be effectively generalized
to test data. Extensive experiments demonstrate that IAS can significantly
improve existing attribute-based ZSL methods and achieve state-of-the-
art performance.

1 Introduction

With the rapid development of machine learning technologies, especially
the rise of deep neural networks, visual object recognition has made
tremendous recent progress (Zheng, Li, Yan, Tang, & Tan, 2018; Shen, Ji,
Wang, Li, & Li, 2018). These recognition systems even outperform humans
when provided with a massive amount of labeled data. However, it is
expensive to collect sufficient labeled samples for all natural objects, espe-
cially for the new concepts and many subordinate categories (Zhou, Fang
et al., 2019). Therefore, how to achieve an acceptable recognition perfor-
mance for objects with limited or even no training samples is a challenging
but practical problem (Palatucci, Pomerleau, Hinton, & Mitchell, 2009).
Inspired by a human cognition system that can identify new objects when
provided with a description in advance (Murphy, 2004), zero-shot learning
(ZSL) has been proposed to recognize unseen objects with no training
samples (Cheng, Qiao, Wang, & Yu, 2017; Ji et al., 2019). Since a labeled
sample is not given for the target classes, we need to collect some source
classes with sufficient labeled samples and find the connection between
the target classes and the source classes.

As a kind of semantic representation, attributes are widely used to trans-
fer knowledge from the seen classes (source) to the unseen classes (target)
(Ma et al., 2017). Attributes play a key role in sharing information between
classes and govern the performance of zero-shot classification. In previous
ZSL work, all attributes are assumed to be effective and treated equally.
However, as Guo, Ding, Han, and Tang (2018) pointed out, different at-
tributes have different properties, such as distributive entropy and pre-
dictability. The attributes with poor predictability or poor discriminabil-
ity may have negative impacts on the ZSL system performance. Poor pre-
dictability means that the attributes are hard to be correctly recognized from
the feature space, and poor discriminability means that the attributes are
weak in distinguishing different objects. Hence, it is obvious that not all the
attributes are necessary and effective for zero-shot classification.

Based on these observations, selecting the key attributes instead of us-
ing all attributes is significant and necessary for constructing ZSL models.
Guo et al. (2018) proposed the zero-shot learning with attribute selection
(ZSLAS) model, which selects attributes by measuring the distributive en-
tropy and predictability of attributes based on the training data. ZSLAS can
improve the performance of attribute-based ZSL methods, though it suf-
fers from the drawback of generalization. Since the training classes and test
classes are disjoint in ZSL tasks, the training data are bounded by the box
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Figure 1: Illustration of out-of-the-box data. The distance between the out-of-
the-box data and the test data (green solid arrow) is much less than the distance
between the training data and the test data (blue dashed arrow).

cut by attributes (illustrated in Figure 1). Therefore, the attributes selected
based on the training data have poor generalization capability to the unseen
test data.

To address the drawback, this letter derives a generalization error bound
for the ZSL problem. Since attributes for the ZSL task are literally like the
code words in the error-correcting output code (ECOC) model (Dietterich
& Bakiri, 1994), we analyze the bound from the perspective of ECOC. Our
analyses reveal that the key attributes need to be selected based on the data
out of the box (i.e., the distribution of the training classes). Considering that
test data are unavailable during the training stage for ZSL tasks, inspired by
learning from pseudo-relevance feedback (Miao, Huang, & Zhao, 2016), we
introduce out-of-the-box data to mimic the unseen test classes.1 These data
are generated by an attribute-guided generative model using the same at-
tribute representation as the test classes. Therefore, the out-of-the-box data
have similar distributions to the test data.

1
Out-of-the-box data are generated based on the training data and the attribute rep-

resentation without extra information, which follows the standard zero-shot learning
setting.
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Figure 2: The pipeline of the ZSLIAS framework. In the training stage, we first
generate out-of-the-box data by a tailor-made generative model (AVAE) and
then iteratively select attributes based on out-of-the-box data. In the test stage,
the selected attributes are exploited to build the ZSL model for categorizing
unseen objects.

Guided by the performance of the ZSL model on out-of-the-box data, we
propose a novel iterative attribute selection (IAS) model to select the key
attributes in an iterative manner. Figure 2 illustrates the procedures of the
proposed ZSL with iterative attribute selection (ZSLIAS). Unlike the pre-
vious ZSLAS that uses training data to select attributes at once, our IAS
first generates out-of-the-box data to mimic the unseen classes, and sub-
sequently iteratively selects key attributes based on the generated out-of-
the-box data. During the test stage, selected attributes are employed as a
more efficient semantic representation to improve the original ZSL model.
By adopting the proposed IAS, the improved attribute embedding space is
more discriminative for the test data and, hence, improves the performance
of the original ZSL model.

The main contributions of this letter are summarized as follows:

• We present a generalization error analysis for the ZSL problem.
Our theoretical analyses prove that selecting the subset of key at-
tributes can improve the generalization performance of the original
ZSL model, which uses all the attributes.

• Based on our theoretical findings, we propose a novel iterative at-
tribute selection strategy to select key attributes for ZSL tasks.

• Since test data are unseen during the training stage for ZSL tasks,
we introduce out-of-the-box data to mimic test data for attribute se-
lection. Such data generated by a designed generative model have
a similar distribution to the test data. Therefore, attributes selected
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based on out-of-the-box data can be effectively generalized to the un-
seen test data.

• Extensive experiments demonstrate that IAS can effectively im-
prove the attribute-based ZSL model and achieve state-of-the-art
performance.

The rest of the letter is organized as follows. Section 2 reviews related
work. Section 3 gives preliminary information and motivation. Section 4
presents the theoretical analyses on generalization bound for attribute se-
lection. Section 5 proposes the iterative attribute selection model. Exper-
imental results are reported in section 6, and conclusions are drawn in
section 7.

2 Related Work

In this section, we review some related work on zero-shot learning, attribute
selection, and deep generative models.

2.1 Zero-Shot Learning. ZSL can recognize new objects using attributes
like the intermediate semantic representation. Some researchers adopt the
probability-prediction strategy to transfer information. Lampert, Nickisch,
and Harmeling (2013) proposed a popular baseline: direct attribute predic-
tion (DAP). DAP learns probabilistic attribute classifiers using the seen data
and infers the label of the unseen data by combining the results of pre-
trained classifiers.

Most recent work adopts a label-embedding strategy that learns a map-
ping function directly from the input features space to the semantic em-
bedding space. One line of work is to learn linear compatibility functions.
For example, Akata, Perronnin, Harchaoui, and Schmid (2015) presented an
attribute label embedding (ALE) model, which learns a compatibility func-
tion combined with ranking loss. Romera-Paredes and Torr (2015) proposed
an approach that models the relationships among features, attributes, and
classes as a two-linear-layers network. Another direction is to learn nonlin-
ear compatibility functions. Xian et al. (2016) presented a nonlinear embed-
ding model that augments bilinear compatibility model by incorporating
latent variables. Airola and Pahikkala (2017) proposed a first general Kro-
necker product kernel-based learning model for ZSL tasks. In addition to
the classification task, Ji, Sun, Yu, Pang, and Han (2019) proposed an at-
tribute network for a zero-shot hashing retrieval task.

2.2 Attribute Selection. Attributes, as a popular semantic representa-
tion of visual objects, can be the appearance, a part, or a property of ob-
jects (Farhadi, Endres, Hoiem, & Forsyth, 2009). For example, the object
elephant has the attribute big and long nose, and the object zebra has the
attribute striped. Attributes are widely used to transfer information to
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recognize new objects in ZSL tasks (Sun, Schiele, & Fritz, 2017; Xu, Tsang,
& Liu, 2019). As shown in Figure 1, using attributes as the semantic repre-
sentation, data of different categories locate in different boxes bounded by
the attributes. Since the attribute representations of the seen classes and the
unseen classes are different, the boxes with respect to the seen data and the
unseen data are disjoint.

In previous ZSL work, all the attributes are assumed to be effective and
treated equally. However, as Guo et al. (2018) pointed out, not all the at-
tributes are effective for recognizing new objects. Therefore, we should se-
lect the key attributes to improve the semantic presentation. Liu, Wiliem,
Chen, and Lovell (2014) proposed a novel greedy algorithm that selects
attributes based on their discriminating power and reliability. Guo et al.
(2018) proposed selecting attributes by measuring the distributive entropy
and predictability of attributes based on the training data. In short, previous
attribute selection models have been conducted based on the training data,
which makes the selected attributes have poor generalization capability to
the unseen test data. Our IAS iteratively selects attributes based on out-of-
the-box data, which has a similar distribution to the test data, and thus the
key attributes selected by our model can be more effectively generalized to
the unseen test data.

2.3 Attribute-Guided Generative Models. Deep generative models
(Ma, Chang, Xu, Sebe, & Hauptmann, 2017) aim to estimate the joint dis-
tribution p(y; x) of samples and labels by learning the class prior probabil-
ity p(y) and the class-conditional density p(x|y) separately. The generative
model can be extended to a conditional generative model if the generator is
conditioned on some extra information, such as attributes in the proposed
method. Odena, Olah, and Shlens (2017) introduced conditional generative
adversarial nets (CGAN), which can be constructed by simply feeding the
data label. CGAN is conditioned on both the generator and discriminator
and can generate samples conditioned on class labels. Conditional varia-
tional autoencoder (CVAE) (Sohn, Lee, & Yan, 2015), as an extension of a
variational autoencoder, is a deep conditional generative model for struc-
tured output prediction using gaussian latent variables. We modify CVAE
with the attribute representation to generate out-of-the-box data for the at-
tribute selection.

3 Preliminary Information and Motivation

3.1 ZSL Task Formulation. We consider zero-shot learning as a task that
recognizes unseen classes that have no labeled samples available. Given
a training set Ds = {

(xn, yn) , n = 1, . . . , Ns
}
, the task of traditional ZSL is

to learn a mapping f : X → Y from the image feature space to the label
embedding space by minimizing the following regularized empirical risk,



Improving Generalization via Attribute Selection 491

Table 1: Notations and Descriptions.

Notation Description Notation Description

Ds Training data (seen) Ns Number of training samples
Du Test data (unseen) Nu Number of test samples
Dg Out-of-the-box data Ng Number of generated samples
X Image features d Number of dimension of features
Ys Training classes (seen) K Number of training classes
Yu Test classes (unseen) L Number of test classes
A Attribute matrix ay Attribute vector of label y
Na Number of all the attributes A Set of original attributes
s Selection vector S Subset of selected attributes

L (y, f (x; W)) = 1
Ns

Ns∑
n=1

l (yn, f (xn; W)) + � (W) , (3.1)

where l (·) is the loss function, which can be square loss 1/2( f (x) − y)2, lo-
gistic loss log(1 + exp(−y f (x))), or hinge loss max(0, 1 − y f (x)). W is the
parameter of mapping f , and � (·) is the regularization term.

The mapping function f is defined as follows,

f (x; W) = arg max
y∈Y

F (x, y; W) , (3.2)

where the function F : X × Y → R is the bilinear compatibility function to
associate image features and label embeddings defined as follows,

F (x, y; W) = θ (x)T Wϕ (y) , (3.3)

where θ (x) is the image features and ϕ (y) is the label embedding (i.e., at-
tribute representation).

We summarize some frequently used notations in Table 1.

3.2 Interpretation of the ZSL Task. In traditional ZSL models, all at-
tributes are assumed to be effective and treated equally, though, some
researchers have pointed out that not all the attributes are useful and
significant for zero-shot classification (Jiang, Wang, Shan, Yang, & Chen,
2017). To the best of our knowledge, there is no theoretical analysis for the
generalization performance of ZSL tasks, let alone selecting informative at-
tributes for unseen classes. To fill this gap, we first derive the generalization
error bound for ZSL models.

The intuition of our theoretical analysis is to simply treat the attributes
as error-correcting output codes; then the prediction of ZSL tasks can be
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deemed as the assignment of class labels with respective predefined ECOC,
which is the closest to the predicted ECOC problem (Rocha & Goldenstein,
2014). Based on this novel interpretation, we derive a theoretical generaliza-
tion error bound of the ZSL model as shown in section 4. From the general-
ization bound analyses, we find that the discriminating power of attributes
governs the performance of the ZSL model.

3.3 Deficiency of ZSLAS. Some attribute selection work has been pro-
posed in recent years. Guo et al. (2018) proposed a ZSLAS model that selects
attributes based on distributive entropy and the predictability of attributes
using training data. Simultaneously considering the ZSL model loss func-
tion and attribute properties in a joint optimization framework, they se-
lected attributes by minimizing the following loss function:

L(y, f (x; s, W)) = 1
Ns

Ns∑
n=1

{lZSL (yn, f (xn; s, W))

+αlp(θ (xn), ϕ(yn); s) − βlv (θ (xn), μ; s)}, (3.4)

where s is the weight vector of the attributes, which will be used for at-
tribute selection. θ (·) is the attribute classifier, ϕ(yn) is the attribute rep-
resentation, and μ is an auxiliary parameter. lZSL is the model-based loss
function for ZSL, that is, l(·) as defined in equation 3.1. lp is the attribute
prediction loss, which can be defined based on specific ZSL models, and lv
is the loss of variance, which measures the distributive entropy of attributes
(Guo et al., 2018). After getting the weight vector s by optimizing equation
3.4, attributes can be selected according to s and then used to construct the
ZSL model.

From our theoretical analyses in section 4, ZSLAS can improve the origi-
nal ZSL model to some extent (Guo et al., 2018). However, ZSLAS suffers the
drawback that the attributes are selected based on the training data. Since
the training and test classes are disjoint in ZSL tasks, it is difficult to mea-
sure the quality and contribution of attributes regarding discriminating the
unseen test classes. Thus, the selected attributes by ZSLAS have poor gen-
eralization capability to the test data due to the domain shift problem.

3.4 Definition of Out-of-the-Box. Since previous attribute selection
models have been conducted based on bounded in-the-box data, the se-
lected attributes have poor generalization capability to the test data. How-
ever, the test data are unavailable during the training stage. Inspired by
learning from pseudo-relevance feedback (Miao et al., 2016), we introduce
pseudo-data, which are outside the box of the training data, to mimic test
classes to guide attribute selection. Considering that the training data are
bounded in the box by attributes, we generate the out-of-the-box data us-
ing an attribute-guided generative model. Since the out-of-the-box data are
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generated based on the same attribute representation as test classes, the
box of the generated data will overlap with the box of the test data. Conse-
quently, the key attributes selected by the proposed IAS model based on the
out-of-the-box data can be effectively generalized to the unseen test data.

4 Generalization Bound Analysis

In this section, we first derive the generalization error bound of the original
ZSL model and then analyze the bound changes after attribute selection. In
previous work, some generalization error bounds have been presented for
the ZSL task. Romera-Paredes and Torr (2015) transformed the ZSL prob-
lem to the domain adaptation problem and then analyzed the risk bounds
for domain adaptation. Stock, Pahikkala, Airola, De Baets, and Waegeman
(2018) considered the ZSL problem as a specific setting of pairwise learn-
ing and analyzed the bound by the kernel ridge regression model. How-
ever, these bound analysis are not suitable for the ZSL model due to their
assumptions. In this work, we derive the generalization bound from the
perspective of ECOC model, which is more similar to the ZSL problem.

4.1 Generalization Error Bound of ZSL. Zero-shot classification is an
effective way to recognize new objects that have no training samples avail-
able. The basic framework of the ZSL model is using attribute representa-
tion as the bridge to transfer knowledge from seen objects to unseen objects.
To simplify the analysis, we consider ZSL as a multiclass classification prob-
lem. Therefore, the ZSL task can be addressed using an ensemble method
that combines many binary attribute classifiers. Specifically, we pretrained
a binary classifier for each attribute separately in the training stage. To clas-
sify a new sample, all the attribute classifiers are evaluated to obtain an
attribute code word (a vector in which each element represents the output
of an attribute classifier). Then we compare the predicted code word to the
attribute representations of all the test classes to retrieve the label of the test
sample.

To analyze the generalization error bound of ZSL, we first define some
distances in the attribute space and then present a proposition of the error-
correcting ability of attributes.

Definition 1. Generalized attribute distance: Given the attribute matrix A
for associating labels and attributes, let ai, a j denote the attribute representation
of label yi and y j in matrix A with length Na, respectively. Then the generalized
attribute distance between ai and a j can be defined as

d(ai, a j ) =
Na∑

m=1

�(a(m)
i , a(m)

j ), (4.1)
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where Na is the number of attributes, and a(m)
i is the mth element in the attribute

representation ai of the label yi. �(a(m)
i , a(m)

j ) is equal to 1 if a(m)
i �= a(m)

j , and 0
otherwise.

We further define the minimum distance between any two attribute rep-
resentations in the attribute space.

Definition 2. Minimum attribute distance: The minimum attribute distance
τ of matrix A is the minimum distance between any two attribute representations
ai and a j :

τ = min
i �= j

d(ai, a j ), ∀ 1 ≤ i, j ≤ Na. (4.2)

Given the definition of distance in the attribute space, we can prove the
following proposition:

Proposition 1. (Zhou, Tsang, Ho, & Muller, 2019): Error-correcting ability:
Given is the label-attribute correlation matrix A and a vector of predicted attribute
representation f (x) for an unseen test sample x with known label y. If x is incor-
rectly classified, the distance between the predicted attribute representation f (x)
and the correct attribute representation ay is greater than half of the minimum at-
tribute distance τ :

d( f (x), ay) ≥ τ

2
. (4.3)

Proof. Suppose that the predicted attribute representation for test sample
x with correct attribute representation ay is f (x), and the sample x is in-
correctly classified to the mismatched attribute representation ar, where
r ∈ Yu \ {y}. Then the distance between f (x) and ay is greater than the dis-
tance between f (x) and ar:

d( f (x), ay) ≥ d( f (x), ar). (4.4)

Here, the distance between attribute representation can be expanded as
the element-wise summation based on equation 4.1 as follows:

Na∑
m=1

�( f (m)(x), a(m)
y ) ≥

Na∑
m=1

�( f (m)(x), a(m)
r ). (4.5)

Then we have:

d( f (x), ay) =
Na∑

m=1

�( f (m)(x), a(m)
y )
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= 1
2

Na∑
m=1

{
�( f (m)(x), a(m)

y ) + �( f (m)(x), a(m)
y )

}

(i)≥ 1
2

Na∑
m=1

{
�( f (m)(x), a(m)

y ) + �( f (m)(x), a(m)
r )

}

(ii)≥ 1
2

Na∑
m=1

�(a(m)
y , a(m)

r )

= 1
2

d(ay, ar)
(iii)≥ τ

2
, (4.6)

where (i) follows equation 4.5, (ii) is based on the triangle inequality of dis-
tance metric (Zhou, Tsang et al., 2019), and (iii) follows equation 4.2. �

From proposition 1, we can find that the predicted attribute represen-
tation is not required to be exactly the same as the ground truth for each
unseen test sample. As long as the distance is less than τ/2, ZSL models
can correct the error committed by some attribute classifiers and make an
accurate prediction.

Based on the proposition of the error-correcting ability of attributes, we
can derive the theorem of generalization error bound for ZSL:

Theorem 1. Generalization error bound of ZSL: Given Na attribute classi-
fiers, f (1), f (2), . . . , f (Na ), trained on training set Ds with label-attribute matrix A,
the generalization error rate for the attribute-based ZSL model is upper-bounded
by

2NaB̄
τ

, (4.7)

where B̄ = 1
Na

∑Na
m=1 Bm and Bm is the upper bound of the prediction loss for the

mth attribute classifier f (m).

Proof. According to proposition 1, for any incorrectly classified test sample
x with label y, the distance between the predicted attribute representation
f (x) and the true attribute representation ay is greater than τ/2:

d( f (x), ay) =
Na∑

m=1

�( f (m)(x), a(m)
y ) ≥ τ

2
. (4.8)
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Let k be the number of incorrect image classifications for unseen test data
set Du = {(xi, yi), i = 1, . . . , Nu}. We can obtain

k
τ

2
≤

Nu∑
i=1

Na∑
m=1

�( f (m)(xi), a(m)
yi

)

≤
Nu∑
i=1

Na∑
m=1

Bm = NuNaB̄, (4.9)

where B̄ = 1
Na

∑Na
m=1 Bm and Bm is the upper bound of attribute prediction

loss.
Hence, the generalized error rate k/Nu is bounded by 2NaB̄/τ . �

Remark 1. Generalization error bound is positively correlated to the av-
erage attribute prediction loss: From theorem 1, we can find that the gen-
eralization error bound of the attribute-based ZSL model depends on the
number of attributes Na, minimum attribute distance τ , and average pre-
diction loss B̄ for all the attribute classifiers. According to definitions 1 and
2, the minimum attribute distance τ is positively correlated to the number
of attributes Na. Therefore, the generalization error bound is mainly affected
by the average prediction loss B̄. Intuitively, the inferior attributes with poor
predictability cause greater prediction loss B̄; consequently, these attributes
will have a negative effect on the ZSL performance and increase the gener-
alization error rate.

4.2 Improvement of Generalization after Attribute Selection. We
proved in the previous section that the generalization error bound of the
ZSL model is affected by the average prediction loss B̄. In this section, we
prove that attribute selection can reduce the average prediction loss B̄ and,
consequently, reduce the generalization error bound of ZSL from the per-
spective of PAC-style (Valiant, 1984) analysis.

Lemma 1. (Palatucci, Pomerleau, Hinton, & Mitchell, 2009). PAC bound of
ZSL: Given Na attribute classifiers, to obtain an attribute classifier with (1 − δ)
probability that has at most ka incorrect predicted attributes, the PAC bound D of
the attribute-based ZSL model is

D ∝ Na

ka
[4 log(2/δ) + 8(d + 1) log(13Na/ka)], (4.10)

where d is the dimension of the image features.

Remark 2. The average attribute prediction loss is positively correlated to
the PAC bound. Here, ka/Na is the tolerable prediction error rate of attribute
classifiers. According to the definition of the average attribute prediction
loss B̄, it is obvious that the ZSL model with smaller B̄ could tolerate a
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greater ka/Na. From lemma 1, we can find that the PAC bound D is monoton-
ically increasing with respect to Na/ka. Hence, the PAC bound D decreases
when the Na/ka decreases, and consequently the average prediction loss B̄
decreases.

Lemma 2. (Vapnik, 2013). Test error bound: Suppose that the PAC bound of
the attribute-based ZSL model is D. The probability of the test error distancing from
an upper bound is given by

p

(
ets ≤ etr +

√
1

Ns

[
D

(
log

(2Ns

D

)
+ 1

)
− log

(η

4

)])
= 1 − η, (4.11)

where Ns is the size of the training set, 0 ≤ η ≤ 1, and ets, etr are the test error and
the training error, respectively.

Remark 3. PAC bound is positively correlated to the test error bound. From
lemma 2, we can find that the PAC bound can affect the probabilistic upper
bound on the test error. Specifically, to obtain a high probability with a small
test error, the PAC bound should be small. In other words, the model with
a smaller PAC bound would have a smaller test error bound.

Proposition 2. Bound change after attribute selection: For the attribute-
based ZSL model, attribute selection can decrease the generalization error bound.

Proof. In attribute selection, the key attributes are selected by minimizing
the loss function in equation 3.1 on out-of-the-box data. Since the generated
out-of-the-box data have a similar distribution to the test data, the test error
of ZSL will decrease after attribute selection; that is, ZSLIAS has a smaller
test error bound than the original ZSL model. Therefore, we can infer that
ZSLIAS has a smaller PAC bound based on remark 3. According to remark
2, we can infer that the average prediction error B̄ decreases after attribute
selection. As a consequence, the generalization error bound of ZSLIAS is
smaller than the original ZSL model based on remark 1. �

From proposition 2, we can observe that the generalization error of the
ZSL model will decrease after adopting the proposed IAS. In other words,
a ZSLIAS has a smaller classification error rate comparing to the original
ZSL method when generalizing to the unseen test data.

5 IAS with Out-of-the-Box Data

Motivated by the generalization bound analyses, we select the key at-
tributes based on the out-of-the-box data. In this section, we first present
the proposed iterative attribute selection model. Then we introduce the
attribute-guided generative model designed to generate the out-of-the-box
data, followed by the complexity analysis of IAS.



498 X. Xu, I. Tsang, and C. Liu

5.1 Iterative Attribute Selection Model. Inspired by the idea of iter-
ative machine teaching (Liu et al., 2017), we propose a novel selection
model that iteratively selects attributes based on the generated out-of-the-
box data. First, we generate the out-of-the-box data to mimic test classes by
an attribute-based generative model. Then the key attributes are selected
in an iterative manner based on these data. After obtaining the selected at-
tributes, we can consider them as a more efficient semantic representation
to improve the original ZSL model.

Suppose, given the generated out-of-the-box data Dg = {(xn, yn), n =
1, . . . , Ng}, we can combine the empirical risk in equation 3.1 with the at-
tribute selection model. Then the loss function is rewritten as

L (y, f (x; s, W)) = 1
Ng

Ng∑
n=1

l (yn, f (xn; s, W)) + � (W) , (5.1)

where s ∈ (0, 1)Na is the indicator vector for the attribute selection, in which
si = 1 if the ith attribute is selected or 0 otherwise. Na is the number of all
the attributes.

Correspondingly, the mapping function f in equation 3.2 and the com-
patibility function F in equation 3.3 can be rewritten as

f (x; s, W) = arg max
y∈Y

F (x, y; s, W) , (5.2)

F (x, y; s, W) = θ (x)T W (s ◦ ϕ (y)) , (5.3)

where ◦ is the element-wise product operator (Hadamard product), and s
is the selection vector defined in equation 5.1.

To solve the optimization problem in equation 5.1, we need to specify the
choice of the loss function l (·). The loss function in equation 5.1 for a single
sample (xn, yn) is expressed as follows (Xian, Lampert, Schiele, & Akata,
2018):

l(yn, f ((xn; s, W)))

=
∑
y∈Yg

rny[
(yn, y) + F(xn, y; s, W) − F(xn, yn; s, W)]+

=
∑
y∈Yg

rny[
(yn, y) + θ (xn)TW(s ◦ ϕ(y)) − θ (xn)TW(s ◦ ϕ(yn))]+, (5.4)

where Yg is the label of generated out-of-the-box data, which is the same as
Yu.


(yn; y) = 0 if yn = y; 1 otherwise. rny ∈ [0, 1] is the weight defined in
specific ZSL methods.



Improving Generalization via Attribute Selection 499

Since the dimension of the optimal attribute subset (i.e., l0-norm of s) is
agnostic, finding the optimal s is an NP-complete (Garey, Johnson, & Stock-
meyer, 1974) problem. Therefore, inspired by the idea of iterative machine
teaching (Liu et al., 2017), we adopt the greedy algorithm (Cormen, Leis-
erson, Rivest, & Stein, 2009) to optimize the loss function in an iterative
manner. Equation 5.1 gets updated during each iteration as follows:

Lt+1 = 1
Ng

Ng∑
n=1

lt+1(yn, f (xn; st+1, Wt+1)) + �(Wt+1),

s.t.
∑

si∈st+1

si = t + 1,

∑
s j∈(st+1−st )

s j = 1. (5.5)

The constraints on s ensure that st updates one element (from 0 updates to
1) during each iteration, which indicates that only one attribute is selected
each time. s0 is the initial vector of all 0’s.

Correspondingly, the loss function in equation 5.5 for a single sample
(xn, yn) gets updated during each iteration as follows:

lt+1 =
∑
y∈Yg

rny[
(yn, y) + θ (xn)TWt+1(st+1 ◦ ϕ(y))

− θ (xn)TWt+1(st+1 ◦ ϕ(yn))]+. (5.6)

Here lt+1 is subjected to the same constraints as equation 5.5.
To minimize the loss function in equation 5.5, we can alternatively opti-

mize Wt+1 and st+1 by optimizing one variable while fixing the other one.
In each iteration, we first optimize Wt+1 via the gradient descent algorithm
(Burges et al., 2005). The gradient of equation 5.5 is calculated as follows:

∂Lt+1

∂Wt+1 = 1
Ng

Ng∑
n=1

∂lt+1

∂Wt+1 + 1
2
αWt+1, (5.7)

where

∂lt+1

∂Wt+1 =
∑
y∈Yg

rnyθ (xn)T (st ◦ (ϕ(y) − ϕ(yn))), (5.8)

where α is the regularization parameter.
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After updating Wt+1, we can traverse all the elements equal to 0 in st

and turn them into 1, respectively. Then st+1 is updated by the optimal st+1,
which achieves the minimal loss of equation 5.5:

st+1 = arg min
st+1

1
Ng

Ng∑
n=1

lt+1(yn, f (xn; st+1, Wt+1)) + �(Wt+1). (5.9)

When iterations end and s is obtained, we can easily get the subset of key
attributes by selecting the attributes corresponding to the elements equal to
1 in the selection vector s.

The procedure of the proposed IAS model is given in algorithm 1.

5.2 Generation of Out-of-the-Box Data. In order to select the discrimi-
native attributes for test classes, we should do attribute selection on the test
data. Since the training data and the test data are located in the different
boxes bounded by the attributes, we adopt an attribute-based generative
model (Bucher, Herbin, & Jurie, 2017) to generate out-of-the-box data to
mimic test classes. Compared to the ZSLAS, the key attributes selected by
IAS based on the out-of-the-box data can be more efficiently generalized to
test data.

Conditional variational autoencoder (CVAE) (Sohn et al., 2015) is a con-
ditional generative model in which both the latent codes and generated data
are conditioned on some extra information. In this work, we propose the
attribute-based variational autoencoder (AVAE), a special version of CVAE
with tailor-made attributes, to generate the out-of-the-box data.

VAE (Kingma & Welling, 2013) is a directed graphical model with certain
types of latent variables. The generative process of VAE is as follows. A set
of latent codes z is generated from the prior distribution p(z), and the data
x are generated by the generative distribution p(x|z) conditioned on z : z ∼
p(z), x ∼ p(x|z). The empirical objective of VAE is expressed as (Sohn et al.,
2015)

LVAE(x) = −KL(q(z|x) ‖ p(z)) + 1
L

L∑
l=1

logp(x|z(l) ), (5.10)

where z(l) = g(x, ε (l) ) and ε (l) ∼ N (0, I). q(z|x) is the recognition distribu-
tion, which is reparameterized with a deterministic and differentiable func-
tion g(·, ·) (Sohn et al., 2015). KL denotes the Kullback-Leibler divergence
(Kullback, 1987) between the incorporated distributions. L is the number of
samples.

Combined with the condition (i.e., the attribute representation of labels),
the empirical objective of the AVAE is defined as
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LAVAE(x, ϕ(y)) = −KL(q(z|x, ϕ(y)) ‖ p(z|ϕ(y))) + 1
L

L∑
l=1

logp(x|ϕ(y), z(l) ),

(5.11)

where z(l) = g(x, ϕ(y), ε (l) ), ϕ (y) is the attribute representation of label y.
In the encoding stage, for each training data point x(i), we estimate

the q(z(i)|x(i), ϕ(y(i) )) = Q(z) using the encoder. In the decoding stage, after
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Figure 3: The framework of AVAE. (a) Training stage. (b) Generating stage.

inputting the concatenation of the z̃ sampled from the Q(z) and the attribute
representation ϕ(yu), the decoder will generate a new sample xg with the
same attribute representation as the unseen class ϕ(yu).

The procedure of AVAE is illustrated in Figure 3. At training time, the
attribute representation (of training classes) whose image is being fed in is
provided to the encoder and decoder. To generate an image of a particu-
lar attribute representation (of test classes), we can just feed this attribute
vector along with a random point in the latent space sampled from a stan-
dard normal distribution. The system no longer relies on the latent space to
encode what object you are dealing with. Instead, the latent space encodes
attribute information. Since the attribute representations of test classes are
fed into the decoder at the generating stage, the generated out-of-the-box
data Dg have a similar distribution to the test data.

5.3 Complexity Analysis. Suppose that there are Nu unseen samples
belonging to L test classes and the number of all the attributes is Na. The
complexity of the original ZSL model is OZSL ∼ O(NuNaL2). For the pro-
posed ZSLIAS, the complexity the of training stage is OZSLIAS ∼ Na(Na +
1)/2 · OZSL, that is, O(NuN3

a L2), and the complexity of test stage is equal to
OZSL, that is, O(NuNaL2).

6 Experiments

To evaluate the performance of the proposed iterative attribute selection
model, extensive experiments are conducted on four standard data sets
with a ZSL setting. In this section, we first compare the proposed approach
with the state-of-the-art and then give detailed analyses.
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Table 2: Statistic Information of Four Data Sets with Two Data Set Splits.

Number of Number of

Number of Number of Classes Images (SS) Images (PS)

Data Set Attributes Total Training Test Training Test Training Test

AwA 85 50 40 10 24,295 6180 19,832 5685
aPY 64 32 20 12 12,695 2644 5932 7924
CUB 312 200 150 50 8855 2933 7057 2967
SUN 102 717 645 72 12,900 1440 10,320 1440

6.1 Experimental Settings

6.1.1 Data Set. We conduct experiments on four standard ZSL data sets:
(1) Animal with Attribute (AwA; Lampert et al., 2013), (2) attribute-Pascal-
Yahoo (aPY; Farhadi et al., 2009), (3) Caltech-UCSD Bird 200-2011 (CUB;
Wah, Branson, Welinder, Perona, & Belongie, 2011), and (4) SUN Attribute
Database (SUN; Patterson, & Hays, 2012). Information on these data sets is
summarized in Table 2.

6.1.2 Data Set Split. Zero-shot learning assumes that training classes and
test classes are disjoint. Actually, ImageNet, the data set exploited to extract
image features via deep neural networks, may include some test classes.
Therefore, Xian et al. (2018) proposed a new data set split (PS) ensuring
that none of the test classes appear in the data set used to train the extractor
model. In this letter, we evaluate the proposed model using both splits: the
original standard split (SS) and the proposed split (PS).

6.1.3 Image Feature. Deep neural network features are extracted for the
experiments. Image features are extracted from the entire images for the
AwA, CUB, and SUN data sets and from the bounding boxes mentioned
in Farhadi et al. (2009) for the aPY data set, respectively. The original
ResNet-101 (He, Zhang, Ren, & Sun, 2016), pretrained on ImageNet with
1000 classes, is used to calculate 2048-dimensional top-layer pooling units
as image features.

6.1.4 Attribute Representation. Attributes are used as the semantic repre-
sentation to transfer information from training classes to test classes. We
use 85-, 64-, 312-, and 102-dimensional continuous-value attributes for the
AwA, aPY, CUB, and SUN data sets, respectively.

6.1.5 Evaluation Protocol. The unified data set splits shown in Table 2 are
used for all the compared methods to get fair comparison results. Since the
data set is not well balanced with respect to the number of images per class
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(Xian et al., 2018), we use the mean class accuracy (i.e., per class averaged
top-1 accuracy) as the criterion of assessment. Mean class accuracy is calcu-
lated as follows,

acc = 1
L

∑
y∈Yu

#correct predictions in y
#samples in y

, (6.1)

where L is the number of test classes and Yu is the set comprising of all the
test labels.

6.2 Comparison with the State of the Art. To evaluate the efficiency of
the proposed iterative attribute selection model, we modify several latest
ZSL baselines by the proposed IAS and compare them with the state of the
art.

We modify seven representative ZSL baselines to evaluate the IAS model,
including three popular ZSL baselines—DAP (Lampert et al., 2013), LatEm
(Xian et al., 2016), and SAE (Kodirov, Xiang, & Gong, 2017)—and four latest
ZSL baselines—MFMR (Xu et al., 2017), GANZrl (Tong et al., 2018), fVG
(Xian et al., 2019), and LLAE (Li et al., 2019).

The improvement achieved on these ZSL baselines is summarized in
Table 3. It can be observed that IAS can significantly improve the perfor-
mance of attribute-based ZSL methods. Specifically, the mean accuracies of
these ZSL methods on four data sets (AwA, aPY, CUB, and SUN) are in-
creased by 11.09%, 15.97%, 9.10%, and 5.11%, respectively (10.29% on av-
erage), after using IAS. For DAP on the AwA and aPY data sets and LatEm
on the AwA data set, IAS can improve their accuracy by greater than 20%,
which demonstrates that IAS can significantly improve the performance of
ZSL models. Interestingly, SAE performs poorly on the aPY and CUB data
sets, while the accuracy rises to an acceptable level (from 8.33% to 38.53%
and from 24.65% to 42.85%, respectively) by using IAS. Although the per-
formance of the state-of-the-art baselines is quite good, IAS can still im-
prove them to some extent (5.48%, 3.24%, 2.80%, and 3.64% on average for
MFMR, GANZrl, fVG, and LLAE, respectively). These results demonstrate
that the proposed iterative attribute selection model makes sense and can
effectively improve existing attribute-based ZSL methods. This also proves
the necessity and effectiveness of attribute selection for ZSL tasks.

Similar to our work, ZSLAS selects attributes based on the distributive
entropy and the predictability of attributes. Thus, we compare the improve-
ment of IAS and ZSLAS on DAP and LatEm, respectively. In Table 3, it can
be observed that ZSLAS can improve existing ZSL methods, and IAS can
improve them even more (2.15% versus 10.61% on average). Compared to
ZSLAS, the advantages of ZSLIAS can be interpreted in two ways. First, ZS-
LIAS selects attributes in an iterative manner; hence, it can select a more op-
timal subset of key attributes than ZSLAS, which selects attributes at once.
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Figure 4: T-SNE visualization of the generated out-of-the-box data and real test
data of AwA.

Second, ZSLAS is conducted based on the training data, while ZSLIAS is
conducted based on the out-of-the-box data, which have similar distribu-
tions to the test data. Therefore, the attributes selected by ZSLIAS are more
applicable and discriminative for test data. Experimental results demon-
strate the significant superiority of the proposed IAS model over previous
attribute selection models.

6.3 Detailed Analysis. In order to further understand the promising
performance, we analyze the following experimental results in detail.

6.3.1 Evaluation on the Out-of-the-Box Data. In the first experiment, we
evaluate the out-of-the-box data generated by a tailor-made, attribute-
based, deep generative model. Figure 4 shows the distribution of the out-
of-the-box data and the real test data sampled from the AwA data set using
t-SNE. Note that the out-of-the-box data in Figure 4b are generated based
on the attribute representation of unseen classes and without extra informa-
tion on any test images. It can be observed that the generated out-of-the-box
data can capture a similar distribution to the real test data, which guaran-
tees that the selected attributes can be effectively generalized to test data.

We also quantitatively evaluate the out-of-the-box data by calculating
various distances between three distributions: the generated out-of-the-box
data (Xg), unseen test data (Xu), and seen training data (Xs), in pairs. Table 4
shows the distribution distances measured by Wasserstein distance (Vallen-
der, 1974), KL divergence (Kullback, 1987), Hellinger distance (Beran, 1977),
and Bhattacharyya distance (Kailath, 1967), respectively. It is obvious that
the distance between Xg and Xu is much less than the distance between Xu

and Xs, which means that the generated out-of-the-box data have a similar
distribution to the unseen test data compared to the seen data. Therefore,
attributes selected based on the out-of-the-box data are more discriminative
for test data compared to attributes selected based on training data.
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Table 4: Distances between Different Data Distributions.

Metrics Xg ∼ Xu Xg ∼ Xs Xs ∼ Xu

Wasserstein distance 5.99 19.09 18.97
KL divergence 0.321 0.630 0.703
Hellinger distance 7.78 16.87 17.15
Bhattacharyya distance 0.0808 0.159 0.176

Notes: Xg indicates the generated out-of-the-box data, Xu in-
dicates the unseen test data and Xs indicates the seen training
data. Numbers in bold indicate the minimum distance.

Figure 5: Visualization of generated out-of-the-box images and their attribute
representation. The first column of panels a and b is the real image derived from
the AwA data set. The remaining three columns of both parts are randomly
selected from the generated data. Numbers in black are the ground-truth at-
tributes of the real image. Numbers in green and red are the correct and the
incorrect attribute values of the generated images, respectively.

We illustrate some generated images of unseen classes (panda and seal)
and annotate the corresponding attribute representations shown in Figure
5. Numbers in black indicate the attribute representations of the labels of
real test images. Numbers in red and green are the correct and the incorrect
attribute values of generated images, respectively. We can see that the gen-
erated images have a similar attribute representation as test images. There-
fore, the tailor-made, attribute-based, deep generative model can generate
out-of-the-box data that capture a similar distribution as the unseen data.

6.3.2 Effectiveness of IAS. In the second experiment, we compare the per-
formance of three ZSL methods (DAP, LatEm, and SAE) after using IAS on
four data sets, respectively. The accuracies with respect to the number of
selected attributes are shown in Figure 6. On the AwA, aPY, and SUN data
sets, we can see that the performance of these three ZSL methods increases
sharply when the number of selected attributes grows from 0 to about 20%
and then reaches a peak. These results suggest that only about a quarter



508 X. Xu, I. Tsang, and C. Liu

Figure 6: Performance of IAS for DAP, LatEm, and SAE. The performance of
baselines without IAS is shown on the right-most side of the curves.

Figure 7: Confusion matrices (in %) between 10 test classes on the AwA data
set with the proposed split. (a) DAP using all the original attributes. (b) DAP
using the key attributes selected by IAS. (c) DAP using the remaining attributes
after selection.

of attributes are the key ones necessary and effective for classifying test
objects. In Figures 6b and 6f, there is an interesting result: SAE performs
poorly on the aPY data set with both SS and PS (the accuracy is less than
10%), while the performance is acceptable after using IAS (the accuracy is
about 40%). These results demonstrate the effectiveness and robustness of
IAS for ZSL tasks.

Furthermore, we modify DAP by using all 84 attributes, the 20 selected
attributes, and the remaining 64 attributes after attribute selection, respec-
tively. The resulting confusion matrices of these three variants evaluated
on the AwA data set with the proposed split setting are illustrated in Figure
7. The numbers in the diagonal area (yellow patches) of confusion matri-
ces indicate the classification accuracy per class. It is obvious that IAS can
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significantly improve DAP performance on most of the test classes, and the
accuracies on some classes nearly doubled after using IAS, such as horse,
seal, and giraffe. Although some objects are hard to be recognized by DAP,
like dolphin (the accuracy of DAP is 1.6%), we can get acceptable perfor-
mance after using IAS (the accuracy of DAPIAS is 72.7%). The original DAP
performs better than IAS only with regard to the object blue whale; this is be-
cause in the original DAP, most of the marine creatures (such as blue whale,
walrus, and dolphin) are classified as the blue whale, which increases the
classification accuracy and also the false-positive rate. More important, the
confusion matrix of DAPIAS contains less noise (i.e., smaller numbers in
the side regions—the white patches—of confusion matrices apart from the
diagonal area) than DAP, which suggests that DAPIAS has fewer prediction
uncertainties. In other words, adopting IAS can improve the robustness of
attribute-based ZSL methods.

In Figure 7, the accuracy of using the selected attributes (71.88% on av-
erage) is significantly improved compared to the accuracy of using all the
attributes (46.23% on average), and the accuracy of using the remaining at-
tributes (31.32% on average) is terrible. These results suggest that the se-
lected attributes are key for discriminating test data. The missing attributes
are useless and even have a negative impact on the ZSL system. Therefore,
not all the attributes are effective for ZSL tasks; clearly, we should select the
key attributes to improve performance.

6.3.3 Interpretability of Selected Attributes. In the third experiment, we
present the visualization results of attribute selection. We find that ZSL
methods obtain the best performance when selecting about 20% attributes,
as shown in Figure 6. Therefore, we illustrate the top 20% key attributes
selected by DAP, LatEm, and SAE on four data sets in Figure 8. The three
rows in each panel are DAP, LatEm, and SAE from top to bottom; the yellow
bars indicate the attributes selected by the corresponding methods. We can
see that the attribute subsets selected by different ZSL methods are highly
coincident for the same data set, which demonstrates that the selected at-
tributes are key for discriminating test data. Specifically, we enumerate
the key attributes selected by three ZSL methods on the AwA data set in
Table 5. The attributes in bold were simultaneously selected by all three ZSL
methods, and those in italics indicate that they were selected by any two of
these three methods. Thirteen attributes (65%) were selected by all three
ZSL methods. These three attribute subsets selected by diverse ZSL models
are very similar, additional evidence that IAS is reasonable and useful for
zero-shot classification.

7 Conclusion

We present a novel and effective iterative attribute selection model to im-
prove existing attribute-based ZSL methods. In most previous work on ZSL,
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Figure 8: Visualization of the attribute subsets selected by three different ZSL
methods on four data sets. Three rows in each figure are DAP, LatEm, and SAE
from top to bottom. The horizontal axis represents the attribute, and the yellow
bars indicate the attributes selected by the corresponding methods.

all the attributes are assumed to be effective and treated equally. However,
we noticed that the attributes have different predictability and discrim-
inability for diverse objects. Motivated by this observation, we propose to
select the key attributes to build a ZSL model. Since training classes and test
classes are disjoint in ZSL tasks, we introduce out-of-the-box data to mimic
test data to guide the progress of attribute selection. These data, generated
by a tailor-made, attribute-based, deep generative model, have a similar
distribution to the test data. Hence, the attributes selected by IAS based
on the out-of-the-box data can be effectively generalized to the test data.
To evaluate the effectiveness of IAS, we conduct extensive experiments on
four standard ZSL data sets. Experimental results demonstrate that IAS can
effectively select the key attributes for ZSL tasks and significantly improve
state-of-the-art ZSL methods.
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Table 5: Subsets of the Key Attributes Selected by DAP, LatEm and SAE on the
AwA Data Set.

DAP LatEm SAE

ground fish hands pads black paws
hands fields ground forest ground ocean
plains smelly bipedal gray pads yellow
tunnels pads claws coastal gray group
forest yellow black yellow hands tunnels
tail scavenger fish strainteeth hooves white
gray swims fields horns domestic fish
hibernate black paws scavenger tail fields
hooves paws blue tail skimmer forest
jungle weak hooves white arctic scavenger

Notes: We selected 20 attributes out of 85. The attributes that appear in all
three methods are in bold, and those that appear in two methods are in
italics.

In this work, we select the same attributes for all the unseen test classes.
Obviously, this is not the global optimal solution to select attributes for di-
verse categories. In the future, we will consider a tailor-made attribute se-
lection model that can identify the special subset of key attributes for each
test class.
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