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Abstract—Deep Learning plays an increasingly important role in device-free WiFi Sensing for human activity recognition (HAR).
Despite its strong potential, significant challenges exist and are associated with the fact that one may require a large amount of
samples for training, and the trained network cannot be easily adapted to a new environment. To address these challenges, we develop
a novel scheme using Matching Network with enhanced channel state information (MatNet-eCSI) to facilitate one-shot learning HAR.
We propose a CSI Correlation Feature Extraction (CCFE) method to improve and condense the activity-related information in input
signals. It can also significantly reduce the computational complexity by decreasing the dimensions of input signals. We also propose
novel training strategy which effectively utilizes the data set from the previously seen environments (PSE). In the least, the strategy can
effectively realize human activity recognition using only one sample for each activity from the testing environment and the data set from
one PSE. Numerous experiments are conducted and the results demonstrate that our proposed scheme significantly outperforms
state-of-the-art HAR methods, achieving higher recognition accuracy and less training time.

Index Terms—WiFi, Device free sensing,Channel state information,Human activity recognition, One-shot learning.
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1 INTRODUCTION

Device-free human activity recognition (HAR) using
WiFi signals has drawn considerable interest from the re-
search community. In contrast to traditional device-based
sensing techniques, WiFi-based HAR removes the require-
ment of equipping the target with any devices, and accom-
plishes the classification task by analyzing the differences
in WiFi signal propagation induced by different human
activities [1], [2]. WiFi-based HAR possesses several advan-
tages, including convenience, wide availability, and privacy
protection, making it an attractive sensing solution for a
wide range of applications in smart home, health care, and
intelligent monitoring [3].

Channel state information (CSI) based HAR receives par-
ticular interest recently as CSI provides fine-grained channel
information such as amplitude, phase, and frequency diver-
sity [4], [5], [6]. Various pioneering approaches for CSI-HAR
have been proposed by exploring the properties of machine
learning (ML) networks and signal processing techniques
[7], [8]. While they have achieved some promising result-
s, the performance of these methods nonetheless heavily
depends on the precursor step of careful selection and
fusion of features. Therefore, should the precursor steps fail
to achieve its goal, the recognition accuracy may degrade
significantly [9]. A variety of Deep Learning Network (DLN)
methodologies have been proposed in an effort to overcome
this problem. For instance, the authors in [10] proposed an
activity recognition scheme, in which the sparse autoen-
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coder (SAE) is used to extract discriminative features from
CSI signals. Then, the learned features are fed into a softmax
regression algorithm to recognize different activities. Using
the same SAE architecture, the authors of [11] developed a
recognition method by transferring the CSI measurements
into radio images before using SAE network for feature
extraction. The extracted information from radio images are
then processed by the softmax regression method for activ-
ity recognition. The authors in [12] applied convolutional
neural network (CNN) and long-short term memory (LST-
M) for behavior recognition, by exploiting the characteristics
of spatial information collected from multiple antenna pairs.
In order to improve the sensing accuracy, the authors in [13]
presented a recognition scheme by combining three DLNs
for feature extraction, which is able to achieve a reliable
accuracy at the cost of high complexity. Apart from the
above DLNs, the long-short term memory recurrent neural
networking (LSTM-RNN) has also been adopted in [14] for
feature extraction, through which the representative features
in CSI signals can be effectively learned and extracted.
Our preliminary work [15] also investigated CSI-HAR by
leveraging properties of feature extraction techniques and
LSTM-RNN. As a result, the inherent features from the
input data can be automatically extracted and transformed,
thereby improving the accuracy and robustness of human
behavior recognition [16].

Despite its effectiveness in improving recognition per-
formance, DLN-based methods suffer from several inherent
drawbacks. First, they require a large number of training
examples from the testing/targeted environment to train
the corresponding DLN [17], [18]. Consequently, the per-
formance is dependant upon the number of training sam-
ples, which becomes particularly problematic when large
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amounts of training samples from testing environments are
not accessible. The problem is further exacerbated by the
fact that a network trained under one setting may not be
applied to another. This may severely restrict the applicabili-
ties of DLN-based methods in practice [19]. To address these
problems, recent CSI-HAR schemes have attempted various
advanced DLNs and the corresponding learning method-
ologies to reduce the number of training samples from the
testing environment in order to improve the recognition
performance in an environment-invariant fashion [20], [21],
[22]. To name a few, the recent solutions in [20] and [21]
exploited transfer learning to realize environment-robust
recognition. Although the model in [20] can facilitate reliable
sensing results, it requires many previously seen environments
(PSEs) for training. PSE is referred to the environment where
a large number of training samples are collected. These
samples from PSE are used only for training deep learn-
ing networks, but not for testing. The model in [21] does
not need multiple PSEs for training, while it still requires
several hundreds samples from the testing environment to
perform network refinement. The authors in [22] exploited
the property of adversarial learning to enable environment-
independent recognition. In this work, a recognition model
can be built and applied to a new environment without
requiring samples from the testing environment. However,
its sensing performance heavily depends on the number
of PSEs used in training. When both the number of PSEs
and the amount of samples from the testing environment
are quite limited (e.g., one PSE and at the minimum one
sample for each activity from the testing environment),
the above methods fail to accomplish successful recogni-
tions. In [23] the authors developed a cross-environment
recognition model by extracting environment-independent
features. Although this work does not require multiple PSEs
or many samples from the testing environment, it is difficult
to effectively identify the light activities (e.g., standing and
laying).

One-shot learning (OSL) can be considered as a promis-
ing candidate to help address the above challenges. OSL
has been successfully applied in many vision-based activity
recognition and object classification problems [24], [25], [26],
and therefore, making it a plausible technique to solve
CSI-HAR issues. Its key insight is that, instead of learning
the information about the testing/unseen environment with
thousands of training samples, one can accomplish the task
using just one sample by drawing support from the knowl-
edge of PSEs [27], [28]. In other words, only one sample
is enough to learn/extract discriminate features about the
environment by bridging the gap between this environment
and PSEs, no matter how different they can be. To the best
of our knowledge, most of the OSL approaches have been
focusing on vision-based scenarios in which video signals
are analyzed for recognition. For CSI-HAR, very little has
been investigated so far. In particular, a shortcoming of OSL
is that although it only needs one sample from the testing
environment, it still requires a large amount of samples from
a wide variety of PSEs. This may not be accessible under
many CSI-HAR settings, as obtaining samples from diverse
environments is usually expensive or impractical.

Given the above, in this paper, we employ the state-
of-the-art one-shot learning methodology, i.e., matching

network (MatNet) [29], to recognize the type of human
activities. As aforementioned, it is very difficult to achieve
a satisfactory recognition performance if the diversity of
PSEs or the samples from testing environment is insufficient.
To overcome this challenge, we propose a novel training
strategy to better sense and distinguish human behaviors.
This training strategy does not require a large amount of
samples from the testing environment. Instead, it only needs
as few as one sample from the new/testing environment,
which can be easily realized in practice. Moreover, our work
is able to accomplish a successful recognition with, at the
minimum, one PSE, which can hardly be achieved by the
conventional learning-based HAR methods.

The main contributions of this paper are summarized
below:

• We propose a HAR scheme using Matching Network
with enhanced CSI (MatNet-eCSI) to successfully
perform one-short learning to recognize human ac-
tivities in a new environment. Our proposed scheme
can largely improve the recognition accuracy in the
new environment with much less training complexi-
ty, i.e., it requires only one training sample from the
new environment.

• We propose a CSI correlation feature enhancement
(CCFE) method to enhance the activity-dependent
information and eliminate the activity-unrelated in-
formation. CCFE consists of two steps: activity-
related information extraction (ARIE) and correlation
feature extraction (CFE). The proposed CCFE can
reduce the dimension of the signals input to the Mat-
Net, significantly decreasing the training complexity.

• We propose a novel training strategy to leverage the
properties of MatNet for the successful HAR. The
proposed strategy can facilitate a reliable recognition
performance even for the situation in which only one
PSE is available. For completing the training task,
only one sample from the testing environment and
the data set from the PSE are required.

• To evaluate the performance of our proposed
scheme, we conduct numerous experiments. The
extensive results show that the proposed MatNet-
eCSI achieves significantly higher recognition per-
formance than state-of-the-art sensing methods, with
much less training complexity.

The rest of this paper is structured as follows. The pro-
posed MatNet-eCSI scheme is briefly described in Section
2. Section 3 presents the details for the CCFE method.
The details of MatNet based human activity recognition
are described in Section 4. The experimental settings and
results are provided in Section 5. Conclusions are provided
in Section 6.

2 THE MATNET-ECSI SCHEME

The diagram of the proposed MatNet-eCSI scheme is shown
in Fig. 1, consisting of three main modules/stages: CSI Col-
lection, CSI Preprocessing and Activity Recognition. In the
first stage, the CSI that represents the variation of wireless
channels induced by human activities is collected at the
WiFi receiver. In the second stage, the collected CSI is then
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Fig. 1. Main processing modules of the MatNet-eCSI Scheme.

processed, including reducing activity-unrelated informa-
tion such as scattering signals from the background objects,
compressing and reducing the signal input to Stage 3 and
enhancing the feature signals. Ideally, only the activity-
related signals are transferred to the next stage. In the third
and last stage, the MatNet is utilized to automatically learn
and extract the hidden features from the enhanced CSI for
human behavior classification. Next, we provide a brief
overview for each stage, and then detail the last two stages
in Section 3 and 4 respectively.

2.1 CSI Collection
Supposing in an indoor environment covered by a WiFi
network, a person is moving around, which unavoidably
changes wireless signal propagations. Some of the WiFi sig-
nals are absorbed, diffracted, reflected or scattered, leading
to variations of amplitude, phase shift and the number of
multiple paths. Since these variations contain characteristics
of different human activities, it is possible to realize HAR
by utilizing the CSI measurements from the WiFi signals.
To that end, we adopt the Intel 5300 network interface
card (NIC), a popular commercial off-the-shelf (COTS) WiFi
device, to acquire and collect CSI. According to the protocol
of IEEE 802.11n, the CSI tools [30] are used to effectively ex-
tract the CSI from 30 subcarriers for each pair of transmitter-
receiver antennas. More details of experimental setup are
referred to Section 5.1.

The CSI vector h(i), acquired from the i-th packet, is
written as

h(i)=[H1,1(i),. . . ,H1,m(i),. . . ,Hn,m(i),. . . ,HN,M (i)]T , (1)

where Hn,m(i) stands for the CSI measurement at the mth
subcarrier in the nth wireless link; M denotes the total
number of available subcarriers in each wireless link;N rep-
resents the total number of wireless links, and N = Nt×Nr
where Nt and Nr are the number of antennas at the
transmitter and receiver, respectively; and T stands for the

transpose operation. The CSI matrix H, made up of CSI
vectors obtained from I packets, is

H = [h(1), . . . ,h(i) . . . ,h(I)]. (2)

2.2 CSI Preprocessing
The CSI Preprocessing stage intends to reduce CSI for static
background objects and condense the CSI matrix. On the
one hand, the CSI matrix H represents the raw CSI mea-
surements and contains multiple channel paths from static
background objects and hence a lot of activity-unrelated
information. Such information is generally environment-
dependent and can largely reduce the robustness of the
sensing system. It will also affect the quality of extracted
features in the following processing. On the other hand, the
size of H is quite large, and it is computationally intensive
and time-consuming to utilize H directly for training and
classification using neural networks. To address these prob-
lems, we use the CCFE method that consists of two main
steps: activity-related information extraction and correlation fea-
ture extraction.

In the first step, we use a linear recursive operation
to construct the CSI for static objects and then subtract it
from the received signal. The output is expected to have
significantly reduced activity-unrelated information. In the
next step, we compute the correlation of the output channel
matrix from Step 1, and obtain the correlation feature matrix
(CFM). CFM contains condensed activity-related informa-
tion, with largely reduced dimension compared to original
CSI matrix H.

2.3 MatNet based Activity Recognition
This module aims to recognize human activities using the
MatNet technology, by automatically learning and extract-
ing the hidden information and features from CFM.

To realize feature extraction, we utilize MatNet that can
automatically learn and extract deeper features from CFM.
Note that, the proposed training strategy is able to bridge
a gap between the testing environment and the PSE. The
training process requires the data set from the PSE and at
the minimum one sample from the testing environment,
facilitating one-shot learning in the testing environment.
For realizing human activity recognition, the deep learning
network is firstly trained offline using the training data;
Then the well-trained network is used online to recognize
different human activities.

3 CCFE FOR CSI PREPROCESSING

In this section, we present detailed design of CCFE for
CSI preprocessing. We will first describe the linear recur-
sive operation based activity-related information extraction
method, and then discuss the correlation feature extraction
method.

3.1 Activity-related Information Extraction
The core task of this step is to mitigate activity-unrelated
information whilst retaining activity-related information.
Consequently, we can extract feature signals more correlated
with activities and less dependent on the environment. To
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that end, we partition h(i) in (2) into two parts: dynamic
CSI and static CSI, given by

h(i) = hst(i) + hdy(i), (3)

where hst(i) represents the static CSI vector that is unrelated
to human activities. hdy(i) denotes the dynamic CSI vector
that is caused by human activities. In such a case, most of
the information contained in dynamic CSI vector in CCFE is
activity-related, such as multipath signals which contain the
movement information of the object. Note that hst(i) is gen-
erally the dominating component in h(i) and much larger
than hdy(i). The reason is that the impact induced by human
activities on the whole environment is generally limited.
This is especially true when a person is performing minor
actions, e.g., raising hands, sitting, standing, etc. Under
this situation, the accuracy of human activity recognition
may drop severely if directly utilizing h(i) (refer to Fig.
12). Therefore, we want to filter out the static information
hst(i) from h(i) by exploiting its stability over time. To
that end, we propose a recursive algorithm leveraging the
exponentially weighted moving average (EWMA) approach
[31].

There is one major problem here: the timing offset be-
tween the WiFi transmitter and receiver, which are not clock-
wise synchronized, varies over packets. Such timing offset
causes linear phase rotation over subcarriers. It must be
estimated and compensated before applying the recursive
operation.

Let ĥst(i) denote the recursive output at the i-th packet,
which is supposed to be the estimate for the static CSI. The
recursive operation from continuous packets is respresented
as follows:

ĥst(i) = θ(Φ̂∗(i)⊗ IN )h(i) + (1− θ)ĥst(i− 1), (4)

where θ stands for the forgetting factor, the superscrip-
t ∗ denotes conjugate, IN represents an N × N identi-
ty matrix, ⊗ represents the Kronecker product, Φ̂(i) =
diag{exp (jϕ̂m,i)} is a diagonal matrix with the m-th ele-
ment exp (jϕ̂m,i), and ϕ̂m,i is an estimate of the actual ϕm,i
associated with the timing offset. Since signals for all the
antennas are typically tied to the same clock, the timing
offset, as well as the phase shifts ϕm,i are the same for all
antennas at subcarrier m in packet i.

The phase shift ϕm,i can be represented by

ϕm,i = mψi + θi, (5)

where ψi and θi are phase shifts related to the timing offset.
In order to estimate ψ and θi, we first compute the dot

product ⊙ between h(i) and (ĥst(i− 1))∗, generating

r(i) ,h(i)⊙ (ĥst(i− 1))∗

=(hst(i) + hdy(i))⊙ (ĥst(i− 1))∗

≈hst(i)⊙ (ĥst(i− 1))∗

≈(Φ(i)⊗ IN )|ĥst(i− 1)|2 (6)

where |ĥst(i − 1)|2 denotes element-wise square of the
absolute value. In (6), the first approximation is based on
the fact that static paths typically have much larger power
than dynamic ones, and the second approximation is based

on the assumption that the estimate ĥst(i− 1) is close to the
actual static CSI.

We can then stack r(i) into an M × N array, with each
column containing CSI for one antenna, and compute the
mean over each row to get a new M × 1 vector r̄(i). Com-
puting the cross-correlation for neighbouring elements with
equal spaced subcarrier indices in r̄(i) and then computing
the mean of the output, we can obtain a sample denoted by
γi. Then we can obtain the estimate for ψi as

ψ̂i = ∠(γi)/Ks, (7)

where Ks is the index intervals between the used subcarri-
ers that are equally spaced. For the Intel NIC5300 card used
in the experiments in this paper, Ks = 2.

Let r̄m,i be the m-th element in r̄(i). The parameter θi in
(5) can then be estimated as

θ̂i = ∠
(∑

m

r̄m,ie
−jmψ̂i

)
, (8)

where the sum can be over a selected number of samples
with larger energy to mitigate the noise.

We then obtain the estimate Φ̂(i) and can obtain the
recursive output ĥst(i). Note that, the initial value of ĥst(1)
can be obtained using (4) in a quiet environment.

At packet i, the estimated value of dynamic CSI, ĥdy(i),
is then given by

ĥdy(i) = (Φ̂∗(i)⊗ IN )h(i)− ĥst(i). (9)

Over I packets , the whole estimated dynamic CSI ma-
trix, Ĥdy , is written as

Ĥdy = [ĥdy(1), . . . , ĥdy(i), . . . , ĥdy(I)]. (10)

Let Âdy(i) and Ψ̂dy(i) stand for the amplitude and
phase parts of ĥdy(i), respectively. Thus we can decompose
the dynamic CSI matrix Ĥdy into dynamic amplitude matrix
Âdy and dynamic phase matrix Ψ̂dy as

Âdy = [âdy(1), . . . ,âdy(i), . . . ,âdy(I)],

Ψ̂dy = [ψ̂ψψ
dy
(1), . . . ,ψ̂ψψ

dy
(i), . . . ,ψ̂ψψ

dy
(I)]. (11)

where ÂAA
dy
(i) and ψ̂ψψ

dy
(i) are amplitude and phase vector

of ĥdy(i). Note that Âdy and Ψ̂dy contains mostly activity-
related information. Thus they can be used to extract more
distinctive features that are less dependent on environment
for recognizing human activities.

3.2 Correlation Feature Extraction
It is noteworthy that we can divide a person’s activity into
different stages. Each stage can be represented by a feature
signal, and different stages are dependent and correlated.
For example, the activity “sit down” may involve a series
of stages, from static, sitting down with accelerating, and
sitting down with decelerating to sitting still. The features
of different stages, e.g., speed and spatial positions of that
person, are different but mutually correlated. While for
the activity “sitting”, its features among different stages,
e.g., speed and spatial positions of human beings, remain
similar, but not identical due to, e.g., the breathing activity.
Hence “sit down” and “sitting” can be largely distinguished
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Fig. 2. Correlation feature extraction in the proposed CCFE.

via these differences, while relative static activities such as
“sitting”, “standing” and “empty” are differentiated via the
different impacts of these activities on signal propagation
associated with both body positions and minor body dy-
namics caused by, e.g., breathing.

Note that all the feature signals for each activity are
contained in Ĥdy . Such connections and dependency can
typically be captured by a Markov chain, or a Markov
chain combined with Recurrent Neural Networks, which
are typically applied for natural language processing. In
this paper, we investigate a correlation based method, which
can not only capture such dependency, but also significantly
reduce the complexity in at least the training stage.

We partitionÂdy and Ψ̂dy into several segments and cal-
culate the correlation features between different segments,
respectively. Besides, Âdy and Ψ̂dy in different subcarriers
are also correlated, providing additional information for
recognizing human activities. Thus, our proposed CCFE
conducts correlation operation over both packets and sub-
carriers, compressing correlated features between different
segments and subcarriers, as shown in Fig. 2.

Next we refer toÂdy to present the process of correlation
operation. For Ψ̂dy , the process is similar.

Assume that I is divisible by K . Then we evenly divide
Âdy into K non-overlapped segments, with a length of
I/K for each segment. The resulted signal matrix UA is
represented by

UA = [UA(1),UA(2), . . . ,UA(k), . . . ,UA(K)], (12)

where UA(k) stands for the NM×I/K dynamic amplitude
matrix of the kth segment. Next, we calculate the covariance
matrix between different segments

CA
i,j = E

[
(UA(i)− E[UA(i)])(UA(j)− E[UA(j)])T

]
, (13)

where E[.] represents the operation of taking the mean,
CA
i,j is the covariance matrix of UA(i) and UA(j), i =

1, 2, . . . ,K, j = i, i+1, . . . ,K. The whole covariance matrix,
CA, is written as

CA = [CA
1,1,C

A
1,2, . . . ,C

A
1,K ,C

A
2,2,C

A
2,3, . . . ,C

A
K,K ]. (14)

Algorithm 1: Correlation feature extraction.

1: begin
2: Initialize: the length of input data I ,

the number of non-overlapped segments K,
the length of each segments Ls;

3: Ls = I/K;
4: For 1 ≤ k ≤ K

5: UA(k) = [Âdy((k − 1)Ls + 1), . . . , Âdy(kLs)];
UΨ(k) = [Ψ̂dy((k − 1)Ls + 1), . . . , Ψ̂dy(kLs)];

6: end
7: Construct UA and UΨ based on Eq. (12);
8: For 1 ≤ i ≤ K
9: For i ≤ j ≤ K
10: Compute CA

i,j and CΨ
i,j based on Eq. (13);

11: end
12: end
13: Construct CA and CΨ based on Eq. (14);
14: Compute CFM DA

en and DΨ
en:

DA
en = CA × (CA)T , DΨ

en = CΨ × (CΨ)T ;
15: end

Note that CA can only reveal the correlation between
different segments. The correlation between signals across
subcarriers can be obtained by

DA
en = CA × (CA)T , (15)

where DA
en is the correlation feature matrix (CFM) of ampli-

tude, which will be used to train MatNet.
Following the above steps, we can similarly obtain the

segmented signal matrix UΨ, covariance matrix CΨ and the
CFM DΨ

en for Ψ̂dy .
For clarity, the procedure of correlation feature extraction

is summarized in Algorithm 1. Note that the size of both
CA and CΨ are NM × (K+1)KNM

2 . For both DA
en and

DΨ
en, their sizes are NM × NM and much smaller. Since

the training complexity is highly influenced by the size of
input data, reducing the size of input signal can result in a
notable reduction in training complexity, much higher than
the complexity associated with the correlation computation.
Therefore the computational complexity can be significantly
reduced when using DA

en and DΨ
en, instead of CA and CΨ,

as the input for training MatNet (refer to Fig. 12).

4 MATNET BASED HUMAN ACTIVITY RECOGNI-
TION

CSI based HAR is very sensitive to environment. In the
previous section, we have introduced CSI preprocessing to
reduce the impact of environment on the feature signals
and improve its robustness to the environment. However, it
cannot fully remove the impact as dynamic CSI can also be
environment-related via, for example, signals sequentially
scattered by human body and environmental objects, as
well as the residual errors in preprocessing. One approach
to further improving the robustness is to train DLN with
data from massive different environment, which is however
very costly. Although some data processing techniques, e.g.,
data augmentation and regularization [32], [33], can help to
alleviate the problem of overfitting caused by insufficient
training data, the improvement is limited due to the high
correlation between the generated data and the original
data.
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In this section, we propose to use MatNet, a neural
network augmented with external memory, to improve the
environmental robustness via one-shot learning. The input
to MatNet is the enhanced CSI (i.e., DA

en and DΨ
en). In

particular, we propose a tailored training strategy for bet-
ter utilizing the property of MatNet, which is capable of
realizing the sensing task using at the minimum, one set of
training data from the new environment.

4.1 Architecture of MatNet
The architecture of MatNet based HAR is illustrated in Fig.
3. For a given reference data set R, the function of MatNet
is to build a classier cR for each R, mapping R to cR, R →
cR(.).

Let (x, y) stand for the CFM-label pairs, x = {DA
en,D

Ψ
en}

is the input CFM with a size of NM × NM × 2, y is the
output label for the corresponding human activity. Then the
reference data set R with Nk samples can be written as

R = {(xi, yi)}Nk
i=1. (16)

For a given target sample x̂, the probability distribution of
the output ŷ can be defined as

P (ŷ|x̂, R) , R→ cR(x̂), (17)

where P stands for the probability distribution, which is
parameterised by the CNN and LSTM (shown in Fig. 3). As
a result, the estimated output label ŷ for a reference data set
R and a given input x̂ can be obtained by

ŷ = argmax
y

P (y|x̂, R). (18)

One simple way to estimate ŷ is calculating the linear
combination of y in the reference data set R, so (18) is equal
to

ŷ =
Nk∑
i=1

a(x̂, xi)yi (19)

where xi, yi are the CFM and the corresponding label from
the reference data setR = {(xi, yi)}Nk

i=1, and a is an attention
mechanism in the form of softmax over the cosine similarity,
which is defined as

a(x̂, xi) =
ecos(f(x̂),g(xi))∑Nk

j=1 e
cos(f(x̂),g(xj))

, (20)

where cos(α, β) is the cosine similarity function [34], de-
fined as

cos(α, β) =
α · β

∥ α ∥∥ β ∥
. (21)

In (20), f and g stand for the embedding functions to
embed x̂ and xi, which can be seen as extracting features
from the input data. As is illustrated in Fig. 3, both f and
g are CNN with LSTM, acting as a lift to input features
for achieving the maximum accuracy via the classifier as
defined in (19).

In order to extract distinguishable and generalised fea-
tures from input data for one-shot learning, g and f are
designed to embed xi and x̂ fully conditioned on the whole
reference data set R. Thus, g and f can be represented as
g(xi, R) and f(x̂, R), respectively.

...

InputInput

 Bidirectional LSTM

Convolution+Relu

Max-pooling

Convolution+Relu

Max-pooling

g¢

g

Output

Fig. 4. Structure of embedding function g: CNN with bidirectional LSTM.

The structure of g is shown in Fig. 4, which consists of
a CNN with a bidirectional LSTM [35]. The CNN adopted
here is a classical structure including several stacked mod-
ules, e.g., convolution layer, Relu non-linearity and max-
pooling layer. The output of CNN, g′(xi), which can be
seen as discriminative features of xi, is the input of the
bidirectional LSTM. The value of g(xi, R) can be obtained
by

g(xi, R) = h⃗i + ⃗hi + g′(xi), (22)

h⃗i, c⃗i = LSTM(g′(xi), h⃗i−1, c⃗i−1), (23)

⃗hi, ⃗ci = LSTM(g′(xi), ⃗hi+1, ⃗ci+1), (24)

where h⃗i and c⃗i represent the output and cell of the forward
LSTM, respectively; ⃗hi and ⃗ci stand for the output and
cell of the backward LSTM, respectively; and LSTM(g′, h, c)
follows the same definition in [36]. Note that g, a function of
the whole reference set R, can play a key role in embedding
xi, which is especially useful when an element xj is very
close to xi. In other words, if xi and xj are input features of
two similar activities (e.g., sitting and sitdown), respectively,
g can be trained to map xi and xj to two distinguishable
spaces considering the whole reference data set.

The embedding function f is also composed by CNN
and LSTM. The architecture of CNN is the same as the one
in g, while the structure of LSTM is different which is the
read-attention based LSTM [37]. Let attLSTM(.) denote the
read-attention based LSTM, then for a given target sample
x̂, the output of attLSTM(.) over the whole reference data
set R can be written as

f(x̂, R) = attLSTM(f ′(x̂), g(R), Np), (25)

where f ′(x̂), the extracted feature via CNN (similar to g
above), is the input of read-attention based LSTM; g(R)
denotes the data set obtained by embedding each sample
xi from the reference data set R via g; and Np represents
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the number of unrolling steps in LSTM. Thus, for the npth
processing step, the state of the read-attention based LSTM
can be expressed as follows:

hnp = ĥnp + f ′(x̂), (26)

ĥnp , cnp = LSTM(f ′(x̂), [hnp−1, rnp−1], cnp−1), (27)

where LSTM(f ′(x̂), [hnp−1, rnp−1], cnp−1) follows the im-
plementation described in [36]; rnp−1 stands for the read-
out from g(R) and is concatenated to hk−1. We can represent
rnp−1 as

rnp−1 =
Ns∑
i=1

a(hnp−1, g(xi))g(xi), (28)

where Ns is the length of g(R); a(·, ·) denotes the attention
function in the form of softmax, and is given by

a(hnp−1, g(xi)) = softmax(hTnp−1g(xi)). (29)

Since Np steps of “reads” are conducted, we have
attLSTM(f ′(x̂), g(S), Np) = hNp , where hnp is given in (26).

4.2 Training Strategy and Testing procedure

In this subsection, we propose a tailored training procedure
to realize HAR in a new (testing) environment using the
training data set from one PSE and at the minimum, one
sample, from the new testing environment. Our training
procedure borrows the idea from episode-based training
[29]. However, the training process in [29] requires many
PSEs for feature extraction, hence, it cannot be directly
applied to our problem. To overcome this issue, we develop
a two-step training process to bridge the PSE and the new
testing environment, so as to extract desired signal features
using the training data from one PSE only.

Let T denote a task which can be seen as a
distribution over possible label sets of human activities.

In each episode, L, a set of human activities, is
sampled from T , L ∼ T . L can be a label set
{sitting, running, walk, running, standup, sitdown, empty}.
Then L is used to sample the reference data set R and a
batch of target set B, obtaining R = R ∼ L and B = B ∼ L.
The basic idea of training MatNet is to minimize the error
from estimating the labels in the batch B conditional on
R. Thus, the loss function of MatNet based human activity
recognition, L, is expressed as

L = −EL∼T

ER,B

 ∑
(x,y)∈B

logPΩ (y|x,R)

 , (30)

where Ω = {Ω1,Ω2}, Ω1 and Ω2 are the parameter sets
of embedding functions g and f , respectively. The training
objective is to minimize the loss function over a batch for a
given reference data set R, which can be represented as

Ω = argmin
Ω

L(Ω). (31)

It is important to note that, for each episode, our
proposed training strategy includes two key steps with
different data in R and B. Specifically, in the first step,
the samples in R are only from the PSE, while the samples
in B are from both the testing environment and the PSE.
Notably, there is no overlap between R and B. The aim
of this step is to build a relationship between the testing
environment and the PSE. The essential features for rec-
ognizing different activities are also extracted. Then, the
trained network coefficients are frozen for the next training
step. In the second step, the samples in both R and B are
from the testing environment. The network is trained based
on R and B using the parameters obtained from the first
step. This training step can be seen as a fine tuning process
which can help the MatNet to better learn and extract the
distinguishable features of human behaviors in the testing
environment.
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Fig. 5. Layout of three indoor experimental areas: (a) 3m× 4m office. (b) 4m× 6m meeting room. (c) 6m× 7m laboratory.

5 IMPLEMENTATION AND EVALUATION

In this section, we perform extensive experiments to vali-
date the performance of the proposed MatNet-eCSI scheme.

5.1 Experimental Setup

To implement the proposed MatNet-eCSI, we use two com-
puters with Intel WiFi NIC5300 network card, serving as
the transmitter and receiver. The WiFi cards operate in the
802.11n mode. The transmitter, using one antenna (Nt = 1),
operates on the 5.32 GHz frequency band and continuously
sends packets. The receiver, equipped with three antennas
(Nr = 3), keeps collecting and storing CSI using the CSI
tools in [30]. The number of subcarriers for each pair of
the transmitter-receiver antennas is 30 (S = 30). We use
a sliding window with time length 2s to get samples for
each activity from raw CSI streams. During training, if the
time window spans over multiple activities, it is labeled as
the activity with the maximum proportion. This enables the
training and the applications of the trained model to actual
recognition. It may be better if a windowing method with
window length adapting to activities can be developed and
applied. However, this is a non-trivial task and we note
it as an open research problem here. The rate of samples
is 1 KHz, so the size of CSI matrix (H) is 90 × 2000. The
number of segments K in the proposed CCFE method is 5.
For each embedding function of MatNet-eCSI, it contains a
CNN with 8 convolutional layers. Each layer contains a 3×3
convolution, a ReLU non-linearity operation, and a 2 × 2
max-pooling. The proposed MatNet-eCSI is trained using a
3.4 GHz PC with Nvidia P5000 graphic card (16GB memo-
ry). The number of training iterations is 1000. The batch size
and learning rate are set as 64 and 0.001, respectively.

We deploy our proposed MatNet-eCSI in three indoor
configurations with different environmental complexities.
The layout of each indoor configurations is illustrated in Fig.
5. Specifically, the first configuration is a 3m × 4m square
area. The second one is a 4m× 6m meeting room, and third
one is a 6m × 7m laboratory room. Note that the wireless
environments of different configurations are determined by
not only the size of room but also several other factors,
such as the locations of the transmitter and receiver, and
the objects placed between transmitter and receiver. The
latter can significantly influence the sensing performance.
Moreover, the similarity between wireless environments in

different configurations also has noticeable impact on recog-
nition performance of the proposed scheme, because more
common features can be learned and extracted if wireless
environments are similar. We then compare the difference
of different environments, via calculating the similarity of
wireless environments involved in different configurations.
To do this, we compute the cosine similarity function [34]
for the received CSI. The similarity of wireless environment
between the first and second configurations, between the
second and third, and between the first and third config-
urations are 0.679, 0.616 and 0.571, respectively. In such
a case, compared to the third configuration, the wireless
environment in the second configuration is more similar to
that in the first configuration.

In each indoor configuration, activities performed by
five persons are collected as the dataset, and each person
performs seven activities: empty room, sitting down, sitting,
standing up, standing, walking, and running. Each activity
is performed 200 times in total. The dataset is partitioned
into the training dataset and testing dataset. The training
data set is used to train the network for recognizing human
behaviors in the testing environment. We consider two
different training data sets, i.e., “one-shot” and “five-shot”,
using 1 and 5 samples respectively for each activity from the
testing environment, together with the whole data set from
the PSE. In the experiments, we achieve robust scaling for
the proposed scheme in the following way. Firstly, after the
stage of data processing (i.e., the proposed CCFE method),
we normalize the input data before putting it into the Mat-
Net architecture. Then, in the training stage, we adopt the
Batch Normalization method [38] to normalize the inputs of
each layer.

We also briefly summarize the experimental setups of
methods for comparison (i.e., RNN [14], EI [22], MatNet
[29], and TNNAR [20]). Specifically, the method in [14] is
developed for HAR based on RNN architecture, which has
four hidden layers. 200 hidden units are contained in each
hidden layer. In EI method [22], the three-layer stacked
CNNs are adopted to extract the activity features. In each
layer of CNNs, 2D kernels are used as the filters. Then,
a batch norm layer is applied to normalize the mean and
variance of the data at each layer. The method in [29] is
based on the traditional MatNet that contains a CNN with
8 convolutional layers. Each layer contains a convolution,
a ReLU non-linearity operation, and a max-pooling. The
TNNAR method [20] is developed based on transfer learn-
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ing. This work uses two convolutional layers with max-
pooling layers, one LSTM layer, and two fully-connected
layers. The batch size and learning rate for four methods
are all set as 64 and 0.001, respectively.

5.2 Performance Evaluation

In this section, we first evaluate the performance of our pro-
posed MatNet-eCSI scheme and compare it with four other
state-of-the-art methods (i.e., RNN [14], EI [22], MatNet
[29], and TNNAR [20]) considering various parameters and
configurations. We then analyze the impact of the proposed
CCFE method and other parameters (e.g., size of reference
data set) on the performance of MatNet-eCSI.

It is important to note that the proposed MatNet-eCSI
has two key differences in comparison with MatNet in
[29]. Firstly, our proposed MatNet-eCSI uses CCFE, which
enhances the activity-dependent information and decreases
the training time. Secondly, MatNet-eCSI uses a tailored
novel training strategy that enables better exploration of
the properties of MatNet. Through this training strategy, the
recognition task can be accomplished using at the minimum,
one set of training data from the testing environment.

5.2.1 Performance Comparison for Different Methods
Table 1 ∼ Table 3 demonstrate the average recognition
accuracy of the five methods for seven activities consid-
ering different configurations and parameters. The testing
environments in Table 1 ∼ Table 3 are the first, second and
third configurations, respectively. PSE1, PSE2 and PSE3
denote the first, second and third configurations as PSEs,
respectively. “One-shot” and “Five-shot” indicate using 1
and 5 samples respectively for each activity from the testing
environment, together with the whole data set from the PSE.

From these tables, we can observe that the proposed
MatNet-eCSI significantly outperforms the other four meth-
ods in all indoor configurations for both “one-shot” and
“five-shot”. The reason is that, our proposed CCFE method
improves and condenses the activity-dependent information
in input signals. Consequently, the activity-related features
can be effectively learned and extracted, which is benefi-
cial for distinguishing activities. Moreover, we proposed
a tailored training strategy to better utilize the property
of MatNet for reliable sensing performance. As a result,
the bridge between the PSE and the testing environment
can be effectively built using even one sample for each
activity from the testing environment. Therefore, our pro-
posed scheme is capable of achieving much higher sensing
results with even one sample from the testing environment
together with the dataset from one PSE, which is also the
main advantage of the proposed MatNet-eCSI. By contrast,
TNNAR and MatNet require many samples from the testing
environment and numerous PSEs to facilitate the activity
recognition. Although EI does not need samples from the
testing environment, it requires data from a large number
of PSEs. When the number of PSEs is insufficient, all the
above methods (i.e., TNNAR, MatNet and EI) fail to obtain
reliable recognition performance, as illustrated in Table 1 ∼
Table 3. For RNN, it needs huge amounts of data from the
testing environment for activity recognition. Since only one
or five samples from the testing environment are selected in

TABLE 1
Average recognition accuracy of the five methods in the first indoor

configurations

Method PSE2 PSE3
One-shot Five-shot One-shot Five-shot

Proposed
MatNet-eCSI

0.868 0.934 0.822 0.923

MatNet 0.402 0.447 0.398 0.444
RNN 0.206 0.253 0.216 0.268
EI 0.354 0.411 0.351 0.407
TNNAR 0.328 0.393 0.323 0.390

TABLE 2
Average recognition accuracy of the five methods in the second indoor

configurations

Method PSE1 PSE3
One-shot Five-shot One-shot Five-shot

Proposed
MatNet-eCSI

0.802 0.881 0.761 0.861

MatNet 0.376 0.429 0.401 0.439
RNN 0.153 0.186 0.219 0.236
EI 0.315 0.405 0.345 0.402
TNNAR 0.302 0.373 0.301 0.369

the considered scenario, it is difficult for RNN to achieve a
satisfactory result.

For detailed exam of the performance, we provide the
confusion matrix for each method for the case of one-shot
learning, as illustrated in Fig. 6. In this figure, the activities
are performed under the first experimental configuration.
PSE2 is selected as PSE. As can be seen, the performance
of the proposed work is greatly better than those of the
existing methods. Specifically, for the proposed MatNet-
eCSI, each predicted activity matches the corresponding
actual activity, meaning that our proposed scheme is able
to obtain a reliable recognition result for each activity. By
contrast, for the other four sensing methods, the predicted
activities are not accordance with the corresponding actual
activities. Therefore, from Table 1 ∼ Table 3 and Fig. 6,
we can conclude that the proposed MatNet-eCSI is able to
successfully perform one-short learning to recognize human
activities in new/testing environments, using one PSE only.
The sensing accuracy of the proposed MatNet-eCSI is no-
tably higher than that of the existing methods.

Although the proposed MatNet-eCSI is able to obtain
a reliable sensing result, it is shown to be less robust to
some activities which induce similar impacts on CSI. Take
the activity “walk” in Fig. 6(a) as an instance, the probability
of correctly detecting “walk” is 0.66, while the probabilities
of sensing it as “running” is 0.12. This is because when the
speed of running is low, its impact on CSI is similar to that
of “walk”. The robustness can be improved by using more
samples from the testing environments (e.g., “five-shot”).
To illustrate this, in Fig. 7 we show the confusion matrix of
the proposed MatNet-eCSI with “five-shot”. As can be seen
from the figure, the recognition accuracy of each activity
for “five-shot” is higher than that of “one-shot”, implying
that increasing the number of samples from the testing
environment can result in better recognition performance.
This is achieved at the cost of increased complexity and
samples, as illustrated in Fig. 12(b).

Fig. 8 demonstrates the impact of the used number
of receiving antennas, represented as the number of total
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TABLE 3
Average recognition accuracy of the five methods in the third indoor

configurations

Method PSE2 PSE1
One-shot Five-shot One-shot Five-shot

Proposed
MatNet-eCSI

0.577 0.758 0.461 0.749

MatNet 0.417 0.462 0.374 0.462
RNN 0.163 0.205 0.186 0.214
EI 0.365 0.421 0.333 0.412
TNNAR 0.317 0.388 0.319 0.385

TABLE 4
The number of PSEs required by different methods for the similar

sensing accuracy

Method Number of PSE
Proposed MatNet-eCSI 1

MatNet 18
EI 23

TNNAR 25

subcarriers, on the average recognition accuracy in the sec-
ond experimental configuration. The PSE is PSE3. From
this figure, it is clear that for both “One-shot” and “Five-
shot”, increasing the number of subcarriers can result in
better average recognition accuracy for each method. The
improvement is more obvious in our proposed method,
particularly in “one-shot”.

In Fig. 9, we illustrate the sensing performance of
different methods with the increased number of PSEs. As
can be observed from the figure, EI, TNNAR, MatNet, and
our proposed MatNet-eCSI all achieve better recognition
performance when the number of PSEs increases. This is
because, with more PSEs, these four methods are able to
better extract common features shared by PSEs and testing
environment, which is beneficial for recognizing human
activities. On the contrary, sensing accuracy for RNN is not
necessarily improved when the number of PSEs increases.
The reason is that RNN cannot extract transferable features
shared by PSEs and the testing environment. In addition,
the proposed MatNet-eCSI is able to achieve a satisfactory
sensing accuracy with even one PSE, which is difficult for
the other methods to achieve.

In Table 4, the required numbers of PSEs for achieving
a recognition accuracy above 80% are shown for four meth-
ods. The required number of PSEs (e.g., over 20 PSEs) is ob-
tained by collecting training samples from different rooms
with different sizes or layouts. Note that different layouts
in the same room are treated as different environments.
Five people performed activities in each environment. S-
ince PSEs have no notable impact on the performance of
RNN, which requires a large number of samples from
the testing environment, we did not present its result in
this table. We can observe from this table that to achieve
similar accuracy, our proposed MatNet-eCSI only requires
the training samples from one PSE. By contrast, MatNet,
EI and TNNAR need training samples from 18, 23 and 25
different PSEs, respectively. Since obtaining samples from
numerous different PSEs is always impractical or expensive,
the proposed MatNet-eCSI is superior compared to the other
three methods.

We investigate how well the proposed CCFE affects
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Fig. 6. Confusion matrix for different human activity recognition methods.

the sensing accuracy for different methods, as shown in
Table. 5. In this table, the activities are described in the
first configuration, and PSE is PSE2. It is obvious that the
recognition accuracy for each method with CCFE is better
than the case without CCFE. This is because CCFE is able
to enhance the activity-related information, thereby con-
tributing to distinguishing different activities. Note that the
proposed MatNet-eCSI with CCFE obtains higher accuracy
than MatNet with CCFE. This is because the novel training
strategy used in our proposed MatNet-eCSI is able to better
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Fig. 7. Confusion matrix of proposed MatNet-eCSI for five-shot
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Fig. 8. Impact of the used number of receiving antennas, represented
as the number of total subcarriers, on the recognition accuracy.

utilize the properties of MatNet for feature extraction.
The sensing results of different methods with sufficient

training samples are presented in Fig.10. In this figure,
the training dataset is collected by using 200 samples for
each activity from the testing environment, together with
the whole data set from eight PSEs. We can see that all
methods achieve high sensing accuracies given sufficient
samples from the testing environment and various PSEs.

TABLE 5
Impact of CCFE on recognition accuracy for different methods

Method Without CCFE With CCFE
Proposed MatNet-eCSI 0.616 0.868

MatNet 0.402 0.632
RNN 0.206 0.329

EI 0.354 0.521
TNNAR 0.328 0.502
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Fig. 9. Recognition accuracy with increased number of PSEs
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Fig. 10. Recognition accuracy of different methods with sufficient training
samples

This is because these methods can effectively train their re-
spective models with sufficient samples, thereby achieving
reliable sensing performance. Our proposed MatNet-eCSI
still outperforms other methods in this case, crediting to the
proposed CCFE method.

5.2.2 Effect of CCFE on MatNet-eCSI
The impact of CCFE on the performance of the proposed
MatNet-eCSI is investigated in this subsection, to demon-
strate the importance of CCFE for the whole proposed
scheme.

We first use two similar activities, e.g., “sit down” and
“sitting”, as an instance to illustrate the effect of CCFE on
enhancing the feature signals. From Fig. 11(a) and 11(e) (or
from Fig. 11(b) and 11(f)), we can see that it is difficult
to distinguish between “sit down” and “sitting” by only
utilizing the amplitude (or phase) of H. By contrast, it is
much easier to differentiate these two activities based on
DA
en (or DΨ

en) that enlarges the difference between similar
activities. This is because CCFE reduces activity-unrelated
information, hence enlarging the difference. Additionally,
DA
en (or DΨ

en) reduces the dimensions of output signals,
compared to the amplitude (or phase) of H.

Fig. 12 presents how well CCFE can improve the av-
erage recognition accuracy and reduce the training time,
compared to the case without using it. The activities are per-
formed in the first experimental configuration, and PSE3



12

500 1000 1500 2000
Index of package

20

40

60

80

S
ub

ca
rr

ie
r

(a) Amplitude of H, sit down

500 1000 1500 2000
Index of package

20

40

60

80

S
ub

ca
rr

ie
r

(b) Phase of H, sit down

20 40 60 80
Subcarrier

20

40

60

80

S
ub

ca
rr

ie
r

(c) DA
en, sit down

20 40 60 80
Subcarrier

20

40

60

80

S
ub

ca
rr

ie
r

(d) DΨ
en, sit down

500 1000 1500 2000
Index of package

20

40

60

80

S
ub

ca
rr

ie
r

(e) Amplitude of H, sitting

500 1000 1500 2000
Index of package

20

40

60

80

S
ub

ca
rr

ie
r

(f) Phase of H, sitting

20 40 60 80
Subcarrier

20

40

60

80

S
ub

ca
rr

ie
r

(g) DA
en, sitting

20 40 60 80
Subcarrier

20

40

60

80

S
ub

ca
rr

ie
r

(h) DΨ
en, sitting

Fig. 11. Effect of CCFE on enhancing the feature signals for two similar activities“sit down” and “sitting”.

is selected as PSE. As illustrated in Fig.12(a), the average
recognition accuracy of MatNet-eCSI with CCFE is shown
to be much better than that of without CCFE for both “One-
shot” and “Five-shot”. This is because the proposed CCFE
is capable of enhancing the activity-related features by re-
moving activity-unrelated information. Moreover, the sim-
ilarities of the enhanced CSI across different environments
(i.e., outcomes of CCFE) become higher, in comparison with
initial CSI signals, which is beneficial for improving sensing
performance. Take the activity “sit down” as a study case.
The similarity of the initial CSI signal for this activity across
the first and third configurations is 0.559. The initial CSI
signal is input to the proposed CCFE for processing, and the
final outputs include static components (i.e., static CSI) and
dynamic components (i.e., enhanced CSI). The similarities
of the static CSI and enhanced CSI across the first and third
environments are 0.461 and 0.632, respectively. It is clear
that, compared to the initial CSI signal, the similarity of the
static CSI across different environments becomes smaller,
while the similarity of the enhanced CSI becomes larger.
Since the static CSI is mostly removed before the training
stage, they have little impact on the sensing performance.
On the other hand, the enhanced CSI is fed into the deep
learning network for training, which contributes to im-
proved recognition results.

Fig. 13 shows the impact of phase compensation (an
important part of CCFE) on the sensing performance. The
activities are performed in the first experimental configu-
ration, and PSE2 is selected as PSE. As can be observed
from the figure, the sensing accuracy for the case with
phase compensation is much higher than that without phase
compensation. The reason is that the proposed phase com-
pensation is capable of compensating the phase shift that is
caused by timing offset. As a result, the quality of CSI can
be improved, which is beneficial for recognizing different
activities.

We also investigate the impact of the number of segment
K (an important factor in CCFE) on the average recognition
accuracy, as presented in Fig. 14. We present the result-
s for the second experimental configuration, and PSE is
PSE1. As can be seen from this figure, a larger K leads
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Fig. 12. Impact of CCFE on the recognition accuracy and required
training time.

to higher average recognition accuracy and better sensing
performance. The reason is that the proposed CCFE with a
larger K can extract more correlation information/features
for human activity. Note that the recognition accuracy can-
not be infinitely improved with the increase of K. This
is because, when K is very large, the difference between
adjacent segments is insufficient for providing additional
useful signal features for HAR. Additionally, a larger K
causes higher computational complexity. Therefore, the user
can select the value ofK to balance recognition performance
and computational complexity.
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Fig. 13. Impact of phase compensation on recognition accuracy
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Fig. 14. Impact of the number of segment K on the recognition accuracy.

5.2.3 Impact of Input Signals on MatNet-eCSI
In this subsection, we investigate how the type of input
signals and the size of data set from the PSE affect the
recognition performance of MatNet-eCSI.

Table 6 illustrates the average recognition accuracy with
different input signals in the first indoor configuration. In
this table, the PSE is PSE2. In the previous results, MatNet-
eCSI uses both the amplitude and phase of H as input-
s. Here, we test MatNet-eCSI-AM and MatNet-eCSI-PH,
which indicate that MatNet-eCSI only adopts the amplitude
or phase of H as the input. Table 6 shows that MatNet-eCSI
is superior to the other two methods for both “One-shot”
and “Five-shot”. This is because more essential features for
human recognition can be extracted from the combination
of amplitude and phase of H. It is also interesting to see
that MatNet-eCSI-PH achieves better accuracy than MatNet-
eCSI-AM, which suggests that the amplitude of H is more
susceptible to the propagation environment change.

The impact of the size of data set on recognition per-

TABLE 6
Sensing performance using different input signals in the first

configuration with PSE2 .

Method One-shot Five-shot
MatNet-eCSI 0.868 0.934

MatNet-eCSI-AM 0.79 0.862
MatNet-eCSI-PH 0.823 0.912
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Fig. 15. Impact of the size of data set on the recognition accuracy

formance is presented in Fig. 15. The horizontal axis means
the number of times collected for each activity in a single
environment. In this figure, the activities are performed as
per the second configuration, and PSE is PSE2. It is clear
that, a larger training data set can result in a higher accuracy
for the proposed scheme in both “one-shot” and “five-shot”
cases. The improvement in recognition accuracy becomes
quite small, after a sufficient number of training samples.
Note that more training samples require more time and
resource for processing, leading to higher computational
complexity. Therefore, it is important to select a proper
size of data set, to achieve a good balance between the
recognition accuracy and complexity.

5.2.4 Impact of training strategy and human diversity on
MatNet-eCSI
In this subsection, we investigate how the sensing perfor-
mance of MatNet-eCSI varies with the proposed training
strategy and different human beings. In this subsection,
different activities are performed in the first indoor config-
uration, and the PSE is PSE2.

Fig. 16 shows the variation in sensing accuracy of
MatNet-eCSI with different human subjects. In the figure,
two volunteers participate in the training process and the
other three are new for the testing. In this figure, we cal-
culate the average sensing accuracy for each person when
he/she acts as the testing subject. We can see that the
average accuracy varies across different persons, meaning
that different persons could have different impact on recog-
nition performance. However, it is important to note that
the average accuracy does not show an obvious difference
across persons, and the overall accuracy for five persons
is still reliable. For instance, for “five-shot”, the average
accuracy of all volunteers are higher than 88%. Therefore,
the proposed scheme demonstrates robustness to human
diversity.

Fig. 17 demonstrates the impact of the proposed training
strategy on the sensing performance of MatNet-eCSI. From
this figure, we can observe that using the novel training
strategy enables the proposed scheme to achieve a higher
recognition accuracy, compared to the case without using it.
This is because via the proposed training strategy, the com-
mon features shared by PSE and the testing environment
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Fig. 17. Impact of training strategy on the recognition accuracy

can be effectively extracted using the training data set from
one PSE and at the minimum, one sample, from the new
testing environment.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed a novel MatNet-eCSI scheme to
realize one-shot learning human activity recognition. Our
approach includes an innovative CCFE methodology and
a novel training strategy. The CCFE method can improve
activity-related signals by removing activity-unrelated in-
formation. The dimension of input signals is also largely
decreased, which reduces the computational complexity and
the training time. We developed a better training strategy
for recognizing human behaviors using only one sample
from the testing environment along with the data set from
the PSE. The extensive experimental results confirm that
our proposed MatNet-eCSI significantly outperforms the
existing related work in notably improving the recognition
accuracy and reducing the training time.

It is noteworthy to state that we have only investigated
the activity recognition with a single person under the cur-
rent methodology. We will take the multiple-person activity
recognition as a natural extension to this work in the future,
which is a considerably challenging task.
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