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ABSTRACT Unmanned Aerial Vehicles (UAVs) are gaining popularity in many aspects of wireless
communication systems. UAV-mounted mobile base stations (UAV-BSs) are an effective and cost-
efficient solution for providing wireless connectivity where fixed infrastructure is not available or de-
stroyed. However, UAV-BSs have their limitations and complications, for instance, limited available
energy. In addition, when several UAV-BSs are deployed to provide coverage to a specific area,
the possibility of inter-UAV collisions and the interference to ground users increase. We propose
Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) based methods to deploy UAV-BSs
under energy constraints to provide efficient and fair coverage to the ground users, while minimising inter-
UAV collisions and interference to ground users. The proposed methods outperform the baseline methods by
an average increase of 38.94% in system fairness, 42.54% in individual user coverage, and 15.04% in total
system coverage, in comparison with the baseline methods.

INDEX TERMS Unmanned aerial vehicles (UAVs), wireless coverage, reinforcement learning.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are fast becoming a pop-
ular choice in a wide variety of applications in wireless sys-
tems. Their many desirable features, including cost efficiency,
high manoeuvrability, and ease of deployment, make UAVs,
a promising candidate to be used as mobile aerial base sta-
tions (BSs). UAV-mounted mobile base stations (UAV-BSs)
can be deployed to provide wireless connectivity in areas of
urgent need without infrastructure coverage, such as disaster-
struck areas [1]. The ability of a UAV-BS to be sent to a
specific target location immediately without having to de-
ploy any infrastructure is one of the most significant advan-
tages of UAV-BSs [2]. Unlike terrestrial BSs and even those
mounted on ground vehicles, UAV-BSs can be deployed in any
location and move along any trajectory constrained only by

their aeronautical characteristics [1]. In addition, due to their
high altitude, UAV-BSs have a higher chance of Line-of-Sight
(LoS) connection with the ground users in comparison with
the ground BSs [3].

However, UAV-BSs have their inherent limitations. Due
to the very limited communication range, a large number
of UAV-BSs would be required to provide wireless cover-
age to a large geographical area throughout the considered
duration. This might not be possible due to the relatively
high cost [3]. Thus, one or a limited number of UAV-BSs
need to be deployed to provide wireless coverage to a large
geographical area, and these UAV-BSs are required to fly and
hover, providing wireless coverage to as many ground users
in the considered area as possible. However, UAV-BSs have
limited available energy, and they need to utilise the available
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energy optimally in order to provide wireless coverage to as
many users as possible and to prolong the network lifetime. In
addition, the fairness of the system when providing coverage
to the ground users needs to be considered. The probability of
a small subset of users being provided with wireless coverage
throughout the entire duration should be reduced. Additional
complications arise when multiple UAV-BSs are deployed to
serve a specific geographical area. Multiple UAVs sharing a
common air space, flying in close proximity to each other,
increase the possibility of inter-UAV collisions [4]. Further-
more, due to the same reasons, the probability of interference
to ground users from the neighbouring cells (UAV-BSs) in-
creases considerably.

The problem of optimising the paths of UAV-BSs to provide
wireless coverage to a maximum number of ground users is
a complicated problem with several concerns and limitations
that are mentioned above. The complicated nature of the prob-
lem makes it hard to be solved using traditional optimisa-
tion techniques. Due to this reason, we propose using Rein-
forcement Learning (RL) and Deep Reinforcement Learning
(DRL) techniques to solve this problem. With the proposed
approaches, we aim to achieve the objectives below.
� Increase the total user coverage at the exhaustion of

energy.
� Increase the number of individual users covered.
� Increase system fairness in providing coverage.
� Reduce collisions between UAV-BSs.
� Reduce interference to ground users caused by neigh-

bouring UAV-BSs.
The main contributions of this piece work are summarised

below.
� We propose RL and DRL based solutions for the prob-

lem of deploying UAV-BS(s) to provide wireless cover-
age to the ground users, considering fairness in providing
coverage under energy constraints of the UAVs.

� We propose a Q-Learning (QL) based approach for
the scenario of using a single UAV-BS and a Deep
Q-Learning (DQL) approach for the scenario of using
a set of UAV-BSs to provide coverage.

� We conduct extensive simulations to prove that the pro-
posed methods outperform the baseline methods. In
addition to increased fairness and user coverage the
proposed DRL based method minimises the collisions
between UAV-BSs and interference to ground users.

The rest of the paper is structured as below. Section II
presents an overview of related work that is present in the
current literature. Section III introduces our system model.
Section IV presents a brief introduction to RL. Section V
presents the proposed method. Section VI presents the sim-
ulation results and analysis, while Section VII concludes the
paper.

II. RELATED WORK
A large volume of research has been conducted in recent years
on UAVs in different areas. An extensive study on the use
of UAVs in search and rescue, construction, coverage, and

transportation was conducted from a communications point
of view in [5]. A significant amount of research has been done
in the areas of UAV trajectory optimisation [6]–[8], collision
avoidance [9]–[11], and energy efficiency [12]–[14].

We discuss the recent work in literature that studied the use
of a single UAV-BS, multiple UAV-BSs, and the use of Ma-
chine Learning (ML), Deep Learning (DL), RL, and DRL for
UAV applications in wireless communication systems below.

A. DEPLOYMENT OF A SINGLE UAV-BS
Several studies have been carried out on deploying a single
UAV-BS to assist in providing wireless coverage to ground
users. The authors of [15] derived the optimal altitude for a
UAV-BS to provide the maximum radio coverage to ground
users. The authors of [16] studied the problem of 3D place-
ment of a UAV-BS considering the traffic requirements and
the density of ground users. In the letter [17], the authors
modelled the UAV-BS placement in the horizontal dimension
as a circle placement problem and a smallest enclosing circle
problem. They proposed an efficient UAV-BS 3D placement
method that maximised the number of covered ground users
using the minimum required transmit power. The work pre-
sented in [18] aimed to maximise the number of covered users
demanding different QoS requirements. The authors proposed
using exhaustive search over a one-dimensional parameter
in a closed region to obtain the optimal 3D location of the
UAV-BS.

However, deploying coordinated multiple UAVs can per-
form tasks that go beyond the capabilities of a single UAV.
This domain has not been explored in the above-cited work.

B. DEPLOYMENT OF MULTIPLE UAV-BSS
A UAV-BSs placement optimisation method called ‘Spiral
Method’ was proposed in [1], which aimed to minimise the
number of UAV-BSs needed to provide coverage to ground
users. The proposed method placed UAV-BSs sequentially
along the path connecting the extreme points of the con-
vex hull of the uncovered ground users. The authors of [19]
proposed a new network architecture called ‘Coordinated
multipoint (CoMP) in the sky’ that mitigated the inter-user
interference by the corporation gain of CoMP and used the
mobility of UAVs to provide strong channel gains to mobile
ground users. A method of dynamically clustering roaming
users and energy efficient trajectory planning for a set of
UAV-BSs to serve the user clusters was presented in [20].
A UAV-BSs deployment and mobility control algorithm was
proposed in [21]. The UAV-BSs were made to fly in a macro-
hotspot continually, based on a game theory based mobility
algorithm, continuously serving the mobile ground users. The
authors of [22] studied the problem of deploying a set of
heterogeneous UAV-BSs with different flying speeds, operat-
ing altitudes, and coverage radii, minimising the maximum
deployment delay among all UAV-BSs and minimising the
total deployment delay. The authors of [23] proposed deploy-
ing a set of UAV-BSs in a way that optimised the quality of
coverage. They focused on minimising the average Euclidean
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distance between users and the nearest UAV-BS. They pro-
posed a recursive algorithm that moved UAV-BSs closer to the
centres of the corresponding Voronoi cells at each iteration.

However, energy efficiency and fairness in providing cov-
erage to ground users have not been considered in most of the
above-cited work.

C. MACHINE LEARNING FOR UAVS IN WIRELESS
COMMUNICATION APPLICATIONS
ML has attracted the attention of the researchers due to its
ability of solving problems that are impossible or too difficult
to be solved using traditional methods. ML, RL, and DL have
been widely used in recent years for UAV applications in
wireless communications systems.

The key use cases of cellular-connected UAVs in UAV
based delivery systems, real-time multimedia streaming ap-
plications, intelligent transportation systems were discussed
in [24], along with the main wireless and security challenges
faced and possible Artificial Neural Network (ANN) based
solutions. The authors of [25] proposed a space-air-ground
IoT network for offloading computation-intensive applica-
tions where they employed a policy gradient based actor-critic
learning algorithm to determine the optimal offloading policy.
A QL based approach was proposed in [26] to minimise inter-
cell interference and save energy for ultradense small cells.
Further, a DQL based approach was proposed to accelerate
the learning speed for the ultra-dense small cells with a large
number of active users. The authors of [3] proposed a cen-
tralised method named DRL-based ‘Energy-efficient Control
for Coverage and Connectivity,’ which ensured effective and
fair coverage to ground users. The actor-critic method Deep
Deterministic Policy Gradient (DDPG) was used as the base
for the proposed method. The above proposed method was
extended to a distributed DRL-based control solution in [27].
In [28], a threefold solution was proposed for using UAV-
BSs to provide coverage to ground users. First, the authors
proposed using genetic algorithm based K-means clustering
(GAK-means) to partition the users into cells. Second, a QL
based algorithm was proposed for static 3D deployment of
the UAV-BSs. Finally, a QL based movement algorithm was
proposed for the UAV-BSs to serve the roaming ground users.

However, the practical scenario of maximising coverage
at the exhaustion of available energy of the UAV-BSs is not
considered in any of the above cited work. Additionally, min-
imising interference to ground users and collisions between
UAV-BSs have not been taken into consideration in work
present in literature.

In our work presented in this paper, we consider several
factors that have not been widely considered in literature when
using UAV-BSs. We aim to maximise coverage at the exhaus-
tion of available energy in the UAVs, which is a limitation that
has not been considered in most of the work in literature. We
aim to minimise inter-UAV collisions and the interference to
the ground users caused by neighbouring UAV-BSs as well,
which has been often overlooked in the literature.

FIGURE 1. Virtually Discretised Area.

III. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a square area of width l, with a set N of N ground
users uniformly and at random positioned in the considered
area. We initially consider using one UAV-BS U to provide
downlink communication to the ground users. We assume that
the UAV-BS is backhaul-connected via satellite links. It is
understood that satellite-UAV links are not commercialised
yet. However, UAV-BSs being backhaul-connected through
satellite links, is a common assumption in literature [1], [20],
and [28]. Later, we extend the scenario to use a fleet of UAV-
BSs to provide downlink communication to ground users in
the said area.

The UAV-BS U, has a limited amount of energy E available
for flying (E is expected to be used only for manoeuvring
purposes, not for transmission. However, the energy required
for communication purposes is negligible in comparison to the
energy required for a UAV to fly and hover [29]). The UAV-BS
should utilise the available energy to provide fair coverage to
the maximum number of ground users.

The 2D coordinates of each ground user n ∈ N is known
and given by (xn, yn). The 3D coordinates of the UAV-BS at
time t is given by (xt , yt , h). The UAV-BS is assumed to fly in
a fixed altitude h. According to [30] 10 m is the optimal height
for positioning a typical small cell BS. Lowering the antenna
below 10 m would cause possible coverage issues, and an
antenna height higher than 10 m would increase interference
with neighbouring cells [2]. Thus, we assume the UAV-BS to
fly and hover at a fixed altitude of 10 m.

Assuming the UAV-BS’s coverage radius is l/2 m, for ex-
position purposes, we discretise the considered area into a set
of unit sized square areas with a side length of l/m. Thus, the
area is virtually divided into m × m unit squares. The UAV-BS
is assumed to station (hover) only at the corners and centres of
the said set of unit squares shown by the red dots in Fig. 1. In
literature, it is common practice to assume that the entire cell
area is being covered if the UAV-BS is positioned at the centre
of the cell [3]. For high user density scenarios, this assumption
is unfair, as 25(4 − π )% of the entire area is not being covered
the entire period of time (Fig. 2). Considering the corners
and the centres of the cells to be possible hovering points
eliminates this unfairness. The number of possible hovering
points is M = 2m(m + 1) + 1. The possible hovering points
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FIGURE 2. Coverage Based on Hovering Point.

for the UAV-BS are hereon denoted by the set M, which has
a cardinality of M.

A. CHANNEL MODEL
We adopt the air-to-ground (ATG) channel model with prob-
abilistic LoS and NLoS connections proposed in [15]. The
proposed probability of LoS connection between a ground
user and the UAV-BS is given by the below equation.

PLOS (h, r) = 1

1 + gexp(−z(θ − g))
(1)

where PLOS is the probability of LoS connection, h is the
relative flying altitude of the UAV-BS, r is the distance be-
tween the ground user and the UAV’s location projected on
ground, g and z are statistical parameters that depend on the
environment. θ is arctan(h/r) in degrees. Based on the basic
theories of probability, the probability of having a non line of
sight (NLoS) connection is PNLOS (h, r) = 1 − PLOS (h, r).

We assume that the Doppler effect due to the mobility of the
UAV-BS is compensated for based on existing techniques (eg.
frequency synchronisation using a phase-locked loop [31]) as
done in [32].

The path loss (L) can be calculated by,

L = 20 log

(
4π fcd

c

)
+ η (2)

where fc is the carrier frequency and c is the speed of light.
d is the distance between the ground user and the UAV-BS
(d = √

h2 + r2). η is the mean additional loss, which would
take different values for LoS (ηLoS) and NLoS (ηNLoS) scenar-
ios [15].

ATG communication is dominated by LoS connections.
However, the obstacles in a realistic environment, such as
buildings and trees might disturb LoS. Thus, we consider the
probabilistic average path loss, averaged over the LoS and
NLoS scenarios. The path loss between a UAV-BS hovering
at relative altitude h and a user r away from UAV-BS’s ground

projection can be calculated as below.

Lh,r = LLoS × PLoS + LNLoS × PNLoS

= PLoS (ηLoS − ηNLoS ) + LNLoS

= ηLos − ηNLoS

1 + gexp(−z(θ − g))

+ 20 log
( r

cos θ

)
+ 20 log

(
4π fc

c

)
+ ηNLoS (3)

We assume that the transmit power (Ptx) of the UAV-BS
and carrier frequency ( fc) are fixed and the maximum allowed
path loss (PLmax) at the receiver for reliable communication is
given. According to (3), for fixed fc the path loss depends on r
and θ . Since the UAV-BSs are assumed to fly at a fixed altitude
h, and tan θ = h/r, the path loss threshold can be considered a
coverage disk of radius R′, as all receivers inside this coverage
disk would have a path loss less than or equal to PLmax.

B. PROBLEM FORMULATION
We aim to find the optimal path for the UAV-BS subjected to
its available energy constraints in a way that maximises
� Total coverage of the ground users.
� Fairness in providing coverage.
The trajectory of the UAV-BS can be thought of as a di-

rected graph G = (V, L), V is the set of vertices (V ⊂ M)
which represents the hovering points of the UAV-BS, shown
by the red dots with a black outline in Fig. 1. L is the set of
edges which represents the flight path of the UAV-BS, shown
by the black arrows in Fig. 1. Thus the path of the UAV-BS
can be represented by P = v0, v1, . . ., vt (vi ∈ V,∀i). We send
control commands to update the UAV-BS’s position every t ′
seconds. t ′ comprises of the time taken by the UAV-BS to
fly between two hovering points t f and the hovering time tc.
The UAV-BS is assumed to provide coverage to the users only
when it is hovering.

Since most of the real world UAV application scenarios are
per instruction based [33], [34], we assume our system behave
per instruction. Instructions are sent to the UAV-BSs every t ′
seconds and the UAV-BSs continue following an instruction
until a new instruction is received.

1) TOTAL COVERAGE OF THE GROUND USERS
We aim to provide coverage to the maximum number of users
with the available energy. To measure the user coverage pro-
vided by the UAV-BS, we introduce a ‘coverage track’ (similar
to the ‘coverage score’ presented in [3]. However, we track the
coverage of users not specific geographical points) for each
user n ∈ N . The coverage track of user n at time step t, (Covt

n)
is determined as below,

Covt
n =

{
1,

√
(xn − xt )2 + (yn − yt )2 ≤ R′

0, otherwise
(4)
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The total coverage of the nth ground user at time interval t
is:

Covn(t ) =
t∑

i=0

Covi
n (5)

The total coverage of the entire user set at time interval t ,
Cov(t ), is give by (6)

Cov(t ) =
N∑

n=1

t∑
i=0

Covi
n (6)

2) FAIRNESS IN PROVIDING COVERAGE
Fairness can be considered both at the system level and indi-
vidual level. The system fairness addresses the overall fairness
amongst all individuals in the system, while individual fair-
ness indicates whether a certain individual is treated fairly by
the system [35]. Our objective is to increase system fairness.

It is a possibility that in most timeslots, a small subset of
users are provided with network coverage while the majority
of the users are left uncovered. This leads to unfair coverage.
We use a widely used matrix for fairness, Jain’s fairness in-
dex [36] as a means of measuring fair coverage. The fairness
index of the system at time interval t , Ft is given by,

Ft =
(∑N

n=1
∑t

i=0 Covi
n

)2

N
(∑N

n=1

(∑t
i=0(Covi

n)2
)) (7)

3) UAV-BS OPTIMAL PATH FINDING PROBLEM
For ease of exposition we define a variable αa,b which in-
dicates whether the UAV-BS would fly directly between the
hovering points a and b. αa,b ∈ {0, 1}. αa,b = 1 if the UAV-BS
would fly from point a to point b, (a, b ∈ M) and 0 otherwise.
In order to determine the optimal path for the UAV-BS, we
propose solving the optimisation problem given below.

max
N∑

n=1

T∑
i=0

Covi
n

subject to c1.

M∑
a=1

M∑
b=1,b�=a

αa,b ea,b ≤ E

c2. Ft < Ft+1, (if Ft �= 1 ∀t ≤ T )

c3. αa,bta,b < t ′

(8)

The objective function in (8) aims to maximise the total user
coverage of the system, which can be derived from (4)–(6).
The constraint c1 makes sure the energy spent on manoeu-
vring the UAV-BS is within the limit of available energy.
ea,b is the energy required to fly between the points a and
b. We follow the energy model proposed in [29] for energy
predictions.

The constraint c2 assures that the UAV-BS always positions
itself in a way that increases system fairness. This constraint
makes sure that the UAV-BS does not always provide coverage

to the same subset of users. However, this constraint is only
checked if Ft �= 1. Since 1 is the maximum possible value
for the fairness index, when the system reaches the fairness
index 1, no matter what action the UAV-BS takes (hover in
the current position or move to a new position), the fairness
would reduce, unless the entire set of ground users is covered
by taking the action, which is highly unlikely. Thus, the sec-
ond constraint is checked only if the system fairness has not
reached the maximum.

ta,b represents the time needed to travel between the points
a and b. The constraint c3 makes sure that the time needed
for the UAV-BS to fly between two points is less than the time
interval between two control commands.

The considered square area can be thought of as a complete
graph (assuming the speed limitations of the UAV-BS would
not constraint the flight between the two furthest points within
the allowed time) with possible hovering points as vertices and
the paths to the hovering points as edges. This reduces to a
complete graph with a cost on each edge (energy required) and
a reward at each vertex (number of users that can be covered at
each point). The objective is to find a path that maximises the
reward within a given cost. Thus, if we relax the constraints in
the optimisation problem (8), it falls to the form of Traveling
Purchaser Problem (TPP), which is a generalisation of the
classical Traveling Salesman Problem (TSP) [37]. TSP and
thus TPP are NP-hard, making the problem in (8) NP-hard as
well.

The energy model presented in [29], shows that the energy
requirement for a trajectory is not linear, making the constraint
c1 non-linear.

The condition to satisfy the fairness constraint c2 can be
derived as below.

If we consider t time slots, a user can be covered for 0 to t
number of time slots. It is assumed that in each of above time
slots, m0, m1, m2, . . .., mt users are provided coverage. Thus,
from (7), the fairness of the system at t can be expressed as
below.

Ft =
(∑t

i=0 imi
)2

N
∑t

i=0 i2mi
(9)

For clarity, if A = ∑t
i=0 imi and B = ∑t

i=0 i2mi, then, Ft =
A2/NB.

To satisfy (c2),

A2

NB
<

(A + (t + 1)mt+1)2

N (B + (t + 1)2mt+1)

mt+1 >
A(A(t + 1) − 2B)

B(t + 1) (10)

The above inequality is for the number of users covered.
However, when measuring fairness, the individuality of the
users needs to be considered as well. This makes the con-
straint c2 non-trivial to be satisfied. Due to these reasons,
the problem (8), is too difficult to be solved using traditional
optimisation techniques.
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We propose using an RL approach to solve this problem,
specifically based on QL.

IV. REINFORCEMENT LEARNING AND Q-LEARNING
BASICS
In RL, an agent constantly interacts with an environment,
typically formulated as a Markov Decision Process (MDP).
The system consists of a set S of states and a set A of
possible actions for each state. The agent interacts with the
environment in discrete time intervals. At each time interval t ,
the agent observes the system state (st ∈ S ), and performs an
action (at ∈ A) that changes the system state to (st+1 ∈ S ).
Based on st , at , st+1, the agent receives a numerical reward
rt . The objective of RL is to find the optimal policy π (s, a),
that maps a state to an action that maximises the discounted
cumulative reward R = ∑∞

t=0 γ rt , where γ , (0 ≤ γ ≤ 1) is
the discount factor which determines the importance given to
future rewards.

QL is a widely used model-free algorithm for RL first pro-
posed by Watkins and further developed in 1992 [38]. The Q
function calculates the quality of a state-action combination:

Q : S × A → R (11)

The QL update rule is given by the below equation.

Qt+1(st , at ) = (1 − α)Qt (st , at ) + α
(

rt + γ max
a

Q(st+1, a)
)

(12)
where α is the learning rate and all the other symbols have the
same meanings as described above.

QL becomes highly inefficient in scenarios where the
state space is large. To overcome this limitation QL can be
combined with function approximation. In Deep Q-Learning
(DQL) artificial deep neural networks (DNN) are used as the
approximator for the Q-function.

V. PROPOSED REINFORCEMENT LEARNING BASED
APPROACH
In the proposed RL approach, an agent periodically inspects
the status of the environment, chooses the best action based
on the current state and informs the UAV-BS of the action to
be taken.

A. STATE SPACE AND ACTION SPACE
The state st , at each time epoch t consists of following
information.
� total coverage of each ground user until the current time

interval t , Covn(t ) ∈ [0, t](∀n ∈ N ).
� current position of the UAV-BS vt = (xt , yt ).
� available energy of the UAV-BS et ∈ [0, E ].
With the above information included, the format of the state

would be st = [Cov1(t ), . . .,Covn(t ), vt , et ], with a cardinal-
ity of (N + 2).

Theoretically, a UAV can fly in any direction, and this
leads to a continuous action space. This might result
in impractically high training time for the network and

TABLE 1. Description of Parameters Used

possible divergence in QL. Thus, we aim to reduce the ac-
tion space. This is achieved by restricting the possible ac-
tions the UAV-BS can take at each state st . Hence, we as-
sume that the UAV-BS can fly in a direction given by A =
{0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, 2π} to the next
immediate hovering point in selected direction. 0 indicates
hovering in the current position. We further assume UAV-BSs
always fly at the same constant speed, ensuring that UAV
speed would always satisfy the constraint shown in c3.

Based on the action taken, the next position of the UAV-BS
vt+1 can be calculated with respect to the current position vt

as below.

vt+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt , at = 0

vt + (l/2 m, l/2 m), at = π/4

vt + (l/m, 0), at = π/2

vt + (l/2 m,−l/2 m), at = 3π/4

vt + (0,−l/m), at = π

vt + (−l/2 m,−l/2 m), at = 5π/4

vt + (−l/m, 0), at = 3π/2

vt + (−l/2 m, l/2 m), at = 7π/4

vt + (0, l/m), at = 2π

(13)
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B. REWARD FUNCTION
At each time epoch t , the reward is calculated based on the
reward function below (The initial system fairness, F0 = 0).

rt =
{∑N

n=1 Covt
n × (

Ft − F(t−1)
)
, F(t−1) �= 1∑N

n=1 Covt
n × (Ft ) , otherwise

(14)

We propose taking the difference in system fairness into
account when calculating the reward, aiming to prompt the
UAV-BS to move in a manner the system fairness is increased
with each step (if the system fairness has not reached the
maximum of 1 yet). The authors in [3] and [27], consider
the instantaneous fairness of the system at each time step
when calculating the reward as opposed to considering the
difference in fairness that is proposed in this paper. However,
considering the instantaneous fairness of the system tends
to make the UAV-BS reluctant to fly. A comparison of the
system performance for the two reward functions is presented
in Section VI.

The proposed algorithm for training the system is given
in Algorithm 1. We start the training process by arbitrarily
initialising the Q-Table (Q(s, a)). We employ an ε-greedy
policy [38] to determine the action to be taken at each state.
We select action at either randomly with a probability of ε

(explore) or select the action that results in the highest Q value
for the current state otherwise (exploit). Based on the resulting
state st+1, we calculate the reward rt according to (14). Since
we are considering a closed area in this scenario, the UAV-BS
has to respect the area boundaries. To impose this, we add a
penalty p to the reward every time an action would result in
the UAV-BS going over the area boundaries. The conditions
for applying the penalty p is given in (15).

p =
{

λ1, 0 > xt > l or 0 > yt > l

0, otherwise
(15)

C. MULTI-UAV SCENARIO
Next, we consider the scenario of deploying multiple UAV-
BSs to provide coverage to a geographical area. We assume
a set K of K UAV-BSs is deployed to provide coverage to
the ground users. We assume K is not sufficient to provide
coverage to all the users throughout the entire duration, thus
the UAV-BSs need to fly and hover at different points to
provide fair coverage to the ground users in the considered
area.

Multiple UAV-BSs make the system more complex and
increase the state space of the problem. A large state space
increases the size of the Q-table and the time taken to look
up. This makes using QL highly inefficient in solving the
problem. Thus, we propose using DQL to solve the scenario
of multiple UAV-BSs, where a neural network is used to ap-
proximate the Q-value function.

Having multiple UAV-BSs introduce complexities that are
not present in the single UAV-BS scenario. Accordingly we
have to take the below facts into consideration in addition to
the factors considered in the single UAV-BS scenario.

FIGURE 3. Collision Between Two UAV-BSs.

Algorithm 1: Proposed Method With Q-Learning.
1: Initialise Q(s, a) arbitrarily
2: for episode:= 1, ..., M do
3: Get the initial state s1

4: while available_energy > 0 do

5: at =
{

random action, with ε probability

argmaxaQ(st , a), otherwise
6: Execute at and obtain st+1

7: Calculate rt based on (14)
8: Calculate p based on (15)
9: if p > 0 then

10: rt = rt − p
11: UAV-BS stays in the same place
12: Update st+1 accordingly
13: end if
14: Qt+1(st , at ) =

(1 − α)Qt (st , at ) + α(rt + γ max
a

Q(st+1, a))

15: end while
16: end for

� Collision avoidance between UAV-BSs.
� Reducing interference to ground users caused by neigh-

bouring UAV-BSs.

1) COLLISION DETECTION
As commonly done in the literature ([10], [4]), a safety dis-
tance (L) is defined for the UAVs. When two or more UAVs
are closer than the safety distance to each other, it is identified
as a collision (Fig. 3).

A possible collision between two UAV-BSs is determined
as below. If UAV-BS1 flies from point (x1, y1) to point
(x2, y2), its path is given by the equation (16).

y = y1 − y2

x1 − x2
x + x1y1 − x2y1

x1 − x2
(16)

Assuming m1 = y1−y2
x1−x2

and c1 = x1y1−x2y1
x1−x2

, path of UAV-
BS1 is reduced to y = m1x + c1.

Similarly, if UAV-BS2 flies from point (a1, b1) to point
(a2, b2), and m2 = b1−b2

a1−a2
and c2 = a1b1−a2b1

a1−a2
, its path is given

by y = m2x + c2.
UAV-BS1 has a speed of v1 and UAV-BS2 has a speed of v2.

At time t UAV-BS1 arrived at point A and UAV-BS1 arrived
at point B. The coordinates of A and B can be determined as
below.
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A ≡ ((x1 ± v1t cos θ ) , (y1 ± v1t sin θ ))

B ≡ ((a1 ± v2t cos α) , (b1 ± v2t sin α)) (17)

where θ = tan−1 m1 and α = tan−1 m2.
The exact values for A and B can be determined by con-

sidering the distances between the possible points and the
target points. For ease of exposition, we consider A ≡ ((x1 +
v1t cos θ ), (y1 + v1t sin θ )) and B ≡ ((a1 + v2t cos α), (b1 +
v2t sin α)).

For a collision to occur between UAV-BS1 and UAV-BS2,

((x1 − a1) + (v1 cos θ − v2 cos α) t )2 +
((y1 − b1) + (v1 sin θ − v2 sin α) t )2 � L2

Ht2 + It + J � 0 (18)

where,

H = v2
1 + v2

2 − 2v1v2 (cosθ cos α − sin θ sin α)

I = 2((x1 − a1) (v1 cos θ − v2 cos α)

+ (y1 − b1) (v1 sin θ − v2 sin α))

J = (x1 − a1)2 + (y1 − b1)2 − L2 (19)

Solving (18),(
t −

(
−I + √

I2 − 4HJ

2H

))(
t −

(
−I − √

I2 − 4HJ

2H

))
� 0

(20)

For a collision to occur, a valid solution should be available
for t , such that 0 < t ≤ t ′.

In the proposed method, possible collisions are detected as
mentioned above and UAV-BSs are prompted to move into
hovering points that do not result in collisions. Collisions in-
volving more than two UAV-BSs can be detected by breaking
down the collision into multiple two-UAV collisions, as done
in [10].

One solution for avoiding inter-UAV collisions is using
the height separation technique (deploying UAVs at different
heights). However, this leads to deploying UAV-BSs at a wide
range of heights, which would cause performance degradation
of the system [21]. Thus, we propose detecting the possible
collisions and training the system to come up with UAV-BS
paths that result in minimal possible collisions.

2) REDUCING INTERFERENCE
We aim to reduce the interference to the ground users by the
neighbouring UAV-BSs. To measure the impact of interfer-
ence, we introduce four levels of interference.
� Level 0: When the distance between two UAVs is 2 ×

diameter of the coverage disk (Fig. 4(a)). The interfer-
ence to ground users is the lowest in this scenario.

� Level 1: When the distance between two UAVs is
√

2 ×
diameter of the coverage disk (Fig. 4b). The interference
to ground users is low in this scenario.

FIGURE 4. Interference levels based on UAV positions.

� Level 2: When the distance between two UAVs is equal
to the diameter of the coverage disk (Fig. 4c). The inter-
ference to ground users is moderate in this scenario.

� Level 3: When the distance between two UAVs is smaller
than the diameter of the coverage disk (Fig. 4d). The
interference to ground users is high in this scenario.

To adapt to the scenario of multiple UAV-BSs, we have to
change the state space S accordingly. The state st , at each time
epoch t should consist of the following information.
� total coverage of each ground user until the current time

interval t , Covn(t ) ∈ [0, t], (∀n ∈ N ).
� current position of each UAV-BS vk

t = (xk
t , yk

t ), (∀k ∈
K).

� available energy of each UAV-BS ek
t ∈ [0, E ], (∀k ∈ K).

The format of st would be st =
[Cov1(t ), . . .,Covn(t ), v1

t , . . ., vk
t , e1

t , . . ., ek
t ]. The cardinality

of the state is (N + 2 K ).
In the training process, in addition to the penalty p intro-

duced in (15), two additional penalties are introduced. The
penalties are applied to each UAV-BS.
� Possibility of collisions between UAV-BSs (p2).
� Possibility of causing interference to the users by the

neighbouring UAV-BSs (p3).
The penalties p2 and p3 for UAV-BS k is defined below.

pk
2 =

{
λ2, if a solution for (20) exists

0, otherwise
(21)

74 VOLUME 1, 2020



Algorithm 2: Proposed Method with Deep Q-Learning.
1: Initialise replay memory D into capacity B
2: Initialise action-value function Q with random weights

θ

3: Initialise target action-value function Q̂ with random
weights θ− = θ

4: for episode:= 1, ..., M do
5: Get the initial state s1

6: while available_energy > 0 do
7: p, p2, p3 = 0
8: Select

at =
{

random action, ε probability

argmaxaQ(st , a; θ ), otherwise
9: Execute at and obtain st+1

10: Calculate rt based on (14)
11: for i:= 1, ..., K do
12: Calculate pi based on (15)
13: p = p + pi

14: if pi > 0 then
15: UAV-BS i stays in the same place
16: Update st+1 accordingly
17: end if
18: Calculate pi

2 based on (21)
19: p2 = p2 + pi

2
20: Calculate pi

3 based on (22)
21: p3 = p3 + pi

3
22: end for
23: rt = rt − (p + p2 + p3)
24: Store transition (st , at , rt , st+1) in D
25: Sample random minibatch of transitions

(st , at , rt , st+1) from D
26: Set

y j =
{

r j, terminal

r j + γ maxa′ Q̂(st+1, a
′ ; θ−) otherwise

27: Perform gradient descent step on
(y j − Q(s j, a j; θ ))2 w.r.t the network parameter θ

28: Every C steps reset Q̂ = Q, i.e., set θ− = θ

29: end while
30: end for

If the distance between UAV-BS k and UAV-BS q is dkq,

pk
3 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ0
3, dkq = 2 l/m (Figure 4a)

λ1
3, dkq = √

2l/m (Figure 4b)

λ2
3, dkq = l/m (Figure 4c)

λ3
3, dkq < l/m (Figure 4d)

0, otherwise

(22)

Since the target is to maximise the reward, the system tries
to find a trade-off between the penalties.

The proposed method of positioning UAV-BSs to pro-
vide coverage using DQL (inspired by [39]) is shown in
Algorithm 2.

The basic idea of DL is to train the system to reach a target,
and in traditional DL this target does not change. However, in

TABLE 2. Simulation Parameters

RL as the agent explores the environment, the target continu-
ously changes in each iteration. This results in unstable, most
of the time non-converging training. In order to overcome
this in DQL, two networks are used. One network is used
as the function approximator and the other to estimate the
target. The target network has the same architecture and the
parameters as the function approximator. Information of the
latest transactions are stored in memory (line 24 in Algorithm
2) a subset of which is used to train the network. After C steps,
the parameters of the target network are replaced with that of
function approximator (line 28 in Algorithm 2).

VI. SIMULATION RESULTS
Our simulation setup was developed using Tensorflow 1.14
and Python 3.6.5. We considered a target area of 2 × 2 km.
The coverage radius of the UAV-BS was considered to be
250 m. The simulation parameters are summarised in Table 2.

Initially, we checked the effectiveness of the reward func-
tion proposed in this paper in comparison to that proposed
in [3] and [27]. The simulations were run with the two dif-
ferent reward functions, while keeping all other simulation
parameters the same. The results are shown in Fig. 5. The
simulation results show that the reward function proposed in
this paper results in better total system fairness and a higher
number of individual users covered while the reward func-
tion presented in [3] and [27] results in better total system
coverage. According to (6), the total system coverage can be
increased by providing coverage to a subset of users for a long
time duration, however, with reduced system fairness. This is
the reason for increased total system coverage and reduced
fairness and individual coverage with the reward function
presented in [3] and [27]. Since the reward function proposed
in this paper prompts the UAV-BS to fly and provide coverage
to as many individual users as possible, the system fairness
and the total number of individual users covered are higher.

We evaluate the performance of the proposed algorithm
based on the below parameters:
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FIGURE 5. Comparison of system fairness, number of covered users and total coverage of the system based on the reward function introduced in this
paper and the reward function presented in [3] and [27]. The simulations were run while keeping all the parameters same except for the reward function
in the two instances.

FIGURE 6. Paths obtained by different methods for a UAV-BS. The blue dots indicate ground users (100 ground users distributed uniformly and at random
in an area of 2 × 2 km2). The red dots indicate hovering points of the UAV-BS. The green circles indicate coverage areas. The numbers next to hovering
points indicate time iterations of hovering at that point. It can be seen that the UAV-BS has been hovering for more than one iteration at some points.

� Total coverage of the ground users.
� Number of individual ground users covered.
� Fairness in providing coverage.
We compared the performance of the method proposed in

this paper with the performance of the state, action spaces and
reward function proposed in [27], along with two commonly
used baseline methods: Random and Greedy method.

1) GREEDY METHOD
Since the key objective is to maximise coverage, in the Greedy
method, at each time interval the action at is selected in a way
that maximises the instantaneous user coverage.

2) RANDOM METHOD
The UAV-BS would randomly select an action and perform
the selected action. This process is repeated until the available
energy is exhausted.

Since the method proposed in [27] assumes that the UAV-
BS can cover multiple points of interest by hovering in

one point, for simulating the [27] based method we dis-
cretise the area into smaller squares of width 250 m while
keeping the UAV-BS coverage radius the same (Refer Fig. 6
for clarification).

B. SINGLE UAV-BS SCENARIO
First, we consider one UAV-BS providing coverage to the said
geographical area. The effectiveness of the proposed method
was tested with varying number of ground users and available
energy units.

The first set of simulations were performed with the avail-
able energy set to 3000 units and with a varying number of
ground users (60–100 users). The UAV-BS paths obtained by
the proposed method and the three baseline methods consid-
ered are shown in Fig. 6. The proposed method prompts the
UAV-BS to fly around the area serving a wide spread of users
in comparison to the other methods, as seen in Fig. 6. Since the
area covered by the proposed method is considerably higher,
it can also be used for area screening and surveying purposes,
in addition to providing coverage.
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FIGURE 7. Comparison of system fairness, number of covered users and total coverage with a varying number of ground users. The results show that the
proposed method results in better fairness and individual user coverage in comparison and the [27] based method results in better total system coverage
in comparison.

The simulation results for the scenario of fixed manoeu-
vring energy with a varying number of ground users are give
in Fig. 7.

The proposed RL method outperforms the baseline meth-
ods consistently in terms of the system fairness (Fig. 7a) and
the number of individual users covered (Fig. 7b). The pro-
posed RL method doubles the system fairness in comparison
to the [27] based method and the Random method, system
fairness is increased by an average of 20.1% in comparison
to the Greedy method. The reward function of the proposed
method prompts the UAV-BS to position itself in a manner that
increases the system fairness, resulting in increased system
fairness. However, according to (Fig. 7a), the system fairness
decreases as the number of ground users increases. As the
number of ground users increases, the number of hovering
points to be covered in order to provide coverage to all ground
users increases as well. However, the available energy of the
UAV-BS remains the same. Therefore, this increases the num-
ber of uncovered users, resulting in low system fairness.

The proposed method increases the number of individual
users covered by an average of 84.31% in comparison to
the [27] based method and by an average of 8.16% compared
to the Greedy method. The proposed method doubles the indi-
vidual users covered in comparison to the Random method. As
mentioned earlier, the proposed reward function prompts the
system to increase system fairness in every iteration. Accord-
ing to (7), to increase fairness, number of individuals covered
should be increased. Thus the proposed method strives to pro-
vide coverage to as many individual ground users as possible.
As Fig. 7b shows, on average, the number of individual users
covered has increased with the increase in the total number of
ground users. As the total number of ground users increases
in a fixed area, the user density increases. This increases the
number of users that can be covered by hovering at a certain
point, resulting in an increase of individual users covered.

In terms of the total coverage of the system, the pro-
posed method outperforms the Greedy and Random meth-
ods while [27] based method often shows better performance
in comparison to all the other three methods. The proposed
method has an average increase of 9.2% in total system

coverage in comparison to Greedy method and 38.5% in com-
parison to Random method. The [27] based method has an
average total system coverage increase of 8% in comparison
to the proposed method. As discussed in the comparison of the
reward functions in the proposed method and [27], the reward
function in [27], makes the UAV-BS slightly hesitant to fly but
prompts to increase system coverage. Since the total system
coverage can be increased by providing constant coverage
to the same subset of users (according to 6), the [27] based
method shows better performance in total system coverage.

According to the results section in [27], the method pro-
posed in [27] outperforms the Greedy method. However, in
our simulations [27] inspired method was constantly out-
performed by the Greedy method. It should be noted that
the variant of Greedy method used in [27], tries to max-
imise the instantaneous reward while in our simulations the
Greedy method tries to maximise the instantaneous user
coverage.

In the second set of simulations, we keep the number of
users constant (100 users) in the considered area and change
the available energy in the UAV-BS (2000–6000 units) in
order to understand the impact of available energy in the
performance of the proposed method. The results of this set
of simulations are shown in Fig. 8.

The fairness of the system increases with available energy
in all three methods. As the available energy increases the
UAV-BS’s ability to fly increases, making it possible to pro-
vide coverage to a higher number of users. This increases
fairness as well as individual and total coverage of the system.
However, the proposed RL method outperforms the baseline
methods in terms of the system fairness, the number of indi-
vidual users covered while [27] based method has better total
coverage.

The proposed RL method increases the system fairness by
an average of 54.76% in comparison to the Greedy method.
In comparison to the [27] based method and Random method,
the proposed method doubles the system fairness on average.
The number of individual users is increased by an average of
100% by the proposed method in comparison to the [27] based
method and Random method. The increase in the individual
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FIGURE 8. Comparison of system fairness, number of covered users and total coverage with varying energy available for manoeuvring. The results show
that the proposed method results in better fairness and individual user coverage in comparison and the [27] based method results in better total system
coverage in comparison.

FIGURE 9. Paths obtained by different methods for a scenario of 3 UAV-BSs providing coverage. The blue dots indicate ground users (100 ground users
distributed uniformly and at random in an area of 2 × 2 km2). The red dots indicate hovering points of the UAV-BS. The coverage areas of different
UAV-BSs are shown in different colours. The time iterations of the UAV-BSs hovering at different points are shown by the numbers in different colours. All
three UAV-BSs have the same initial point marked ‘1’.

user coverage in comparison to the Greedy method is 50.68%.
The proposed method outperforms the Greedy method by an
average of 23.33% and the Random method by an average
of 41.12% in terms of the total system coverage. The [27]
based method outperforms the other considered methods in
total system coverage, with an average increase of 18.1%
in comparison to the proposed method. The reason for the
increased total system coverage in the [27] based method was
explained before.

Based on the above simulation results, we can conclude that
the proposed RL based method outperforms all three baseline
methods in system fairness and the number of individual users
covered. The proposed RL based method outperforms Greedy
method and Random method in terms of total system cover-
age as well. However, the [27] based method displays better
performance in terms of total system coverage.

C. MULTI UAV-BS SCENARIO
In the multi-UAV scenario, we consider the same area size
and coverage range for the simulations. The available energy
for the UAV-BSs for flying is set to 2000 units. The number
of ground users is fixed to be 100. The users are uniformly

and at random distributed in the considered area. We increase
the number of UAV-BSs one at a time (2–5) to observe its
effect on the ground user coverage. The initial location of the
UAVs is the lower left-most point of the area. Up to three
UAV-BSs are dispatched from the same initial location. The
additional UAV-BSs are dispatched from the next corner of
the considered area anticlockwise.

Fig. 9 shows the UAV-BS paths given in the four methods–
proposed DRL method, [27] based method, Greedy method
and Random method, when 3 UAV-BSs are used to provide
coverage to an area of 2 × 2 km with 100 users.

The figures clearly show that the paths given by the pro-
posed method have no collisions and very low interference
to ground users, in comparison to the paths given by the
three baseline methods. It is an added advantage that the area
covered by the UAV-BSs in the proposed method is higher
than the baseline methods. Thus, an extension of the proposed
method could be surveying the area in addition to providing
coverage to the ground users.

The performance comparison between [27] based method,
Greedy method, Random method, and the proposed DQL
method can be seen in Fig. 10.

78 VOLUME 1, 2020



FIGURE 10. Comparison of system fairness, number of covered users and total coverage with varying number of UAV-BSs used to provide coverage. The
results show that the proposed method results in better fairness and individual user coverage in comparison to all three baseline methods and [27]
based method shows better performance in total system coverage.

The simulation results show that the proposed DRL method
outperforms the baseline methods by a considerable margin
with respect to system fairness (Fig. 10a). The proposed DRL
method has increased the system fairness by an average of
32.08% in comparison to the [27] based method, by an aver-
age of 17.94% in comparison to Greedy method and 69.81%
in comparison to Random method.

However, it can be noted that the system fairness in the pro-
posed DRL method increases up to a threshold (3 UAV-BSs)
and starts to decrease afterwards, while the fairness given by
the baseline methods continues to increase with the number
of UAV-BSs used. This is due to the increased possibility of
inter-UAV collisions and interference to ground users with the
increase of the UAV-BSs used. The proposed method aims to
eliminate inter-UAV collisions and minimise interference to
ground users. This reduces the UAV-BSs’ freedom of flying.
This results in UAV-BSs hovering in the same position for
longer periods, resulting in reduced system fairness. How-
ever, the baseline methods do not take inter-UAV collisions
and interference to ground users into consideration, thus, the
UAV-BSs are not restricted of the freedom to fly. Hence, the
number of users that can be covered increases with the number
of UAV-BSs, which in return increases the system fairness.
However, this increase of fairness comes at the cost of inter-
UAV collisions and interference to ground users.

The above observation suggests that there exists an optimal
number of UAV-BSs to be deployed to provide fair coverage
to ground users, while avoiding inter-UAV collisions and min-
imising interference to ground users. We intend to analytically
derive the optimal number of UAV-BSs to serve a specific area
in our future work.

Fig. 10b shows the comparison to the number of individual
users covered. The proposed DRL method shows an increased
number of ground users covered in comparison to all three
baseline methods. The proposed DRL method increases the
individual user coverage by an average of 26.76% in com-
parison to the [27] based method, 21.8% in comparison to
the Greedy method and 63.54% comparison to the Random
method.

The simulation results show that with the proposed DRL
method the number of individual users covered initially in-
crease and start to decrease after a threshold (3 UAV-BSs in

the considered scenario). The reason for this observation is
explained earlier with respect to the system fairness.

The comparison to total system coverage is shown in
Fig. 10c. The proposed DRL method out-performs the Greedy
method and Random method in terms of total system cov-
erage. However, the [27] based method shows better perfor-
mance in total system coverage. The proposed method has
increased the total system coverage by an average of 7.48% in
comparison to the Greedy method and 47.51% in comparison
to the Random method. The [27] based method shows an
average increase of 3.65% in total system coverage in com-
parison to the proposed method. The reason for the [27] based
method’s increased total system coverage is explained earlier
in this paper in the discussion of simulation results for the
single UAV-BS scenario.

In the proposed DRL method, the total system coverage
continues to increase with the number of UAV-BSs, in contrast
with the system fairness and the number of individual users
covered, which start to decrease after a threshold. This is be-
cause, the total system coverage can be increased even when
the UAV-BSs have restricted freedom for flying. According
to (6), the system coverage can be increased even when UAV-
BSs continue to hover in the same position providing coverage
to the same subset of users. Thus, the reduced freedom in
flying with the increasing number of UAV-BSs does not affect
the performance in terms of the total system coverage. Thus,
since the number of users that can be covered in an average
time instance increases with the number of UAV-BSs, the total
system coverage increases with the number of UAV-BSs.

One key objective of the proposed method is to reduce
the interference to the ground users. Fig. 11 shows that the
instances of interference occurrences are considerably low in
the proposed approached in comparison to the three baseline
methods. The average reduction of occurrences of interference
to ground users by neighbouring UAV-BSs in comparison to
the [27] based method is 26.15%, in comparison to the Greedy
method is 28.13% and in comparison to the Random method
is 41.43%.

D. CONVERGENCE OF THE PROPOSED DQL ALGORITHM
In the proposed DQL algorithm we leverage penalties for
UAV-BSs flying over the boundaries of the considered region,
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FIGURE 11. Occurrences of Interference.

FIGURE 12. Convergence Performance of the Proposed DQL Algorithm.

interference to ground users, and collisions between UAV-
BSs. Multiple penalties might lead to divergence in DQL algo-
rithms. However, extensive simulations show the parameters
we have applied for the penalties result in convergence of the
algorithm within a reasonable number of training episodes.
The convergence of the proposed DQL algorithm is shown in
Fig. 12. The average accumulated reward is shown in Fig. 12,
in a scenario of two UAV-BSs with 100 ground users. The
convergence plot shows that the accumulated reward of the
system remains low in the early episodes, however after a
considerable number of training episodes, the accumulated
reward reaches a maximum and remains stable.

VII. CONCLUSION
UAV-BSs are an effective method of providing wireless cover-
age ground users. However, when deploying UAV-BSs several
factors need to be considered - energy limitations, collisions
between UAV-BSs, interference to ground users, and fairness
of the system. Due to the complexity and interdependencies
of these factors, optimal path finding problem for UAV-BSs
is too challenging to be solved by conventional optimisation
problem solving methods. In this paper, we propose an RL
based method for the scenario of using one UAV-BS and a
DRL based method for using a fleet of UAV-BSs.

Simulation results show that the proposed methods outper-
form the baseline techniques in terms of the total coverage of
the system by an average increase of 15.04%, the number of
individual users covered by an average increase of 42.54%,
system fairness by an average increase of 38.94%. Further,
the proposed DQL method reduces the interference to ground
users and inter-UAV collisions in comparison to the baseline
methods.
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