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Observability driven Multi-modal Line-scan Camera Calibration
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Abstract— Multi-modal sensors such as hyperspectral line-
scan and frame cameras can be incorporated into a single
camera system, enabling individual sensor limitations to be
compensated. Calibration of such systems is crucial to ensure
data from one modality can be related to the other. The
best known approach is to capture multiple measurements
of a known planar pattern, which are then used to optimize
calibration parameters through non-linear least squares. The
confidence in the optimized parameters is dependent on the
measurements, which are contaminated by noise due to sensor
hardware. Understanding how this noise transfers through the
calibration is essential, especially when dealing with line-scan
cameras that rely on measurements to extract feature points.
This paper adopts a maximum likelihood estimation method
for propagating measurement noise through the calibration,
such that the optimized parameters are associated with an
estimate of uncertainty. The uncertainty enables development
of an active calibration algorithm, which uses observability to
selectively choose images that improve parameter estimation.
The algorithm is tested in both simulation and hardware, then
compared to a naive approach that uses all images to calibrate.
The simulation results for the algorithm show a drop of 26.4%
in the total normalized error and 46.8% in the covariance trace.
Results from the hardware experiments also show a decrease in
the covariance trace, demonstrating the importance of selecting
good measurements for parameter estimation.

I. INTRODUCTION

Multi-modal vision sensing systems have become in-
creasingly common in robotics for applications in dynamic
or featureless environments. Combining sensing modalities
in a complementary manner overcomes the limitations of
individual sensors when working in difficult scenarios with
poor lighting, occlusions and texture-less surfaces. The
ubiquitous frame camera, which provides dense 2D spatial
information, is often used for multi-frame operations such
as visual odometry [1] or simultaneous localization and
mapping (SLAM) [2], but is limited to the visible spectrum.
A hyperspectral camera can see beyond the visible spectrum.
Therefore, a frame and hyperspectral camera system can be
set up to expand the useful features that can be captured
from an environment. Before using such a camera system,
camera calibration is a necessary process to ensure consistency
between images and relate feature points from one camera
to another. The calibration is performed by optimizing
parameters through measurements of known feature points.
These measurements exhibit uncertainty due to inherent
random noises from the camera hardware. It is important to
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Fig. 1: Rigidly mounted camera system comprised of a Resonon
Pika NIR-320 hyperspectral line-scan camera and a Primesense
Carmine 1.09 frame camera.

quantify this uncertainty, as this will determine how reliable
the optimized parameters are.

Hyperspectral cameras typically capture data in a line-
scan manner with a single spatial dimension. This mode of
operation is preferred as the cameras can work in areas where
high resolution and frame-rate is required [3][4][5]. The single
spatial dimension makes calibration more difficult as the
feature points seen by the camera are not easily recognizable.
This makes it difficult to use multiple measurements of
feature points across many images, which would ensure well
optimized parameters. To overcome this issue, special patterns
have been designed to work with line-scan cameras, where
feature points can be extracted through the knowledge of
the pattern’s dimensions and the line-scan images [4][5][6].
These generally calibrated a line-scan camera using a single
image and relied heavily on the accuracy of multiple separate
planes.

A planar pattern, captured in multiple different poses, could
be used for calibration if the pose can be estimated by external
means such as assuming constant motion of either the pattern
or camera [7], or using an inertial measurement unit (IMU) [8].
An intrinsically calibrated frame camera was also shown to be
able to estimate the pose of a planar pattern, and then perform
calibration with the line-scan camera as a single camera
system [3][9][10]. In all these works, uncertainty analysis of
the line-scan calibration had not been considered, but has been
well established for frame camera calibration [11][2][12][13].
In such cases, measurement noise was propagated through
each step of the calibration and the optimized parameters
were returned with an associated error.

This paper describes a probabilistic calibration of a line-
scan and frame camera system that employs an active
calibration algorithm, which uses a metric to selectively
choose new measurements that will add value to the optimized
parameters. Uncertainty estimation plays a vital role as the
measurements are not only used to perform the overall



calibration, but before this, they aid in estimating feature
points that are seen by the line-scan camera from the
planar pattern. These estimated feature points will now
have an associated uncertainty. This uncertainty needs to
be incorporated into the optimized parameters.

The singular spatial dimension of the line-scan camera
also adds difficulty when capturing images of the pattern in
different poses. Not all measurements will improve the opti-
mized parameters. Some measurements may have insufficient
parallax, due to poses being similar, which can degrade the
optimization. A metric of observability, from control theory,
is used to filter such measurements by incorporating the
estimated uncertainty of the optimized parameters.

Calibration experiments using the algorithm are conducted
in simulation and hardware. The experiments compare the
algorithm to a naive approach that calibrates using all images.
The optimized parameters found through the active approach
exhibit lower errors and uncertainty. Therefore, calibrations
which use measurements that show significant variation in
pose, lead to well-optimized parameters.

II. CAMERA MODELS

A. Frame Camera

The pinhole camera model (PCM) for a 2D frame camera
relates a 3D point P (X,Y, Z) in the world coordinate system,
to a 2D pixel location p (u, v) on the image plane through the
projection matrix M ∈ R3×4 which is a product of both the
extrinsic and intrinsic parameters. The extrinsics is comprised
of R ∈ R3×3 square rotational matrix from the SO3 group,
and the translation vector t ∈ R3. The intrinsics include the
focal lengths fx and fy and the optical centre C (u0, v0). The
PCM for a frame camera in inhomogeneous coordinates is
defined as:

u = u0 + fx
r11X + r12Y + r13Z + t1
r31X + r32Y + r33Z + t3

+ ∆u

v = v0 + fy
r21X + r22Y + r23Z + t2
r31X + r32Y + r33Z + t3

+ ∆v ,

(1)

where (u, v) represents the distorted pixels seen on the image
plane and (∆u,∆v) are the deviations of these pixels due to
distortions caused by a lens. (r11...r33) are the elements of R
and (t1, t2, t3) are the elements of t. R can be parameterized
using Euler angles (rz, ry, rx). If the camera is assumed to
be intrinsically calibrated and the distortion is removed from
the images, the vector for the calibrated intrinsic parameters
is θfK ∈ R4 is defined as θfK = [u0, v0, fx, fy], and the
vector for the unknown extrinsic parameters is θfE ∈ R6 is
defined as θfE = [t1, t2, t3, rz, ry, rx].

B. Line-scan Camera

A line-scan camera can be regarded as a special form of a
frame camera where all pixels are located along u = 0 of the
image plane. The extrinsics are unchanged, but the intrinsics
are modified such that u0 = 0 and fx = 1. The distortion
only occurs about the v direction and can be modelled
as two order-radial [K1,K2] and one-order tangential P1

Fig. 2: The coordinate frames of the cameras, world and calibration
pattern. The pattern is annotated with the required dimensions. T
represents the unknown rigid transformation between the cameras.

coefficients [14]. The formulation for the PCM of a line-
scan camera in inhomogeneous coordinates is defined:

0 =
r11X + r12Y + r13Z + t1
r31X + r32Y + r33Z + t3

v = v0 + fy
r21X + r22Y + r23Z + t2
r31X + r32Y + r33Z + t3

+ ∆v ,

(2)

where (0, v) represents the distorted pixels seen on the image
line. The unknown intrinsic and extrinsic parameters can
be combined into a vector θl ∈ R11 which is defined as
θl = [v0, fy,K1,K2, P1, t1, t2, t3, rz, ry, rx].

C. Probabilistic Behaviour

Vision sensors exhibit uncertain behaviour which is seen as
noise in the pixel locations on the image plane. Let us assume
there is no motion of the cameras or the objects it is capturing.
Therefore, the noise is only due to the internal hardware and
electronics of the sensing circuity. This noise is assumed to be
constant and independent for both components of any pixel
in an image, and thus modelled as a zero-mean Gaussian
with a variance of σ2

u. For I images, where each image
contains N corresponding features, the u and v components
of each feature are stacked into a single measurement vector u
∈ R2NI , where the noise is modelled as a zero-mean Gaussian
with a diagonal covariance matrix Σu ∈ R2NI×2NI . These
noisy measurements induce uncertainties in all calculated
parameters, therefore the noise in the calibration parameters
can also be modelled as a zero-mean Gaussian. The covariance
matrices for the noise in the frame camera and line-scan
camera parameters are defined as ΣfK ∈ R4×4, ΣfE ∈ R6×6

and Σl ∈ R11×11.

III. CALIBRATION PROCEDURE

The steps for calibrating the camera system follow the
works of [3] and [9]. The frame camera is assumed to
be intrinsically calibrated with Zhang’s method [15]. The
optimized calibration parameters for the line-scan camera θ̂l
are found through the maximum likelihood estimation (MLE)
by minimizing the reprojection error:

θ̂l = argmin||u− f(θl,x)||2Σu
, (3)

where x ∈ R3NI is a vector of all 3D feature points seen
by the line-scan camera in a common reference frame. The



Fig. 3: Red view-line of the line-scan camera which intersects the
pattern lines (L1...L8) resulting in pattern feature points (P1...P8).
The corresponding image line with the pixel feature points (p1...p8).

function f represents the non-linear projection model for the
line-scan camera as detailed in (2). The problem is solved
by non-linear least squares. This section will describe how x
is determined and how the calibration is performed.

A. Pattern and Coordinate Frames

The cameras and the pattern are shown Fig. 2 with their
respective coordinate frames and the required dimensions of
the pattern. All poses are relative to the world coordinate
frame Oworld. The cameras are assumed to be rigidly mounted
together via an unknown transformation T. The calibration
is performed by taking Opat to be Oworld.

The pattern is adopted from [9]. It is comprised of right-
angled triangles which provide feature points for the line-scan
camera and cross-corner markers to determine the pattern’s
pose. All points lie on the XY plane of the pattern. To avoid
the calibration being under-determined, at least two different
poses of the pattern must be captured, where the pattern
contains at least three triangles and at least four cross-corner-
markers.

B. Cross-ratio Point Correspondence

For the line-scan camera, difficulties arise in determining
the location of the unknown view-lines on the pattern. The
cross-ratio η has been employed to determine these view-lines
[3][4][6][9]. It is a scale invariant relationship which links a
set of four collinear points, with a different set, given that
they are related by a projective transformation:

η =
(c− a)(d− b)
(c− b)(d− a)

=
(C −A)(D −B)

(C −B)(D −A)
. (4)

The values (a, b, c, d) are image coordinates in pixels and
(A,B,C,D) are pattern coordinates in world units. To deter-
mine the unknown feature points, their individual components
are considered. Firstly, examining Fig. 3, the equations of the
pattern lines (L1, L2, ...LN ) w.r.t Opat can be defined as:

Y = h(i− 1)/2

Y = −Xh/l + h(2lc + il)/2l

i = (1, 3, 5, ...N−1)

i = (2, 4, 6, ...N)
(5)

The following steps are taken to locate these points:
1) Y component of (P1, P3, P5, ...PN−1) are known.

2) Cross-ratio is used to determine Y component of
(P2, P4, P6, ...PN ).

3) X component of (P2, P4, P6, ...PN ) is found using (5).
4) Least squares linear fit of (P2, P4, P6, ...PN ).
5) X component of (P1, P3, P5, ...PN−1) is found by

substituting into the linear fit from the previous step.

C. Common Reference Frame

The extrinsic transformation of pose I of the pattern w.r.t to
Of is EI ∈ R4×4. This is estimated through the Perspective-n-
Point (PnP) algorithm using the known cross-corner markers.
EI transforms feature points from Oworld to the common
reference frame of Of as follows:

X
Y
Z
1


f

= EI


X
Y
0
1


world

(6)

D. Closed Form Solution

A closed form solution for the calibration can be determined
using direct linear transformation (DLT) [3][9][10]. This
solution does not include the distortion parameters, thus it
is used as the initial guess for the optimization. DLT of (2)
results in two over-determined homogeneous equations with
matrices A1 ∈ RNI×4 and A23 ∈ RNI×8 and solutions m1

∈ R4 and m23 ∈ R8 respectively. The closed form solution
for the unknown parameters is obtained as such:

n1 =
[
m1(1) m1(2) m1(3)

]>
n2 =

[
m23(1) m23(2) m23(3)

]>
(7)

n3 =
[
m23(5) m23(6) m23(7)

]>
γ1 = ±1/||n1|| γ3 = ±1/||n3||

Intrinsic, rotation and translation parameters:

v0 = γ23(n2 · n3) fy = ||γ23(n2 × n3)||
r1 = γ1n1 r2 = −(r1 × r3) r3 = γ3n3 (8)

t1 = γ1m1(4) t2 =
γ3m23(4)− v0t3

fy
t3 = γ3m23(8) .

The vectors r1, r2 and r3 are the rows of the rotation matrix
R. Note that γ1 and γ3 each have two solutions which account
for the mirror pose of T, therefore their correct values need
to be chosen that replicate the camera setup.

IV. UNCERTAINTY PROPAGATION

The uncertainty in the calibration arises from the pixel
noise in u. Therefore, this section describes the first-order
covariance propagation used to estimate the uncertainty in θl
as demonstrated by [2].

A. Frame Camera

For the intrinsically calibrated frame camera, ΣfE is
determined by propagating covariances through the PnP
algorithm. The authors of [2] show that ΣfE is a combination
of the feature noise introduced by Σu and noise in the
intrinsics ΣfK , which can be approximated by a scaled



unscented transform (UT) [16] to give ΣUT−f . Therefore,
ΣfE for the frame camera is defined as such:

ΣfE = (J>f Σ−1u Jf )−1 + ΣUT−f , (9)

where Jf ∈ R6×4 is the Jacobian of the function for the PnP
algorithm w.r.t θfK . This function was assumed to be (1) as
the closed form for the PnP algorithm is difficult to express.
ΣUT−f requires nine sigma points with the corresponding
weights that are determined using θfK , ΣfK and UT scaling
parameters [16].

B. Line-scan Camera

The uncertainty in the optimized line-scan camera parame-
ters Σl takes a similar form to (9) and is referred to in the
text as Ozog’s method:

Σl = (J>l Σ−1u Jl)
−1 + ΣUT−l , (10)

where Jl ∈ R11×2NI is the Jacobian of function f in (3)
w.r.t θl. ΣUT−l now arises from uncertainties in the world
coordinates x given by the covariance Σx ∈ R3NI×3NI . This
covariance is required to calculate ΣUT−l, and is determined
by propagating the covariance Σu through the process of
obtaining x.

Firstly, the feature points on the pattern were determined
using the corresponding pixel locations on the image line.
The steps for estimating the feature points required the
cross-ratio (4), pattern line equations (5), and a linear least
squares fit. This process takes in uncertain pixel coordinates u
and outputs their uncertain world coordinates [X,Y, 0]>world.
Therefore, Σu gets propagated to these world coordinates.
Then, the points are transformed to Of via EI per (6) to
give x. EI is equivalent to θfE through a conversion from
rotation matrix to Euler angles. For pose I , the uncertainty
in θfE is ΣfE which is calculated in (9). Propagating both
uncertainties in [X,Y, 0]>world and ΣfE gives Σx. ΣUT−l
requires 2NI+1 sigma points with the corresponding weights
that are determined using x , Σx and UT scaling parameters.

V. ACTIVE CALIBRATION

Calibration should be performed with a variation of
measurements that have sufficient parallax. We propose a
technique to determine if new measurements will improve
the estimation of the optimized parameters by looking at the
observability. Firstly, the observation model for the camera
system can be defined as such:

u = f(θl,x) + νu + νx . (11)

The measurement noise of the observations νu is modelled
as a zero-mean Gaussian with covariance Σu. The feature
points x are prior parameters that introduce noise νx, which
is also modelled as a zero-mean Gaussian with a covariance
Σxu

∈ R2NI×2NI . This covariance is propagated from Σx

by calculating the Jacobian Jx of the function f in (3) w.r.t x.
The observability analysis for an optimization formulated as
a non-linear least squares, can be performed by constructing
the Fisher information matrix (FIM) [17][18]:

J = J>l Σ−1T Jl . (12)

Algorithm 1: Active calibration of the camera system
Input: u, x, Σu, Σx

Output: θ̂l, Σ̂l

1 function Active Calibration
2 Current Images← [1]
3 for i = 2 to I do
4 Current Images← Append(i)
5 θl ← NonLinearCalibration(u− f(x,θl))

6 Jl ← ∂f
∂θl

7 Σl ← (J>l Σ−1u Jl)
−1 + UT (x,Σx)

8 Jx ← ∂f
∂x

9 Σxu
← J>x ΣxJx

10 ΣT ← Σxu
+ Σu

11 J← J>l Σ−1T Jl

12 (λ1...λ11)← EigenValues(J)
13 if SumRelativeChange(λ1...λ11) > 0 then
14 θ̂l ← θl
15 Σ̂l ← Σl

16 if SteadyStateReached() then
17 StopCalibration()

18 else
19 Current Images← Remove(i)

J ∈ R11×11 and ΣT ∈ R2NI×2NI is defined as ΣT =
Σu + Σxu

. The calibration is observable if J is full rank
which ensures the Cramér–Rao lower bound exists [19][20].
The eigenvalues (λ1...λ11) of J generally relate to the
observability of each parameter in θl. Therefore, by ensuring
that (λ1...λ11) are large, the lower bound of the uncertainty
for each parameter will be small. This concept is used to
evaluate new measurements by calculating a metric of the
sum of relative change between the current and previous
(λ1...λ11). By only keeping measurements where the relative
sum is positive, we ensure improved individual parameter
observability. This metric also provides the capability of
terminating the calibration once a steady-state is achieved.
The proposed algorithm is described in Algorithm 1.

VI. EXPERIMENTS

A. Validation of Uncertainty Propagation

Experiments in simulation were carried out to confirm if
the uncertainty Σl was correctly propagated from Σu and
ΣfK using Ozog’s method. A Monte Carlo simulation was
performed with added pixel noise of SD σu and added noise in
θfK . The trace of Σl shows the results for changing number
of images, changing σu, and changing added noise in θfK ,
which can be seen in Fig. 4a, Fig. 4b and Fig. 4c respectively.
The estimated uncertainty by Ozog’s method is valid for both
changing noises and number of images. Large differences
between the plots are a collective result of ignoring higher-
order-terms during the error propagation steps. Fig. 4a also
shows that the uncertainty is high in the beginning likely due
to insufficient information for calibration.



(a) Changing number of images (b) Changing pixel image noise (c) Changing frame camera intrinsic noise

Fig. 4: Σl estimated using Ozog’s method was compared to a Monte Carlo simulation of 1000 runs. In (a), the trace is compared to a
changing number of images, with fixed noises σu = 1 and the SD of the noise in θfK is 0.3% of its mean value. In (b), σu was varied
while the SD of the noise in θfK is fixed. In (c), the SD of the noise in θfK is varied with fixed pixel noise.

B. Active Calibration in Simulation

Experiments in simulation were performed using 60 poses
of the pattern where ground-truth was available. The algorithm
was compared to a naive approach which calibrated using all
images. The results for the total normalized absolute errors
are shown in Fig. 5a, the trace of Σl is shown in Fig. 5b,
and absolute errors in the optimized parameters are shown
in the plots of Fig. 5c, Fig. 5d, and Fig. 5e. The algorithm
chose the best 38 images out of the 60, where the last image
was the 54th at which it reached steady state and terminated
the calibration. When comparing the results for the final
optimized parameters, the active run showed a 26.4% drop in
the total normalized error and a 46.8% drop in the trace of
Σl. The time to complete the calibration was 76s for active
and 19s for naive on the same computational hardware.

C. Active Calibration of Real Camera System

Active calibration of the camera system shown in Fig. 1
was performed. Naive and active runs were compared using
40 poses of the pattern. Fig. 6a shows the trace of Σl for
both runs. The algorithm used the best 22 images from the 40
available. It did not reach a steady state so all 40 images were
evaluated. When comparing the results for the final optimized
parameters, the active run showed a 35.4% drop in the trace
of Σl. The active calibration parameters were then used to
transform and project a hyperspectral view-line onto an image
of the pattern as shown in Fig. 6b. The uncertainty in camera
parameters is used to calculate the 1-σ error boundary of the
pixel coordinates. The time to complete the calibration was
52s for active and 5s for naive on the same computational
hardware.

D. Discussion of Calibration Experiments

The results of the experiments show an advantage to using
the active calibration algorithm, although it is comparatively
slower due to its iterative nature. The poor results of the naive
runs can be attributed to calibrating using measurements with
insufficient parallax. The error plots in Fig. 5c, Fig. 5d and Fig.
5e are roughly reflected by the total error evaluation metric
in Fig. 5a. This evaluation metric gave equal weighting to
all parameters, therefore, large variations in some parameters,
such as the distortion coefficients, greatly influenced the plot.

The metric used in the active calibration algorithm only
considers the sign of the relative change in eigenvalue sum.
If the metric is positive, the latest measurement has likely

(a) Total normalized absolute error in simulation

(b) Trace of covariance in simulation

(c) Absolute errors in translation parameters in simulation

(d) Absolute errors in rotation parameters in simulation

(e) Absolute errors in intrinsic parameters in simulation

Fig. 5: Active and naive runs were compared in simulation. The
total normalized absolute errors in θl is shown in (a), the trace of
Σl is shown in (b), absolute errors in t1, t2, and t3 are shown in
(c), absolute errors in rz, ry, and rx are shown in (d), and absolute
errors in fy and v0 are shown in (e). For both runs, σu = 1 and the
SD of the noise in θfK is 0.3% of its mean value.



increased parameter observability, but the magnitude of the
metric is disregarded. In terms of early termination, there may
be a risk of ignoring later observations which may improve
parameter estimation. The algorithm focuses on keeping
measurements that increase the metric until the eigenvalues
stabilize, at this point it assumes that no further measurements
will improve the results. The algorithm may also terminate too
early, using fewer than 10 images, which generally resulted
in higher uncertainties as shown in Fig. 4a, Fig. 5b, and Fig.
6a. Therefore, a minimum number of poses should be set.

VII. CONCLUSIONS

A probabilistic calibration for a line-scan and frame camera
system is proposed, which propagated noise in the pixel
measurements to the optimized parameters. This method
of uncertainty propagation provided the groundwork for an
observability analysis of the optimization-based calibration,
which was then exploited to evaluate new measurements
based on their contribution towards improving parameter ob-
servability. The algorithm of active calibration demonstrated
that not all new measurements were beneficial. Ignoring
such measurements resulted in calibration parameters closer
to ground-truth with lower uncertainties. The observability
metric was also used to terminate the calibration once reaching
a steady state value. Future work will consider using the
calibrated camera system to estimate material properties, with
a level of uncertainty, through the added features provided
by the hyperspectral line-scan camera.

(a) Trace of covariance in hardware experiments

(b) Projected spectral view-line on pattern

Fig. 6: Active and naive runs were performed on a real camera
system. The trace of Σl is shown in (a). For both runs, σu = 1 and
the SD of the noise in θfK was retrieved from MATLAB’s Camera
Calibration toolbox. In (b), a hyperspectral view-line was projected
to a frame camera with a 1-σ error boundary.

ACKNOWLEDGMENT

This paper is supported by funding from the Australian
Government Department of Agriculture and Water Resources
as part of its Rural R&D for Profit program, MLA grant
number V.RDP.2005.

REFERENCES

[1] G. Hu, S. Huang, L. Zhao, A. Alempijevic, and G. Dissanayake, “A
robust RGB-D slam algorithm,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2012, pp. 1714–1719.

[2] P. Ozog and R. M. Eustice, “On the importance of modeling camera
calibration uncertainty in visual SLAM,” Proceedings - IEEE Inter-
national Conference on Robotics and Automation, pp. 3777–3784,
2013.

[3] B. Sun, J. Zhu, L. Yang, S. Yang, and Z. Niu, “Calibration of line-scan
cameras for precision measurement,” Applied optics, vol. 55, no. 25,
pp. 6836–6843, 2016.

[4] D. Li, G. Wen, B. Wei Hui, S. Qiu, and W. Wang, “Cross-ratio invariant
based line scan camera geometric calibration with static linear data,”
Optics and Lasers in Engineering, vol. 62, pp. 119–125, 2014.

[5] C. A. Luna, M. Mazo, J. L. Lázaro, and J. F. Vázquez, “Calibration
of line-scan cameras,” IEEE Transactions on Instrumentation and
Measurement, vol. 59, no. 8, pp. 2185–2190, 2010.

[6] D. Su, A. Bender, and S. Sukkarieh, “Improved cross-ratio invariant-
based intrinsic calibration of a hyperspectral line-scan camera,” Sensors
(Switzerland), vol. 18, no. 6, 2018.

[7] G. Di Leo, C. Liguori, A. Pietrosanto, and R. Lengu, “Uncertainty
of line camera image based measurements,” IEEE International
Conference on Instrumentation and Measurement Technology, pp. 1–6,
2017.

[8] A. Wendel and J. Underwood, “Extrinsic parameter calibration for line
scanning cameras on ground vehicles with navigation systems using a
calibration pattern,” Sensors (Switzerland), vol. 17, no. 11, 2017.

[9] D. Li, G. Wen, and S. Qiu, “Cross-ratio–based line scan camera
calibration using a planar pattern,” Optical Engineering, vol. 55, no. 1,
p. 014104, 2016.

[10] B. Hui, G. Wen, P. Zhang, and D. Li, “A novel line scan camera cali-
bration technique with an auxiliary frame camera,” IEEE Transactions
on Instrumentation and Measurement, vol. 62, no. 9, pp. 2567–2575,
2013.

[11] L. Zhu, H. Luo, and X. Zhang, “Uncertainty and sensitivity analysis
for camera calibration,” Industrial Robot, vol. 36, no. 3, pp. 238–243,
2009.

[12] G. Di Leo and A. Paolillo, “Uncertainty evaluation of camera
model parameters,” Conference Record - IEEE Instrumentation and
Measurement Technology Conference, pp. 598–603, 2011.

[13] R. Galego, A. Ortega, R. Ferreira, A. Bernardino, J. Andrade-Cetto,
and J. Gaspar, “Uncertainty analysis of the DLT-Lines calibration
algorithm for cameras with radial distortion,” Computer Vision and
Image Understanding, vol. 140, pp. 115–126, nov 2015.

[14] S. Fang, X. Xia, and Y. Xiao, “A calibration method of lens distortion
for line scan cameras,” Optik, vol. 124, no. 24, pp. 6749–6751, 2013.

[15] Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
pp. 1330–1334, dec 2000.

[16] S. J. Julier, “The scaled unscented transformation,” Proceedings of the
American Control Conference, vol. 6, no. 2, pp. 4555–4559, 2002.

[17] Z. Wang and G. Dissanayake, “Observability analysis of SLAM using
fisher information matrix,” 2008 10th International Conference on
Control, Automation, Robotics and Vision, ICARCV 2008, no. December,
pp. 1242–1247, 2008.

[18] D. Su, T. Vidal-Calleja, and J. V. Miro, “Asynchronous microphone
arrays calibration and sound source tracking,” Autonomous Robots,
vol. 44, no. 2, pp. 183–204, 2020.

[19] F. Nobre and C. Heckman, “Learning to calibrate: Reinforcement
learning for guided calibration of visual–inertial rigs,” The International
Journal of Robotics Research, vol. 38, no. 12-13, pp. 1388–1402, 2019.

[20] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, “Estimation with
applications to tracking and navigation,” in Estimation with Applications
to Tracking and Navigation. John Wiley & Sons, 2001, ch. 3, pp.
164–165.


	20xx IEEE
	b64ca22e-ef7f-4ca8-b7cc-6e99168493f3

