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Abstract: Recently, investigation of metasurface has been extended to wave control through
exploiting nonlinearity. Among all of the ways to achieve tunable metasurfaces with multiplexed
performances, nonlinearity is one of the promising choices. Although several proposals have
been reported to obtain nonlinear architectures at visible frequencies, the area of incorporating
nonlinearity in form of passive-designing at microwave metasurfaces is open for investigation.
In this paper, a passive wideband nonlinear metasurface is manifested, which is composed
of embedded L−shape and Γ−shape meta-atoms with PIN-diode elements. The proposed
self-biased nonlinear metasurface has two operational states: at low power intensities, it acts
as a Quarter Wave Plate (QWP) in the frequency range from 13.24 GHz to 16.38 GHz with an
Axial Ratio (AR) of over 21.2%. In contrast, at high power intensities, by using the polarization
conversion property of the proposed PIN-diode based meta-atoms, the metasurface can act as a
digital metasurface. It means that by arranging the meta-atoms with a certain coding pattern,
the metasurface can manipulate the scattered beams and synthesize well-known patterns such
as Diffusion-like and chessboard patterns at an ultra-wide frequency range from 8.12 GHz
to 19.27 GHz (BW=81.4%). Full-wave and nonlinear simulations are carried out to justify
the performance of the wideband nonlinear metasurface. We expect the proposed self-biased
nonlinear metasurface at microwave frequencies reveals excellent opportunities to design limiter
metasurfaces and compact reconfigurable imaging systems.
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1. Introduction

At the beginning of the century, remarkable attention was absorbed to metasurfaces as the
sub-wavelength structures owing to their electromagnetic features, besides being low loss and
easy to chip. Metasurfaces have created a broad area to wave control from microwave to optical
frequencies. Meanwhile, theoretical developments like the emergence of Generalized Snell’s law
of reflection and refraction, paved this way. The result of the rapid growth of metasurfaces to wave
control has witnessed and found a special place in achieving negative refraction [1,2], engineered
antennas [3–5], beam scanning [6], invisibility cloak [7, 8], absorbers [9], polarizers [10],
dispersion engineering [11, 12], and advanced analog computing [13–17]. Demands for any
type of flexible structures made scientists of this field use the materials like graphene [18–20],
vanadium dioxide [21–23] and semiconductors [24, 25] as the phase change materials. In
addition to the use of unique materials to obtain metasurfaces with different functionalities,
nonlinearity can also help to achieve controllable metasurfaces. In recent years, especially
at visible frequencies by using diverse nonlinear materials, several numbers of studies have
incorporated nonlinearity into the metasurface design for many applications such as polarization
rotation [26], harmonic generation [27], frequency multiplexing [28], and so forth. More recently,
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Fig. 1. The perspective view of the nonlinear metasurface. When a weak tilted
linear-polarized wave is incident to the metasurface, it acts as a quarter-wave plate.
Whenever a high power wave is illuminated the metasurface, the operational status
changes to a 1-bit digital metasurface.

at microwave frequencies, with the help of semiconductor lumped elements like PIN-diodes
and varactors which embedded into the unit cells, active power-dependent metasurfaces have
been presented. Varactors at different powers can display different behaviors, and the power
levels verify the capacitance of them in each time [24]. On the other side, PIN-diode at low
power intensities acts as an open circuit or more precisely like a small capacitance, and at high
power intensities when the power intensity is more than a specified threshold, it operates as a
short circuit or small resistance [29]. Sievenpiper’s group in 2013 by introducing a high power
surface wave circuit-based metasurface absorber [30] opened new doors to reach reconfigurable
metasurfaces through the use of the nonlinear property at microwave frequencies. Digital coding
metasurfaces have created an opportunity to spatially re-distribute scattered waves via two distinct
coding meta-atoms with opposite reflection/transmission phases (e.g., 0◦ and 180◦) as the ”0”
and ”1” digital bits form the metasurface [31–33]. More recently, Cui’s group proposed two
intensity-dependent metasurfaces whose functionality of them have been determined by the power
intensity of the incoming wave [34,35]. Organizing coding particles with the help of varactor
elements into the metasurface give them an opportunity to control scattered waves spectrally
and spatially. In fact, âĂĲdigital codingâĂİ and "nonlinearity" has emerged as a fascinating
paradigm due not only to their capabilities of digitally manipulating EM waves, but also to
synthesizing a metasurface with multiplexed performances.
However, these nonlinear metasurfaces controls the state of the integrated semiconductor

lumped elements with DC bias networks. In such metasurfaces using bias networks increases the
complexity of the systems, dramatically. One idea to solve this problem is biasing integrated
lumped elements with AC input signals; this approach for embedded PIN-diodes in various
microwave devices has been experimentally studied in many works [36–38]. In 2017 [38], a
frequency selective surface (FSS) was introduced to provide passband for high power intensities
which could spectrally manipulate incoming wave; despite the previous nonlinear metasurfaces,
the PIN-diodes has been biased with AC signals and no bias network had been employed in the
FSS. However, this FSS could only control the incoming wave spectrally.



Fig. 2. (a), (b) The Γ−shape and L−shape meta−atoms as the basic units of the
metasurface. (c) circuit model of the embedded PIN-diodes for on- and off-states. (d)
SPICE model of the PIN-diode.

Recently a self-biased dual-band nonlinear metasurface has been proposed by authors [39]
which at low power functions like an EM-mirror, while at high power levels shows two separate
camouflage behaviors at C- and X-band. However, similar to the other previous works, they
achieve restricted functionalities at low power state, and moreover the operating band of the
digital metasurface was limited to a single narrow frequency region that is unattractive for power
limiting applications.
In this paper, an ultrawideband self-biased nonlinear metasurface is presented, comprising

of two types of nonlinear power-multiplexed L−shape and Γ−shape meta-atoms. At low-power
intensities, the metasurface acts as a QWP that means it converts Linear Polarized (LP) waves
to Circular Polarized (CP) waves at low-power state. By contrast, at high power intensities, the
metasurface acts as a Digital Spatial Wave Manipulator Metasurface (DSWMM) by reflecting
the LP incoming wave in cross-polarization and owing to deploying two nonlinear anti-phase
meta-atoms. Indeed, the integrated PIN-diodes in the meta-atoms directly interact with the
incoming wave and all its functionalities is solely dictated by the power intensity of the incident
wave. Hence, our metasurface synthesizing is fully passive, it does not require any additional
active biasing network, and, moreover, its performances are wideband enough for a wide diversity
of practical applications demanding protection of sensitive devices from undesired high power
signals. The numerical simulations verify the performance of the proposed bi-functional nonlinear
coding metasurface.

2. Theory of analysis and design

2.1. Principle and design

Fig. 1 shows a perspective view of the nonlinear metasurface, which is composed of L−shape and
Γ−shape PIN-diode integrated meta−atoms. The overall geometry of the proposed metasurface
is described in Figs. 2(a), 2(b) consisting of three layers: 1) the L-shape metallic part as the top
layer, 2) a 3.683 mm RT/duroid 5880 substrate, and 3) a copper (σ = 5.96 × 107 S/m) ground



plane as the bottom layer to zero transmission. The PIN-diode can be circuitously modelled as
an RL-circuit (L=30 pH, R=7.8 W) in the on-state while it can be represented by an LC-circuit
(L=30 pH, C=0.028 pF) in the off mode [40]. The common structural parameters of the proposed
meta-atom are p=10.6 mm, wx=2.1 mm, wy=1.5 mm, ld=0.6 mm, ly=6.6 mm, and lx=4.2 mm.
By changing the power intensity of the incoming wave, the electromagnetic responses of the
proposed metasurface can be tailored, leading to a QWP at low power intensities and a DSWMM
at high power intensities. At low power intensities, when PIN-diodes are in off-state and electric
field vector slanted 45°relative to both x− and y−directions the metasurface acts as a QWP.
However, upon illuminating by high-power radiations, the functionality of the proposed device is
changed; the metasurface can reflect LP waves to cross-polarized waves such that the L−shape and
Γ−shape meta−atoms mimic the digital states ”0” and ”1”, realizing specific coding pattern over
the surface. The operational principle of the aforementioned metasurface is based on the circuit
model of the PIN-diode which is changed from an LC-circuit to RL-circuit through increasing
the power level of the illuminating wave. It is clear that the voltage levels induced on both ends of
the embedded diode powerfully rely on the local field intensities stimulated by different incident
power levels. Therefore, Depending on the induced voltage levels of PIN-diodes, we will see
different electromagnetic responses. At low power illuminations, the peak of the induced voltage
of PIN-diodes is not high enough to turn them on, therefore, they are modelled as open circuits
(off-state) or more precisely as LC-circuits. Conversely, at high power illuminations, when the
induced voltage of PIN-diodes is more than the threshold, they act as short circuits (on-state)
or more accurately as RL-circuits [41](see Fig. 2(c)). In spite of the previous metasurface
demonstrations [34, 35, 42], the proposed nonlinear metasurface controls the off- and on-states
of the PIN-diode without any auxiliary biasing network so that the operational status of the
diodes is dictated by the power intensity of the incident wave. During the time variations of the
high power AC illuminating signal, majority carriers (holes of P-type and electrons of N-type
semiconductors) are stored in the intrinsic layer of PIN-diodes. Since the recombination time
of the majority carriers as the off-to-on switching speed (that depends upon the resistivity and
permittivity of the semiconductors and is typically on the order of a few picoseconds) has a close
value to the input signal cycle, the PIN-diode in the off-mode can follow the AC signal, and
switch from off-state to on-state. Meanwhile, at low frequencies, because recombination time
of minority carriers (holes of N-type and electrons of P-type semiconductors) as the on-to-off
switching speed of the diode are in the order of time-domain signal period (for the exploited
PIN-diode it is 2 nS), the stored charges can be detached from the intrinsic layer; therefore, the
diode can switch to off mode. Conversely, at high frequencies, the recombination time of the
minority carriers has a considerable value against the period of the input signal (if we consider
the frequency range of simulations between 10 to 20 GHz, the corresponding time periodicity
range will be T=50 ps to 100 pS; in this case, switching speed at least 20 times are bigger than
the time periodicity.) Consequently, there is not sufficient time to switch off the PIN-diode, and
at high power illuminations, the PIN-diode will work stably in the on-state [41]. One important
issue that must be considered when choosing a PIN-diode is that the operating frequency of
the metasurface must be in the useable frequency range of the PIN-diodes; here the operating
frequency range of the metasurface is 8 GHz to 20 GHz that is in the useable frequency range of
the MADP-000907-14020.

2.2. Frequency-domain analysis

To study the performance of the proposed metasurface. we consider that it is illuminated by a
travelling wave along the z−direction; the reflected wave can be described as the sum of two LP
components:

®Er = E0(Γx ®x + Γy ®y) (1)



in which, E0 is the magnitude of the incident wave in both x- and y-directions. Also, Γx = |Γx |eϕx

and Γy = |Γy |eϕy are the reflection coefficients of E i
x and E i

y , respectively The metasurface
comprising the proposed meta-atoms ( see Fig. 2) as an anisotropic-surface manifests distinct EM
responses to the x− and y−polarized incident waves, which would be evident in different Γx and
Γy . When the electric field of the incident LP wave is tilted at 45° relative to the x−axis, such that
the phase difference of the reflected wave ∆ϕxy = 90° and |Γx | = |Γy |, a QWP can be produced.
On the other hand, when a y−polarized (x−polarized) wave illuminates a metasurface so that the
reflected wave be in x−axis (y−axis), a linear-to-linear polarization converter will be achieved.
The scattering parameters of the proposed metasurface at different power levels in addition to the
distribution of the L−shape and Γ-shape meta−atoms determine the electromagnetic performance
of the metasurface. Here, the functionality of the metasurface as a QWP at low power levels and
DSWMM at high power levels is investigated by using the commercial program, CST Microwave
Studio. Periodic boundary conditions in x− and y−directions along with Floquet ports assigned
in z− direction form an infinite array from the meta-atoms of Figs. 2(a), 2(b). At low power
levels, as illustrated in Fig. 1, the metasurface is illuminated by a 45° tilted plane wave and plays
the role of a QWP; in this case, PIN-diodes are in off-state and they are replaced by LC−circuits
in the full-wave simulator. Fig. 3(a) shows the simulated reflection coefficients and phase delay
of the QWP. At low power levels, the metasurface as the QWP presents a reflection coefficient
more than -3 dB and phase delay 90° ± 10° from 13.24 GHz to 16.38 GHz for both of L− and
Γ−shaped meta-atoms. This means that the metasurface converts the LP incident wave to a CP
wave in the reflection mode.

In contrast, when the nonlinear meta-atoms are exposed to high-power plane waves, digital
EM response is observable. In fact, when the power level of y−polarized incident wave is
increased, the PIN-diodes change their states from off-to-on. In the full-wave simulator, they are
replaced with RL-circuits (see Fig. 2). Therefore, the function of the metasurface is switched
to an LP-to-LP polarizer. Fig. 3(b) depicts the co- and cross-polarized reflection spectra for
the infinite array of L−shape and Γ−shape upon illuminating by y−polarized plane waves. In
which, Γxy = Er

x/E
i
y and Γyy = Er

y /E
i
y indicate the reflection coefficients of the y-to-x and

y-to-y polarizations, respectively. The cross-polarized reflection coefficient Γxy is higher than
-1.5 dB in an ultra-wide frequency band from 8.12 GHz to 19.27 GHz, while the co-polarized
reflection coefficient Γyy is lower than -10 dB in this frequency range. Hence, at high power
intensities, the proposed meta-atoms can efficiently convert an LP wave into cross-polarization.
As illustrated in Fig. 3(c) at high power levels, there is a 180° phase difference between L−shape
and Γ−shape meta−atoms. Consequently, they can be considered as ”0” and ”1” binary codes.
Actually, the binary phase response required for constructing the coding metasurface is acquired
at the wideband frequency range.
In this study to justify the circuit models performance that are employed in the full-wave

simulator, a nonlinear simulation setup in ADS software was established where the SPICE model
of the PIN-diodes had been used. In ADS with the help of the LSSP control palette, the Hot
S Parameters (large-signal scattering parameters) were computed and reported in Fig. 3. In
fact, the Hot S Parameters are the scattering parameters of the structure when the SPICE model
(nonlinear model) of the diodes are exploited. As we can see in Fig. 3, the Hot S parameters
(dash-dotted line) and S parameters (solid lines) that are achieved by inserting circuit models in
the metasurface, are in good agreement.

To investigate the capacity of the proposed nonlinear anisotropic metasurface in manipulating
the polarization states of reflected waves at different power levels, we calculated axial ratio (AR)
for circular polarization conversion at low power levels and polarization conversion ratio (PCR)



(a) (b)
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Fig. 3. (a) The simulated reflection coefficients Γx and Γy and their phase difference
∆ϕyx of the QWP with simplified LC-circuit and nonlinear (SPICE) model.(b) The
simulated reflection coefficients Γxy and Γyy of the DSWMM with simplified RL-
circuit model and nonlinear (SPICE) model(c) The simulated phase difference between
L−shape and Γ-shape meta−atoms at high power intensities.

for linear polarization conversion at high power levels as follows:

AR =

√√
1
r cos2 α + sin 2α cos∆ϕxy + r sin2 α

1
r sin2 α − sin 2α cos∆φxy + r cos2 α

(2)

where
r =
|Γx |

|Γy |
(3)

and
2α = tan−1(

2r
1 − r2 ) cos∆ϕxy (4)

PCR =
Γ2
xy

Γ2
yy + Γ

2
xy

(5)
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Fig. 4. (a) The calculated PCR for linear polarization conversion at high power
intensities and AR for circular polarization conversion at low power intensities. The
simulated (b) PCR and (c) AR at oblique incident of EM waves (equals 0°, 10°, 20°,
and 30°).

Fig. 4(a) shows the AR and PCR of the L−shape and Γ−shape meta−atoms at low power
levels as a QWP and as a DSWMM at high power levels, respectively. It is clearly seen the AR
better than 3 dB over 21.2% from 13.24 GHz to 16.38 GHz and PCR better than 0.8 over 81.4%
from 8.12 GHz to 19.27 GHz. In addition, we study the effect of oblique incidence wave on
polarization conversion at different power levels. Fig. 4(b) illustrates at low power intensities,
altering the incidence angle from θ = 0° to 30° contributes to the shifting in the LP-to-CP
bandwidth. On the other hand, at high power intensities, by increasing the incidence angle from
θ = 0° to 30°, the PCR bandwidth slightly starts to decreasing (see Fig. 4(c)). Table 1 presents a
comparison among the proposed nonlinear converter and other reported diode-based polarization
converters. The comparison shows that the proposed converter not only can nonlinearly do
LP-to-CP and LP-to-LP polarization conversion but also has an ultrawide frequency band in
which the PCR for linear polarization conversion and AR for circular polarization are greater
than 80% and 20% respectively.
To justify the LP-to-RHCP performance of the metasurface at low power intensities, when

PIN-diodes are in off mode, the electric field intensity distribution of the L−shape and Γ−shape
unit cells along with phase at 14 GHz has been shown in Figs. 5(a), 5(b). By increasing the



Table 1. Comparison with other reconfigurable polarization converters.

Biasing LP-to-CP LP-to-LP Bandwidth (%)

Ref [24] DC 7 3 1.1

Ref [43] DC 3 7 1.6

Ref [44] DC 3 7 8

Ref [45] DC 7 3 62-71

Ref [46] DC 3 3 49.1-67.8

Present Study AC 3 3 21.2-81.4

Fig. 5. Electric field distributions of (a) L−shape (b) Γ−shape meta−atoms at low
power intensities when PIN-diodes are in off mode at 14 GHz.

phase, the yellow part on the top layer of the unit cells rotates counterclockwise that results in the
radiation of RHCP waves. To further understand the working mechanism of the metasurface
as the ultrawideband linear-to-linear polarizer at high power levels, the surface current of the
meta−atoms and ground planes at 8.6 GHz, 11.5 GHz, 15 GHz, and 18.5 GHz as resonance
frequencies are depicted in Figs. 6(a)- 6(d) and Figs. 7(a)- 7(d). At 8.6 GHz and 11.5 GHz,
the meta−atoms currents and ground plane currents are anti-parallel; these loop currents have
resulted in magnetic resonances. Conversely, at 15 and 18.5 GHz, the parallel currents flowing
between meta−atoms and ground plane have generated electric resonances. By optimizing the
structural parameters, the multi-resonance metasurface can operate as an LP-to-LP polarization
converter at high incident power levels in an ultra-wide frequency range [47].



Fig. 6. Surface current distribution on the L−shape meta−atoms when PIN-diodes are
in on mode at (a) 8.6 GHz, (b) 11.5 GHz, (c) 15 GHz, and (d) 18.5 GHz.

Fig. 7. Surface current distribution on the Γ−shape meta−atoms when PIN-diodes are
in on mode at (a) 8.6 GHz, (b) 11.5 GHz, (c) 15 GHz, and (d) 18.5 GHz

2.3. Nonlinear analysis

The use of PIN-diodes as the nonlinear elements may contribute to harmful effects such as
harmonic generation, third-order inter-modulation and AMmodulation on fundamental frequency.
Therefore, to check the validity of the structure, nonlinear analysis is essential. In this regard, the
scattering parameters of the L−shape and Γ−shape meta−atoms, in the form of an S3P file is
imported to Advanced Design System (ADS) as a circuit-based nonlinear simulator. The S3P file
consists of three ports: (1), (2) the first and second Floquet ports, and (3) a discrete port instead
of the PIN-diode. In the ADS medium, the discrete port is occupied with the SPICE model
of a Flip Chip diode (see Fig. 2(d)) with a serial number of MADP-000907-14020. In ADS
as an EM-circuit simulator, using the transient solver at 10 GHz frequency and two employed
probes at both ends of the PIN-diode the AC voltage of the diode at different power levels has
been measured. As can be seen in Fig. 8(a), when small signals illuminate the meta−atoms, the
diode voltages is a complete sinusoidal curve. By contrast, the illuminated large signals generate
distorted voltage wave-forms so that the positive half cycles are truncated to the diode forward
voltage (1.3 V). The threshold impinged power of off-to-on switching is obtained 3 dBm for each
10.6 mm × 10.6 mm unit cell. For the proposed metasurface that composed of 576 unit cells, the
minimum impinging power to switch the state of diodes from off-to-on is calculated 30.06 dBm,
therefore, the metasurface at this power as a self-biased nonlinear surface without needs to a



(a) (b)

Fig. 8. (a) Induced voltage at both ends of one PIN-diode. (b) The Harmonic Balance
analysis for a 15 dBm signal at 11 GHz.

complex DC biasing network could switch its functionality from a QWP to a DSWMM. Again,
it must be mentioned that at high frequencies for high power illuminations since the carriers
injecting rate to the intrinsic layer during the positive cycles is much more than the carriers
outgoing rate from the intrinsic layer during the negative cycles, despite the time variations of
the induced voltage, the operational status of the diodes would be stable [37].

As mentioned before, one of the harmful effects of using nonlinear devices such as PIN-diodes
may be the generation of frequency harmonics. Hence, A harmonic balance analysis using ADS
software to more study the nonlinear behavior of the integrated meta−atom with PIN-diode is
done. In this case, one of the Floquet ports is excited with a 15 dBm signal, and the power at
another port is measured. As we expected the most parts of the input power has appeared in the
second Floquet port (cross-polarization) at the fundamental frequency here 11 GHz (see Fig.
8(b)). As a result, the nonlinear analyzes (LSSP, Transient Response and Harmonic balance)
with EM-circuit simulator validate our assumption in the modelling of PIN-diode for full-wave
simulations.

3. Discussion

As shown in the schematic diagram of the proposed metasurface (Fig. 1), at high power intensities,
the distribution of the L−shape and Γ−shape anti-phase meta−atoms as the coding particles
over the metasurface spatially manipulates the incoming wave. The nonlinear metasurface as
a DSWMM contains 6 × 6 binary super-cells such that each super-cell is composed of 4 × 4
L−shape or Γ−shape meta−atoms to depreciate defective corner-related coupling effects between
the neighboring super-cells. The far field pattern function of the DSWMM can be expressed by a
superposition from the contributions of all super-cells.

E far(θ, ϕ) = fe(θ, ϕ)
N∑

m=1

N∑
n=1

exp
(
− i

{
ϕmn + kDsinθ

[
(m − 1/2)cosϕ + (n − 1/2)sinϕ

]})
(6)

where, fe(θ, ϕ) is the pattern function of a super-cell, and θ and ϕ denote to the elevation
and azimuth angles, respectively. D remarks the period of the digital super-cells along both
x- and y−directions, and k = 2π/λ refers to the free-space wave-number. Referring to the
above equation, if we consider a quasi-omnidirectional far-field pattern for all super-cells, the



Fig. 9. The 2-D far-field results that show the performance of the metasurface upon
illuminating by high-power incidences for (a) stripped configuration and (b) Chessboard
configuration.

realized scattering patterns of different coding configurations can be expressed in the forms of
two-dimensional inverse Fourier transforms of the super-cells, i.e., E f ar (ω1, ω2) = F−1(umn).
Here, ω1 and ω2 remark the spatial Fourier space variables, and umn is the complex status of
each super-cell [48].

Based on the generalized Snell’s law [49], the scattering direction of the DSWMM in spherical
coordinates (θ, ϕ) can be determined using the following relations:

ϕ1 = ±tan−1 Dx

Dy
, ϕ2 = π ± tan−1 Dx

Dy
(7)

θ = sin−1(λ

√
1

D2
x

+
1

D2
y

) (8)

in which, Dx and Dy indicate the spatial periods of the coding sequence along the x− and y−axis,
respectively. In Figs. 8(a), 8(b) and Figs. 9(a), 9(b), the normalized two-dimensional (2D) and
3D scattering pattern of the two conventional coding configurations 010101.../010101... (stripped
configuration) and 010101.../101010... (chessboard configuration) at 12.6 GHz are sketched,
respectively. For sequence 1, where Dx is infinite and Dy is 80 mm, two symmetric reflected
beams with directions (θ1, φ1)=(17.3◦,0◦) and (θ2, φ2)=(17.3◦,180◦) are achieved; similarly, for
chessboard configuration, four symmetric reflected beams with directions (θ1, φ1)=(25◦,45◦),
(θ2, φ2)=(25◦,135◦), (θ3, φ3)=(25◦,225◦), and (θ4, φ4)=(25◦,315◦) are obtained. The numerical
results in Figs. 9(a), 9(b) are obtained with the help of CSTMicrowave Studio, which is consistent
with theoretical predictions. The use of randomness distribution of the coding particles gives rise
to lower scattering signatures over a broad frequency range from X-band to Ku-band. Hence,
we use an entropy-based method to reach the efficient diffusion-like scattering pattern for smart
camouflage surface applications. Entropy as a key gauge to describe the information of different
types of coding configuration Can be accepted [50]. Surely, the more average entropy measure,
as well as diffusion level, results in the lower probability of estimation of scattering patterns.
In [51], the authors have validated the ability of the 2D quadratic Renyi entropy to reach the
best diffusion-like coding configuration. According to the high ability of the Renyi entropy in



Fig. 10. The 3-D simulation patterns of the nonlinear metasurface as a DSWMM,
which indicate its ability to manipulate reflection waves using various coding sequences
under the normal incidence of EM waves at center frequency 14 GHz. (a) stripped,
(b) Chessboard, and (c) the optimal diffusion configurations. (d) The ability of the
randomized coding pattern at high power intensities in RCS reduction relative to the
same-sized copper plate.

measuring Gaussianity in the 2D scattering pattern, it could be utilized to interpret different
coding configurations. Herein, Binary Bat Algorithm (BBA) as a fast, simple, and efficient
optimization method in comparison to the conventional optimization methods to reach the best
diffusion phase-encoded pattern has been used that its relation can be expressed as:

HRe = max
{
−1
2
log

[ 128∑
i=1

128∑
iR=1

P2
iiR
+

128∑
i=1

128∑
iR=1

P2
iiD

]}
(9)

here, PiiR and PiiD remark the iiR and iiD indexes in PDFJR and PDFJD diagrams, respectively.
These two PDF diagrams based on the statuses of each neighbouring pair of the 2D-IFFT image
matrix elements in the vertical and horizontal directions can be determined. The Renyi entropy
for different distribution of L−shape Γ−and shape meta−atoms as the anti-phase coding particles
is calculated and shown in Table 2. In addition, with the help of Binary Bat Algorithm (BBA) the
optimal diffusion coding configuration to reach the maximum entropy, as well as the maximum
diffusion among all potential solutions, is achieved. In this case, the quantity of the HRe is
calculated as high as 1.80. As can be seen in Fig. 10(c), the high power incident waves are
scattered along with the numerous random directions by the entropy-based randomized coding
metasurface in such a way no main scattered lobes exist. As an application, this nonlinear
metasurface can reduce both bi-static and mono-static RCS (see Fig. 10(d)) for high power
incident waves. The numerical simulations clarify the significance of this work at the microwave



band among all of the nonlinear metasurfaces that recently are introduced. Unlike previous works,
the metasurface according to the power level of the incoming waves controls and manipulates
them over 21.2% (low power signals) and 81.4% (high power signals) bandwidths.

Table 2. The computed Renyi entropy for different distribution of coding particles.

Coding configuration Renyi entropy(HRe)

PEC reflector 0.143

Stripped configuration 0.318

Chessboard configuration 0.452

Optimal Diffusion configuration 1.80

4. Conclusion

We proposed a passive wideband self-biased nonlinear reflective metasurface at microwave
frequencies to spatially control electromagnetic waves. The designed metasurface is composed
of L−shape and Γ− shape meta−atoms that loaded with self-biased PIN-diode elements. The
EM functionality of the passive structure is determined by the level of incident power so that
at low power intensities, the nonlinear metasurface as an anisotropic surface acts as a QWP,
changes the linear polarization of the incoming wave to the circular polarization. On the other
hand, the multi-resonant characteristic of the nonlinear metasurface at high power intensities
causes the linear polarization of the incident wave converts to cross-polarization. Moreover,
using the anti-phase meta−atoms with same magnitudes results to a digital metasurface. Then,
an entropy-based binary coding pattern and Binary Bat Optimization Algorithm are mixed to
obtain a diffusion-like far-field pattern over a broad frequency range. Nonlinear circuit-based
analyzes in addition to the full-wave simulations verified the powerful wave control ability of the
nonlinear metasurface.
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