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ABSTRACT Multi-objective sparse reconstruction methods have shown strong potential in sparse recon-
struction. However, most methods are computationally expensive due to the requirement of excessive
functional evaluations.Most of these methods adopt arbitrary regularization values for iterative thresholding-
based local search, which hardly produces high-precision solutions stably. In this article, we propose a multi-
objective sparse reconstruction scheme with novel techniques of transfer learning and localized regulariza-
tion. Firstly, we design a knowledge transfer operator to reuse the search experience from previously solved
homogeneous or heterogeneous sparse reconstruction problems, which can significantly accelerate the
convergence and improve the reconstruction quality. Secondly, we develop a localized regularization strategy
for iterative thresholding-based local search, which uses systematically designed independent regularization
values according to decomposed subproblems. The strategy can lead to improved reconstruction accuracy.
Therefore, our proposed scheme is more computationally efficient and accurate, compared to existing multi-
objective sparse reconstruction methods. This is validated by extensive experiments on simulated signals
and benchmark problems.

INDEX TERMS Sparse reconstruction, multi-objective evolutionary algorithm, transfer learning, regular-
ization.

I. INTRODUCTION
The compressed sensing technology [1], [2] has been widely
applied to many fields, such as medical imaging [3], [4] [5],
face recognition, radar and sensor networks, and seismic data
reconstruction [6], [7]. It reconstructs the sparse signal x from
the measurements

b = Ax+ e, (1)

where x ∈ Rn is an unknown k−sparse signal, A ∈ Rm×n

is the measurement matrix, b ∈ Rm is the measurement
vector, and e ∈ Rm denotes the noise vector. Iterative
thresholding algorithms [8], [9] are one dominant kind of
sparse reconstruction (SR) methods. They formulates (1) to
an unconstrained optimization problem

min
x
λ‖x‖p +

1
2
‖b− Ax‖22, (2)
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where p ∈ (0, 1] is the norm, and λ is a predefined regu-
larization parameter to balance the regularization term ‖x‖p
and the measurement error ‖b − Ax‖22. The reconstruction
performance is highly sensitive to λ [10], since it balances
the feasibility and the sparsity of x. Nowadays, several
heuristic methods have been proposed for selecting λ, e.g.,
the projected generalized Stein unbiased risk estimator-based
method [11], the method based on projection onto Epigraph
Sets [12], Homotopy continuation methods [13], and the
cross-validation approach [14].

To bypass the issue of selecting λ, problem (2) can be trans-
ferred to a bi-objective optimization problem (will be detailed
in (3)), then being solved via the variants of multi-objective
evolutionary algorithms (MOEAs), i.e., multi-objective SR
(MOSR) approaches [15], [16] [17]. Compared with conven-
tional SR methods, MOSR methods not only avoid setting
the regularization parameters in the problemmodel but also is
able to enforce the sparsity of x via the l0-normwithout relax-
ations, bringing enhanced reconstruction accuracy. The iter-
ative search procedure of MOSR solvers generally involves
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two parts, i.e., a population-based evolutionary search for
global convergence, and a problem-specific local search for
further refining the solutions. MOSR algorithms have been
reported impressive performance in recent years. However,
there are still some open challenges.

The first issue lies in the global search procedure. Evolu-
tionary algorithms usually search from scratch, and MOSR
optimizers are not exceptions. However, in practical recon-
struction systems, the SR problems normally have simi-
larities in terms of sparse pattern and evolutionary search
process, etc. For example, in block-wise sparse reconstruc-
tion, an image block could easily find its similar structures
in other blocks of the same image [18]. Considering this,
the knowledge within the solutions to the previously solved
SR problems can be used to facilitate the search of the current
problem [19]. On the contrary, search from scratch may lead
to unnecessary re-exploration in the space which is similar to
previously solved problems.

The second challenge exists in local search operators.
Conventional iterative thresholding methods [8], [9], [20],
are generally integrated into MOSR solvers as local search
operators [10], [15], [21]. Therefore, the local search pro-
cess requires setting the regularization parameters. Generally,
the regularization parameters are randomly selected within
some ranges, ignoring the connection between the regulariza-
tion term and measurement error. An inappropriately selected
value can readily lead to bad recovery performance [15].
Therefore, it is desirable to develop more efficient and robust
local search schemes to better deal with the SR problems.

In this article, we propose a novel MOSR scheme with
innovations of transfer learning and localized regularization
(referred to as MOSR-TLL hereafter), which is capable of
solving the two aforementioned problems. The major contri-
butions are summarized as follows.

• We introduce the idea of using a knowledge transfer
operator to reuse the search experience from a previously
solved MOSR problem. This operator can significantly
accelerate the convergence of MOSR optimizers.

• We propose an efficient parallel search scheme, includ-
ing a classic recombination operator and a novel knowl-
edge transfer operator. The knowledge transfer operator
includes three steps: (a) introducing the single-layer
form of the deep nonlinear feature coding (DNFC) [22]
to extract a feature mapping for the searching progress
between the current and the past solved problems, (b)
learning knowledge-induced solutions containing the
structural search experience by the mapping and trans-
ferring them to the optimization procedure of the current
problem, and (c) applying a sparse constraint strategy to
ensure the sparse characteristics of the learned solutions.
This scheme can accelerate the reconstruction speed of
MOSR-TLL and improve the reconstruction quality.

• We propose a localized regularization strategy for the
iterative thresholding-based local search process, which
can greatly improve the reconstruction accuracy. In this

strategy, the MOSR problem is divided into a number
of subproblems by reference vectors and a carefully
selected independent regularization value is applied
according to each subproblem for local search.

• We conduct a comprehensive experimental study on
various simulated signals and benchmark problems
(through the Sparco toolbox) to verify the performance
of the proposed MOSR-TLL. Extensive comparisons
with state-of-the-art algorithms are also provided.

The rest of this article is organized as follows. Section II
and III present related works and background knowledge.
Section IV describes the proposed MOSR-TLL scheme.
Experimental results are provided in Section V. Section VI
further studies the impact of innovative technologies on sys-
tem performance. Finally, Section VII concludes the paper.

II. RELATED WORKS
A. MULTI-OBJECTIVE SPARSE RECONSTRUCTION
The MOSR problem is formulated as

f(x) = min
x
(‖x‖0, ‖Ax− b‖22), (3)

where ‖x‖0 and ‖b−Ax‖22 represent the sparsity of x and the
measurement error, respectively. Since sparse reconstruction
aims at finding the sparsest solution, it is natural to use the l0-
norm here. Nonetheless, the conventional SR methods solve
the sparse reconstruction problems with relaxations (e.g., l1,
l2 or l1/2) to minimize the elements of x, but the relaxation
approximation is not always equivalent.

A number of variants of MOEAs for sparse recovery have
been developed. An early attempt is the soft-thresholding
evolutionary multi-objective (StEMO) algorithm [15]. It inte-
grates the soft thresholding method [8] into the NSGA-II
framework [23]. A MOSR framework based on decompo-
sition and a l1/2 thresholding solver was suggested in [21].
A further improvement was proposed in [17], which searches
the knee region with preference to reduce computational
costs.

In [24], a hybrid approach with a modified linear Breg-
man method and differential evolution was provided. A two-
phase evolutionary approach was proposed in [16], where
the statistical feature of the non-dominated solutions was
extracted, and non-zero entries were located. Later, an adap-
tive decomposition-based evolutionary approach (ADEA)
[10] was provided. It not only searches the whole PF with
the guidance of reference vectors, but also devotes additional
search effort to the knee region. Different from these studies
using genetic algorithms, the particle swarm optimization
was also introduced for MOSR and achieved competitive
performance [25], [26].

In the above works, iterative thresholding methods [8],
[9] are generally employed for local search. The regulariza-
tion parameters work as inputs of the local search, which
are generally chosen randomly from some ranges or based
on sparsity estimation. It is very likely to produce infe-
rior solutions due to the ignorance of the connection
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between the two objectives. Thus, it is expected to develop
a more advanced local search operator with system-
atic devised regularization parameters to improve the SR
performance.

B. KNOWLEDGE REUSE IN EVOLUTIONARY ALGORITHMS
Knowledge reuse strategies have been applied in various
evolutionary optimization applications [19]. They utilize the
knowledge from previously solved problems for enhanc-
ing the search efficiency of similar new problems. Early
examples include direct reuse of previous solutions [27] and
model-based knowledge transfer [28]. The former is unavail-
able for problems with different dimensions, while the latter
cannot incorporate with model-free evolutionary algorithms.
Recent strategies that reuse the structural information from a
past problem are not subject to the above limitations and have
gained promising performance [29]–[31].

In [30], a knowledge reuse strategy is incorporated with
genetic programming for image classification tasks. The
previously obtained tree-style code fragment was directly
sent to the future problem-solving process. In [29], a single
layer autoencoder [32] was adopted to extract knowledge
from the past search experience. This method was further
applied to multi-task problems [33]. These studies show
efficacy in enhancing the evolutionary search speed, but the
distribution difference between the solutions of problems is
ignored.

In [34], new surrogate models are generated by stacking
the previously obtained surrogates. This scheme saves the
computational effort on building surrogates for computation-
ally expensive problems. Similarly, literature [35] stacked
the probabilistic density distribution of the solutions to past
problems with that of the solutions to the current problem.
The stacked distribution was used to guide the search for the
current problem.

The knowledge transfer has also been conducted in the
objective space. In [31], the latent objective space between
the previous and the current problems were constructed
by the transfer component analysis [36] method. Then the
Pareto-optimal solutions of the past problem were trans-
ferred to the current problem through the latent space.
In light of these advancements, we introduce the idea of
transfer learning to MOSR for improving the recovery
efficacy.

III. PRELIMINARIES
A. DECOMPOSITION-BASED MOEAs
Decomposition-based MOEAs transform a MOP into a num-
ber of subproblems with the help of reference vectors, then
conducting a co-evolution of the subproblems [37]. Follow-
ing the idea of decomposition, studies [38], [39] employ
evenly distributed reference vectors to guide the evolutionary
process, which can assure the convergence and diversity of
solutions at a low computational cost. Some techniques in
these algorithms that will be used in this article are briefly
described below.

1) REFERENCE VECTORS
Reference vectors can be generated via the normal-boundary
intersection method [40]. An example in a normalized 2-D
objective space is shown in Fig. 1. N uniformly distributed
reference points on a unit hyperball are generated [41]

uj = (u1j , u
2
j ), j = {1, 2, . . .N }

uhj ∈ {
0
H
,
1
H
, . . . ,

H
H
},

2∑
h=1

uhj = 1
(4)

where uj is the coordinate of the j-th reference point and
represents the preferences for two objectives, N is the total
number of reference points, H = N − 1 is a positive integer
for the simplex-lattice design. Then, the unit vector from
the coordinate origin to reference points {uj}Nj=1 forms the
reference vectors V = {V0, . . . ,Vj, . . .VN }, where Vj =

uj/‖uj‖.

FIGURE 1. Reference vectors in a normalized 2-D objective space.

2) POPULATION NORMALIZATION
As the reference vectors exist in a [0, 1] objective space,
a normalization step [42] usually need to be applied to the
objective function values of solutions. The M -th objective
function value fM (xi) of a solution xi is normalized to generate
f̃M (xi) via

f̃M (xi) =
fM (xi)− z∗M
znadM − z

∗
M

(5)

where znadM is the nadir point of theM -th dimension objective
function in the current generation and can be obtained by the
whole PF [43], and z∗M is the minimum value of the M -th
dimension objective function found so far.

3) SOLUTION ASSOCIATION
After normalization, the population is divided into a number
of subpopulations in the following way: for a solution xi ∈ P,
the intersection angle θ between f̃ (xi) and each reference
vector in V is obtained, then, xi is associated with Vj if and
only if their intersection angle is minimal. Therefore, P is
partitioned into several subpopulations {Pj}Nj=1 by reference
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Algorithm 1 The IHalfT-BB Algorithm

Require: xl , xl−1, λ, A, b

1: αl =
(sl)T rl

(sl)T sl
, where sl = xl − xl−1, rl =

`
F(xl) −

`
F(xl−1);

2: µl = 1/αl ;
3: xl+1 = Hµlλ(x

l
+ µlAT (b− Axl));

vectors. This process can be mathematically described asθxi,Vj = arccos(
f̃ (xi) · (Vj)T

‖f̃ (xi)‖
), j = {1, 2, . . .N },

Pj = {xi|j = argmin θxi,Vj}.
(6)

B. ITERATIVE HALF THRESHOLDING ALGORITHMS
The iterative half thresholding (IHalfT) algorithm [9] solves
the L1/2-norm problem (2) in the form of

xl+1 = Hµlλ(x
l
+ µlAT (b− Axl)) (7)

with an operator

Hµlλ(v
l+1
i ) =

χ (vli), |vli | >
3
√
54
4

(µlλ)
2
3

0, otherwise,
(8)

where vli is the i-th element of v at the l-th iteration, µl is the
step size, χ (vli) = (2/3)vli(1+ cos(2π/3− (2/3)ϕ(vli))) with
ϕ(vli) = arccos((µlλ/8)(|vli |/3)

(−3/2)). The regularization
value λ can be either selected as a constant value or deter-
mined by the prior estimation of signal sparsity. µl can also
be either a constant or one related to the Lipschitz constant of
the negative gradient

`
F = AT (Ax− b).

In this article, we adopt an IHalfT algorithm based on the
intelligent and accelerated Barizilai-Borwein (BB) method
[44] because of its promising convergence performance [9].
The procedure is presented in Algorithm 1, where the step
size µl mimics the behavior of the Hessian.

IV. THE PROPOSED MOSR-TLL SCHEME
We first design a parallel search, including a classic recom-
bination operator and a novel knowledge transfer operator.
In the knowledge transfer process, a single-layer NFC tech-
nique [22] is used to transfer the search experience of a
previously solved MOSR problem to the evolution of the
current problem. Based on the decomposition idea, we then
propose a localized regularization strategy to improve the
local search efficiency, i.e., different regularization values are
restricted to work within the local search of the solutions to
different decomposed subproblems.

A. FRAMEWORK OF MOSR-TLL
The workflow of the proposed MOSR-TLL is depicted
in Figure 2, with the corresponding pseudo-code given in
Algorithm 2. For convenience, we denote the current MOSR
problem as the target problem and name the previously solved

Algorithm 2 Framework of MOSR-TLL
Require: A, b, PS, N
1: /*Initialization*/
2: P0

← Population_Initialization;
3: V← Reference_Vector_Initialization;
4: while ‘‘the stopping criterion is not met’’ do
5: Qt

=Recombination(Pt );
6: if ‘‘the criterion of knowledge transfer is met’’ then
7: Tt =Knowledge_Transfer(Pt ,PSt ,PStmax );
8: Ct

=Crossover(Tt ,Pt );
9: Pt = Pt ∪ Ct ;
10: end if
11: Pt = Pt ∪Qt ;
12: Lt =Localized_Regularization_Local_Search(Pt ,V);
13: Pt+1 =Selection(Pt ∪ Lt );
14: t = t + 1;
15: end while
16: x← Final_Solution_Identification(Pt );

problem which we intend to transfer knowledge from as the
source problem. Pt and PSt are the sets of solutions to the
target and source problems at generation t , respectively, and
PStmax is the set of the optimized solutions to the source prob-
lem. Let ns and nt denote the population size, i.e., the number
of solutions of PSt and Pt , respectively. The procedure of
MOSR-TLL is described below.

1) Initialization: An initial population P0 of size N is ran-
domly generated, and N reference vectors uniformly
distributed in the [0, 1] normalized objective space are
produced (refer to Section III-A1).

2) Parallel Search: On one hand, the recombination opera-
tors, including the simulated binary crossover [45] and
polynomial mutation [46], are employed to create the
offspring (line 5 of Algorithm 2). On the other hand,
the proposed knowledge transfer operator is imple-
mented to obtain a set of sparsified knowledge-induced
solutions Tt , and the solutions from Tt and Pt are
used to integrate the learned search experience from
the source problem into the evolution of the target
problem via the simulated binary crossover (line 6-
10 of Algorithm 2). This scheme can efficiently reduce
the harm of over-fitting caused by knowledge transfer,
thus guaranteeing the robustness of this algorithm.

3) Local Search And Selection: A localized regularization-
based local search operator is then executed to boost the
search efficiency. All these obtained solutions undergo
the selection step to select a number of N solutions for
the next generation.

4) Termination: When the iteration terminates, the Pareto
knee solution is identified as the final solution by the
kink method [47].

Next we will elaborate the major innovations (i.e.,
the knowledge transfer and localized regularization-based
local search operators) and the selection operator.
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FIGURE 2. The workflow of the MOSR-TLL.

B. KNOWLEDGE TRANSFER
We present the detailed process of the knowledge transfer
operator in this subsection. The knowledge transfer firstly
constructs a mapping as the connection between the source
problem and the target problem, then the optimized solu-
tions of the source problem are mapped into the common
latent space with this mapping, lastly the learned solutions
are updated by inheriting the sparse structure of the current
population. The obtained solutions are combined into the
current problem-solving to bias the search process, which can
speed up the convergence of the current problem and improve
the reconstruction accuracywith great probability. Otherwise,
the bad solutions yielded by negative knowledge transfer are
filtered by the subsequent selection operator. As will be seen
next, this operator provides a closed-form solution.

The first thing for knowledge transfer is how to obtain the
source problem. One exemplified process is shown in Fig. 3,
where q is the sequence number of the target problem. For
the first target problem/task, a MOSR-TLL version without
knowledge transfer (denoted as MOSR-L) is employed. The
obtained sparse search experiences ({P1,P2, . . .Ptmax }) of
this problem are saved to a source pool. Since the second
target problem, MOSR-TLL can be employed with a source
problem randomly selected from the source pool, and the new
search experiences are also put into the source pool. Look
back and forth, a source pool is enriched.

The source and target problems can be either homoge-
neous or heterogeneous. Here, these two problems are homo-
geneous (or heterogeneous) if the dimension of their sparse
signals x is the same (or different). If Pt and PSt have
different dimensions, we pad Pt or PSt with zeros to make
them of equal dimensions. The procedure of the knowledge
transfer operator is shown in Algorithm 3, with its three main
steps detailed next.

1) EXTRACTION OF FEATURE MAPPING
This operation aims to evaluate a mapping Wt which makes
the distribution of Pt and PSt as similar as possible in the

Algorithm 3 Sparse-Constraint Knowledge Transfer

Require: Pt , PSt , PStmax , θ
1: /*Feature mapping extraction*/
2: Wt

= E[R1](E[R2]+ θE[R3])−1; // (12)
3: /*Knowledge-induced solutions acquisition*/
4: Zt =Wt

kK(PSt ∪ Pt ,PStmax );
5: /*Solution sparsification*/
6: for i = 1 : N do
7: Z , {z|[Pt ]i,z = 0};

8: [Tt ]i,z =
{
[Zt ]i,z, z /∈ Z,
0, z ∈ Z.

9: end for

latent space. This mapping builds a connection for the search-
ing progress between the source and target problems, which
can be used for transferring knowledge across problems.

We employ the NFC technique [22] for acquiring the
mapping Wt . The principle of feature mapping extraction
is provided in Fig. 4(a). The maximum mean discrepancy
(MMD) [48] and nonlinear coding by kernelization are incor-
porated into the marginalized denoising autoencoder (mDA)
[49] method, in which theMMD and kernelization can ensure
the extracted features to have a small distribution discrepancy
and the nonlinearity in the sparse data to be well exploited.

Let X , PSt ∪ Pt , and X = [X,X, . . .X] represent the
union of the r-times copies. Let X̃r be the r-th corrupted
version of X by random feature removal (i.e., each feature
is set to 0 with probability g), X̃ = [X̃1, X̃2, . . . X̃r ] represent
the union of r-times corrupted versions of X, and Φ(X) is
the mapped X in the Reproducing Kernel Hilbert Space H.
Let Wt

= Wt
kΦ(X)T and K = Φ(X)TΦ(X) be the kernel

matrix, we can formulate the objective function for extracting
the mapping Wt as

0(Wt ) = Tr
(
(X−WtΦ̃(X))T (X−WtΦ̃(X))

)
184924 VOLUME 8, 2020
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FIGURE 3. Illustration of how to obtain a source problem.

+‖
1
ns

ns∑
i=1

WtΦ̃(Xi)−
1
nt

ns+nt∑
i=ns+1

WtΦ̃(Xi))‖2

= Tr
(
(X−Wt

kK̃)T (X−Wt
kK̃)

)
︸ ︷︷ ︸

mDA

+ θ · Tr(WkK̃G̃K̃TWT
k )︸ ︷︷ ︸

MMD

(9)

where the last two terms indicate the mDA and MMD func-
tion, Φ̃(X) and K̃ stand for the corrupted data with r different
corruptions of Φ(X) and K respectively, Tr(·) denotes the
trace of a matrix, G = [Gi,j](ns+nt )×(ns+nt ) with Gi,j = 1/n2s
if Xi,j ∈ PSt , Gi,j = 1/n2t if Xi,j ∈ Pt , and Gi,j = −1/(nsnt )
otherwise; and θ is a balancing parameter.

(9) has a closed-form solution:

Wt
k = R1(R2 + θR3)−1 (10)

with R1 = XK̃T , R2 = K̃K̃T and R3 = K̃G̃K̃T . Applying
the weak law of large numbers and computing the expecta-
tions when the number of corruption r → ∞, a robust and
closed-form solution forWt

k can be formulated as

Wt
k = E[R1](E[R2]+ θE[R3])−1 (11)

with

E[R1] = (1− g)XKT

E[R2]i,j =

{
(1− g)2KKT , i 6= j
(1− g)KKT , i = j

E[R3]i,j =

{
(1− g)2KGKT , i 6= j
(1−g)2KGKT

+g(1−g)KFKT , i= j

(12)

where F is a diagonal matrix having the same diagonal ele-
ments withG. Due to page limitations, please refer to [22] for
more details about the proof.

2) ACQUISITION OF KNOWLEDGE-INDUCED SOLUTIONS
PStmax contains most of the search experience from the source
problem. We can apply the experience to the target problem
by mapping PStmax into the latent space constructed by Wt

k .

AsWt
k is a connective mapping between PSt and Pt , we have

Zt = WtΦ(PStmax )

= Wt
kΦ(X)TΦ(PStmax )

= Wt
kK(X,PStmax ) (13)

where Zt contains a set of knowledge-induced solutions
which incorporate the search experience from the source
problem and also evaluates the similarity for the search
progress between the source and target problems. This pro-
cedure is also illustrated in Fig. 4(b).

3) SPARSE CONSTRAINT
To ensure the sparsity characteristics of solutions in Zt ,
we combine the sparse structure of Pt into Zt to obtain the
sparse version of Zt , Tt . As a result, Tt will not only possess
the valuable knowledge extracted from the search experience
for the target problem, but also inherit the sparse structure of
Pt .

In detail, firstly, we identify the positions of zero elements
in Pt , and form a set Z , {z|[Pt ]i,z = 0}, where [·]i,z
represents the (i, z)-th element in a matrix. We then set the
elements in Zt with indexes belonging to Z to be zeros and
generate T as

[Tt ]i,z =

{
[Zt ]i,z, if z /∈ Z
0, if z ∈ Z

i = {1, 2, . . .N }. (14)

An example of sparse constraint is depicted in Fig. 4(c).

C. LOCAL SEARCH BASED ON LOCALIZED
REGULARIZATION
Using the two-stage iterative soft-thresholding (IST) based
local search strategy in ADEA [10] as a baseline, we elabo-
rate the proposed localized regularization-based local search,
as shown in Algorithm 4. The population firstly undergoes
normalization and solution association (refer to Section III-
A) as a preparatory process. Then, the fitness function in [10]
is employed to evaluate the fitness of each solution

fitness(xi) = cxi + 5× dxi (15)

where cxi = ‖f̃ (xi)‖ cos(θxi,vj ), f̃ (xi) is the normalized bi-
objective function value of solution xi via (5), and dxi =

VOLUME 8, 2020 184925
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FIGURE 4. Illustration of the sparse-constraint transfer learning operator. (a) Extraction of feature
mapping, (b) acquisition of knowledge-induced solutions, and (c) sparse constraint. Each lattice denotes
an entry of the signal, and the grey and white grids represent the nonzero and zero entries, respectively.

Algorithm 4 Localized-Regularization-Based Local Search
Operator
Require: Pt , Vt , N
1: Qft =Population_Normalization(Pt );
2: Ptj =Solution_Association(P

t ,Qft ,Vt );
3: B = {xi,j|i = argmin cxi + 5 × dxi , xi ∈ Ptj , j =

1, 2, . . .N };
4: S = Pt \ B;
5: λ = (λ1, λ2 . . . λN )← Localized_Regularization;
6: /*Two-stage local search*/
7: for i = 1 : |B| do
8: L1 =IhalfT-BB(Bi,j,Si, λj); // Algorithm 1
9: end for
10: for i = 1 : b|B|/2c do
11: L2 =IhalfT-BB(Bi,j,B|B|−i, λj); // Algorithm 1
12: end for
13: Lt = L1 ∪ L2;

‖f̃ (xi)‖ sin(θxi,vj ) measure the convergence and diversity of xi
with vj stands for the j-th reference vector. With this criterion,
the solutions can be divided into two sets (line 3-4 of Algo-
rithm 4): B (the set of the solution with the best fitness in each
subpopulation) and S (the remaining solutions). It basically
satisfies B 4 S. After that, a localized regularization strategy
(line 5) is proposed to define a set of the regularization
parameters (denoted as λ) for the subsequent two-stage local
search, which will be detailed in the following paragraphs.
Finally, the two-stage local search is executed via the IHalf-
BB algorithm (i.e., Algorithm 1), in which the first stage (line
7-9) is for accelerating the convergence performance, and
the second stage (line 10-12) for spreading the solutions over
the PF.

Please note that there are two differences between our
proposed local search operator and the IST-based local search
in [10]. First, the IST-based local search utilizes the IST
algorithm, while we integrate the IHalfT algorithm, as IHalfT
is able to achieve higher convergence accuracy [9]. Second,
both local search operators require the regularization values
as an input, and the correctness of λ severely influences the
quality of the produced solutions. ADEA assigns a random

value to each solution for its local search, which is hardly to
produce high-accuracy solutions stably. By contrast, we pro-
pose a localized regularization strategy, in which an indepen-
dent regularization value is assigned to each subpopulation,
and this value can be determined by using the preference of
the corresponding subproblem over the two objectives as a
priori. This strategy can boost the reconstruction accuracy of
MOSR-TLL.

The proposed localized regularization strategy is motivated
by the decomposition idea. By use of uniformly distributed
reference vectors, the MOSR problem is divided into several
subproblems, and the whole population is divided into some
subpopulations. For the j-th reference vector, the correspond-
ing subproblem is cast as

f̃j(xi) = argmin
x

u1j · f̃1(xi)+ u
2
j · f̃2(xi) (16)

where (u1j , u
2
j ) is the coordinate of the j-th reference point and

it represents the preference over the two objectives, a symbol
with the tilde denotes its value ‘‘normalized’’ through (5),
f̃1(xi) and f̃2(xi) represent the normalized ‖x‖0 and ‖Ax−b‖22,
respectively. (16) can be rewritten as

f̃j(x) = argmin
x

u1j
2u2j
· f̃1(xi)+

1
2
· f̃2(xi) (17)

It is self-evident that both the u1j /(2u
2
j ) in (17) and the λ in

equation (2) stand for the preference over two objectives.
Therefore, it is natural to determine λj by using u1j /(2u

2
j )

as a priori, where λj is the regularization parameter for the
j-th subproblem, all the regularization parameters make up
λ = (λ1, λ2, . . .). To obtain λ, we define a vector based on
u1j /2u

2
j and equation (4)

1
2
· (

0
H
,

1
H − 1

, . . . ,
j− 1

H − j+ 1
, . . . ,

H − 1
1

,
H
0
) (18)

‘‘H0 ’’ is meaningless, we will modify this value as follows.
Referring to [50], the upper bound for λj is suggested to be
‖AT b‖∞ to avoid useless zero solutions. Therefore, we keepλ
below the upper bound by multiplying (18) by 2‖AT b‖∞/H ,
and substitute H = N − 1 into (18)

λj = max(
j− 1

(N − j)(N − 1)
‖AT b‖∞, 1e− 3), (19)
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where j ∈ {1, . . . ,N−1}, 0 ≤ j−1
(N−j)(N−2) ≤ 1, 1e−3 ensures

λj not too small.

D. SELECTION
The selection operator from ADEA [10] is adopted in Pt ∪
Lt for selecting N promising solutions for the next gen-
eration. Firstly, solutions in Pt ∪ Lt are normalized (refer
to Section III-A2) and associated with their closest refer-
ence vectors (refer to Section III-A3). In each subpopulation,
the solutions are sorted in an ascending order according
to their fitness evaluated by (15) and marked with level
{1, 2, . . .} sequentially. Then, all the solutions are selected
successively from low to high levels. If some of the solutions
deduced by transfer learning survive in the selection proce-
dure, the knowledge transfer is beneficial for the optimization
of the current MOSR problem; otherwise, the learned solu-
tions will not be sent to the next generation, avoiding negative
transfer.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
In Algorithm 2, the computational complexity of MOSR-
TLL is dominated by two operators, namely, knowledge
transfer and local search. At each iteration, the complexity
of knowledge transfer is mainly determined by the inversion
operation in (11), which is O((ns + nt )3) (ns and nt are the
population size of the source problem and the target problem).
The complexity of local search isO(n2), where n is the length
of the signal of interest. Thus, the total computational cost is
O(n2)+ O((ns + nt )3).

V. EXPERIMENTS AND DISCUSSIONS
In this section, experiments on simulated signals and bench-
mark problems (from Sparco toolbox [51]) are implemented
to investigate the reconstruction performance of the pro-
posed MOSR-TLL, compared with some state-of-the-art
algorithms, including three single-objective sparse recon-
struction algorithms (i.e., OMP [52], FISTA [53] and ISTC
[13]) and two MOSR algorithms (i.e., StEMO [15] and
ADEA [10]).

A. EXPERIMENTAL SETTING
For MOSR-TLL, parameters for the crossover and mutation
operators are set with reference to [10]: crossover probability
pc = 1.0, distribution index of crossover ηc = 20, mutation
probability pm = 1/n and the distribution index of mutation
ηm = 20. The corruption probability g is set between 0.5 and
0.9 with a step of 0.1 via cross validation on the population
of a past problem in the first generation. The balancing
parameter θ and the kernel function are set to be 103 and ‘rbf’
respectively, with reference to [22]. The method of selecting
a source problem is as same as Fig. 3.

For FISTA, λ is set to 0.02 according to [15]. For a fair
comparison, the population sizes are set to 50 for StEMO and
MOSR-TLL, and 40 for ADEA with 10 adaptive reference
vectors.

The termination criterion can be either of the following
two: (1) the variation of measurement errors in ten consec-
utive iterations are consistently smaller than a threshold, e.g.,
< 10−6, or (2) the maximum generations reach 200. Each
algorithm runs 30 times in a test case. The Wilcoxon Sign
Test with 95% confidence level is conducted on the obtained
results to show the statistical significance of the experimental
comparison. The reconstruction error (RE), which measures
the difference between the estimated signal x and the true one
xtrue, is used as the performance metric. It is calculated as

RE =
‖x− xtrue‖2
‖xtrue‖2

. (20)

All algorithms were implemented in MATLAB R2016a on a
PC with Intel Xeon E3 processor at 3.3 GHz, 8 GB memory,
and the Window 7 operating system.

B. EXPERIMENTAL RESULTS ON SIMULATED SIGNALS
Test problems on simulated signals are randomly generated
to verify the performance of MOSR-TLL. The process of
constructing a test problem is as follows: a) A k-sparse signal
x is produced, in which the nonzero elements are sampled
from a Gaussian distributionN (0, 1). b) A Gaussian random
matrix A is created and the measurement vector b is obtained
by b = Ax. c) The measurement b is corrupted by additive
white Gaussian noise with elements from the normal distribu-
tion N (0, 0.01). The dimension n of the true signal is fixed to
1000. We investigate the average reconstruction performance
of all the algorithms in terms of sampling ratios (m/n) and
sparsity levels (k/n). The method of selecting the source
problem is the same as Fig. 3. For the first test problem,
we solve it by MOSR-L and save the search experiences into
the source pool. Thereafter, for a subsequent test problem to
be solved, we randomly choose a past solved problem from
the source pool as the source, and collect the new search
experiences to the source pool.

Fig. 5 shows the average REs for six algorithms under
various sampling ratios from 0.2 to 0.8. The sparsity ratios
in the two sub-graphs are set to 0.05 and 0.1 respec-
tively. In Fig. 5(a), when the sparsity ratio equals to
0.05, MOSR-TLL is significantly better than other algo-
rithms under all the sampling ratios. Similar results can
be seen from Fig. 5(b). When the sparsity ratio is 0.10,
the reconstruction performance of MOSR-TLL shows advan-
tages over other other algorithms with the sampling ratio
in [0.3,0.8].

Fig. 6 compares the performance for six algorithms when
the sparsity ratio varies from 0.05 to 0.30. In Fig. 6(a), when
the sampling rate equals to 0.4, MOSR-TLL achieves the best
performance within the sparsity ratios [0.05, 0.20], except for
FISTA in the sparsity ratio range of [0.25, 0.3]. Note that
FISTA obtains better results here because λ = 0.02 happens
to be the optimal choice for this case, but might perform
badly in other cases. In Fig. 6(b), where the sampling ratio is
increased to 0.6, MOSR-TLL achieves the best performance
over all sparsity ratios.
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FIGURE 5. Performance comparisons for simulated signals under
different sampling ratios: 0.2 ∼ 0.8. (a) k/n = 0.05; (b) k/n = 0.10.

C. EXPERIMENTAL RESULTS ON BENCHMARK PROBLEMS
This subsection presents the reconstruction performance for
the six algorithms on Benchmark problems, i.e., Sparco tool-
box [51]. The features of signals in this toolbox are similar to
those in practical applications.

Five signals, including sgnspike, gausspike, cosspike,
gcosspike and jitter, are generated using the Sparco toolbox.
The sgnspike, gausspike and cosspike signals are explic-
itly sparse, which can be directly reconstructed from under-
sampling measurements. The gcosspike and jitter signals
are implicitly sparse, and they have a sparse representation
x = 9w with respect to the basis matrix 9. For all sig-
nals, the measurements are corrupted by additive Gaussian
noise following the distribution N (0, 0.01). For MOSR-TLL,
the source problems are randomly chosen from the source
pool generated in Section V-B

The bar graph in Fig. 7 illustrates the average recon-
struction performance for the six algorithms. For all signals,
the proposed MOSR-TLL achieves the best or compara-
ble reconstruction performance. For sgnspike, gcosspike and
jitter, MOSR-TLL achieves the lowest RE. For gausspike,
MOSR-TLL and ISTC show comparable results, but per-
form much better than other algorithms. For cosspike, OMP
provides the best reconstruction perofrmance, together with
ADEA and MOSR-TLL, while StEMO fails to realize the
reconstruction.

FIGURE 6. Performance comparison for simulated signals under different
sparsity levels: 0.05 ∼ 0.30, (a) m/n = 0.4; (b) m/n = 0.6.

FIGURE 7. Performance comparison for six algorithms on benchmark
problems.

D. EXPERIMENTAL RESULTS ON CAMERAMAN IMAGE
This section further evaluates the quality of MOSR-TLL on
image reconstruction. The test image is Cameraman with
256×256 pixels. This image is sparse on a Haar wavelet basis
and 2-D Haar wavelets are used as the basis matrix9. In this
regard, the CS sampling can be rewritten to b = Ax = A9w,
wherew denotes the wavelet coefficients. We can reconstruct
x = 9w by firstly evaluating w with different solvers. The
test image is sampled using a Gaussian random measuring
matrix with the sampling ratio 0.7, and the measurement is
corrupted by white Gaussian noise with elements following
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the normal distribution N (0, 0.01). The mean square error
MSE is defined as

MSE =
1
mn

m∑
i=1

n∑
j=1

[I (i, j)− J (i, j)]2 (21)

where m and n are the sizes of rows and columns of the
original image respectively, and I and J are the original and
reconstructed images. The peak-signal-to-noise ratio (PSNR)
is employed to measure the reconstruction performance [54]
via MSE: PSNR(dB) = 10 × log10(255

2/MSE). Higher
PSNR value indicates better reconstruction quality.

Fig. 8 presents the typical reconstructed images and aver-
age PSNR results of the six solvers. It can be observed that
MOSR-TLL achieves the highest PSNR and the best visual
quality. Images recovered by other algorithms are contami-
nated severely by noise, while images recovered by MOSR-
TLL are much cleaner.

E. EXPERIMENTAL RESULTS ON AVERAGE RUNNING TIME
Although the complexity of the knowledge transfer opera-
tor is higher than other operators (refer to Section IV-E),
the MOSR-TLL is still computational efficient due to few
executions of knowledge transfer. To better illustrate this,
we compare the complexity of MOSR-TLL with other algo-
rithms using the running time, using the same settings with
those in Fig. 5(a), i.e., n = 1000, m ∈ [200, 600] with the
interval of 100, k = 50 and δ = 0.01. The stopping criterion
is set the same as that in Section V-A.

The average running time for all six algorithms is pre-
sented in Table 1. The running time of OMP, FISTA, ISTC
and StEMO increases as the sampling rate grows, while
ADEA and MOSR-TLL roughly remain unchanged within
the range [0.3,0.6]. Among the three single-objective algo-
rithms, FISTA has the fastest running speed. The threeMOSR
algorithms, which achieve significantly better reconstruction
performance than the single-objective algorithms (as shown
in Fig. 5 and Fig. 6), run relatively slower due to multiple
solution paths. Among the MOSR algorithms, MOSR-TLL
is the fastest due to the introduction of transfer learning, with
less than ten seconds.

Conventional single-objective sparse reconstruction meth-
ods cannot be speeded up via parallel implementations, since
only a single solution is searched. For MOSR methods,
they search multiple solutions in the evolutionary process,
in which the operations of the initialization, crossover, muta-
tion, knowledge transfer (if any), and local search on each
solution is able to be accomplished independently without
mutual interference. Hence, these operations can be acceler-
ated by parallel implementations [55].

VI. IMPACT STUDY FOR THE INNOVATIONS IN MOSR-TLL
The great performance of the proposed MOSR-TLL scheme,
as we have seen in Section V-B, is mainly credited to its
innovative operators of knowledge transfer and localized
regularization in local search. To demonstrate this clearer,

TABLE 1. Average running time (in seconds) of all algorithms on different
problems.

we specifically investigate the impact of these two opera-
tors on the convergence performance of MOSR-TLL. The
Wilcoxon Sign Test with 95% confidence level is conducted
on the obtained results to show the statistical significance of
the experimental comparison. We will see that the major per-
formance improvement by knowledge transfer is on improv-
ing the reconstruction speed and reconstruction quality, and
the localized regularization strategy can improve the recon-
struction accuracy notably.

A. IMPACT OF SPARSE-CONSTRAINT KNOWLEDGE
TRANSFER
The simulated signals with key parameters (n,m, k, δ) are
employed to study the impact of knowledge transfer and the
gap of signal dimension between the source problem and tar-
get problem on the convergence performance ofMOSR-TLL.
Four complicated test problems, denoted as P1 to P4, are
randomly generated, with parameters as specified in Table 2.
These problems are heterogeneous, as the dimensions of their
x are different. We compare the performance ofMOSR-L and
four MOSR-TLL versions with the knowledge transferred
from {P1, P2, P3, P4}, in which MOSR-L does not involve
knowledge transfer. To exclude the influence of the proposed
localized regularization strategy, the regularization values are
all fixed at 0.001. Note that even though the source problem
and the target one have the same (n,m, k, δ), they are inde-
pendently generated, that is, the elements of their signals are
completely different.

For a fair comparison, all versions stop running when the
maximum function evaluations reach 5000 times. To evaluate
the convergence performance, RE and hypervolume (HV)
[56], which measures the quality of a solution set, are used as
the performance metrics. For the HV calculation, the objec-
tive function values of solutions are firstly normalized to
[0, 1] and (1.1, 1.1) is set as the reference point [57]. Larger
HV and lower RE values indicate better convergence perfor-
mance.

TABLE 2. A list of the test problems.

VOLUME 8, 2020 184929



B. Yan et al.: MOSR With Transfer Learning and Localized Regularization

FIGURE 8. Comparison on image reconstruction of Cameraman image.

TABLE 3. Average REs and IQR values for MOSR-TLLs with 5000 function evaluations.

The average REs and IQR values of MOSR-TLLs for solv-
ing P1 to P4 with 5000 evaluations are presented in Table 3.
In the table, symbols ‘‘+’’ and ‘‘−’’ represent that the recon-
struction quality of the solver with knowledge transfer is
better and worse than the corresponding ‘‘null’’ version,
respectively. As can be observed from Table 3, the MOSR-
TLL with knowledge transfer achieve lower RE with respect
to MOSR-L in 14 out of 16 scenarios. The two failure cases
may be due to the too large dimension gap between the source
and target problem. The mean RE values of MOSR-TLLs
with the knowledge transferred from different problems are
also smaller than that without knowldege transfer.

Figure 9 provides the corresponding mean HV values for
solving P1 to P4 by MOSR-L, MOSR-TLL+P1, MOSR-
TLL+P2, MOSR-TLL+P3, andMOSR-TLL+P4, where the
term after ‘‘+’’ stands for the source problem. Except for
solving P1, theMOSR-TLL versions with knowledge transfer
show obvious faster reconstruction speed compared to the
‘‘null’’ version. Specifically, for P2, the four MOSR-TLLs
with knowledge transfer save at least 1000 function evalu-
ations, in which the ‘‘P1→P2’’ version converges slightly

slower than other knowledge-transfer versions. For P3 and
P4, the four knowledge-transfer versions of MOSR-TLL
achieves remarkable HV improvements. For P1, although
the MOSR-TLLs with knowledge transfer have very similar
reconstruction speed compared to that without knowledge
transfer, they achieve better reconstruction quality (as shown
in Table 3).

To summarize, no matter whether the source problem is
homogeneous or heterogeneous with respect to the target
problem, the MOSR-TLL scheme can obtain better recon-
struction speed and quality with great probability.

B. IMPACT OF LOCALIZED REGULARIZATION
We investigate the impact of the localized regularization
strategy on reconstruction performance via comparing local
search with fixed regularization values (i.e., 0.0001, 0.001,
0.01, 0.1), random values, and continuation-based parame-
ters. Note that the sparse-constraint knowledge transfer is
removed for clarity. For random inputs, as suggested in
[10], the elements in λ are randomly chosen between 0 and
‖AT b‖∞, in which the maximum value to be ‖AT b‖∞ can
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FIGURE 9. The median HV values by MOSR-L and MOSR-TLLs with 5000 function evaluations, where the term after ‘‘+’’ stands for
the source problem. (a)∼(d) are the target problems to be solved: (a) P1. (b) P2. (c) P3. (d) P4.

FIGURE 10. Average REs for five benchmarks under different
regularization parameters.

avoid yielding zero solutions. The continuation-based input
employs [58] as the reference, where the maximum value is
0.1, and the decaying rate is 0.03. All the methods stop when
the number of iterations reaches 100.

Fig.10 provides the comparison results over different reg-
ularization values, for which the test problems are the afore-

mentioned five Benchmark problems with Gaussian noise
satisfying the distribution N (0, 0.02). It can be found that
our localized regularization achieves the best or comparable
recovery performance for all the problems. Nonetheless, there
is a huge gap among the RE results of different fixed λ.
Therefore, it is clear that the localized regularization strategy
makes important contributions to performance improvement.

VII. CONCLUSION
We presented a MOSR scheme with transfer learning and
localized regularization (MOSR-TLL) that can accelerate the
reconstruction speed and improve the reconstruction accu-
racy. We developed a knowledge transfer operator that reuses
the searching experience from a previously solved problem.
This operator is shown to significantly accelerate the recon-
struction speed, with improvements in reconstruction accu-
racy with great probability. By dividing a problem to many
subproblems, we also developed a localization regularization
strategy for local search to produce good solutions stably.
By assigning carefully designed independent regularization
value to each subproblem, the reconstruction accuracy is
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shown to be notably improved. The two techniques used
in our MOSR-TLL scheme are very promising for various
practical applications, such as hyperspectral image unmixing.
Our future work will focus on more computational-efficient
knowledge transfer strategies with smaller memory for multi-
objective sparse reconstruction.
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