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Abstract—In this paper, we study optimal spatio-temporal
power mask design to maximize mutual information (MI) for
a joint communication and (radio) sensing (JCAS, a.k.a., radar-
communication) multi-input multi-output (MIMO) downlink sys-
tem. We consider a typical packet-based signal structure which
includes training and data symbols. We first derive the condi-
tional MI for both sensing and communication under correlated
channels by considering the training overhead and channel
estimation error (CEE). Then, we derive a lower bound for the
CEE and optimize the energy arrangement between the training
and data signals to minimize the CEE. Based on the optimal
energy arrangement, we provide optimal spatio-temporal power
mask design for three scenarios, including maximizing MI for
communication only and for sensing only, and maximizing a
weighted sum MI for both communication and sensing. Extensive
simulations validate the effectiveness of the proposed designs.

Index Terms—Mutual information, joint communication and
sensing, waveform design, training sequences.

I. INTRODUCTION

A. Background and Motivation
A joint communication and (radio) sensing (JCAS, a.k.a.,

Radar-Communications) system that enables share of hard-
ware and signal processing modules, can achieve efficient
spectrum efficiency, enhanced security, and reduced cost, size,
and weight [1]–[4]. JCAS systems can have many potential
applications in intelligent transportation that require both
communication links connecting vehicles and active environ-
ment sensing functions [5], [6]. For JCAS systems, it is
crucial to use a waveform simultaneously performing both
communication and sensing function, and help improve the
availability of the limited spectrum resources. To this end,
one of the main challenges in JCAS systems lies in designing
optimal or adequate waveforms that serve both purposes of
data transmission and radio sensing.

Mutual information (MI) is an important measure that can
be used to study waveform designs for JCAS systems. To
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be specific, for communications the MI between wireless
channels and the received communication signals can be
employed as the waveform optimization criterion, while for
sensing, the conditional MI between sensing channels and the
reflected sensing signals can be measured [7], [8]. Despite
a significant amount of research effort on waveform design
in both communication and sensing systems, existing joint
waveform designs for JCAS systems are still limited. It is
known that the training sequences for channel estimation have
a significant impact on communication capacity, particularly
for multiple input multiple output (MIMO) systems [9], [10].
However, there has been no study on the waveform design for
JCAS, which takes into consideration the typical signal packet
structure containing the training sequences.

B. Related Work

Information theory has been used to design radar wave-
form [7], [8], [11]–[13]. Bell [7] was the first to apply infor-
mation theory to optimize radar waveforms to improve target
detection. In [12], the optimal radar waveform was proposed to
maximize the detection performance of an extended target in
a colored noise environment by using MI as waveform design
criteria. Two criteria, namely, the maximization of the condi-
tional MI and the minimization of the minimum mean-square
error (MMSE), were studied in [8] to optimize the waveform
design for MIMO radars by exploiting the covariance matrix
of the extended target impulse response. In [11], the optimal
waveform design for MIMO radars in colored noise was also
investigated by considering two criteria: maximizing the MI
and maximizing the relative entropy between two hypotheses
that the target exists or does not exist in the echoes. In [13],
a two-stage waveform optimization algorithm was proposed
for an adaptive MIMO radar to unify the signal design and
selection procedures. The algorithm is based on the constant
learning of the radar environment at the receivers and the
adaptation of the transmit waveform to dynamic radar scene.
In [14], a robust waveform design based on the Cramér-Rao
bound was proposed for co-located MIMO radars to improve
the worst-case estimation accuracy in the presence of clutters.

For communication and radar co-existing systems that trans-
mit and process respective signals, the MI has also been
adopted for waveform design to minimize the interference
to each other. In [15], [16], inner bounds on both the radar
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estimation rate for sensing and the data rate for communication
were derived for the co-existing systems. Liu et al. [17]
studied transmit beamforming for spectrum sharing between
MU-MIMO communication and co-located MIMO radar, to
maximize the detection probability for sensing while guar-
anteeing the transmit power for downlink users. In [18], a
minimum-estimation-error-variance waveform design method
was proposed to optimize the spectral shape of a unimodular
radar waveform and maximize the performance of both radar
and communications. In [19], the waveform was designed
based on a performance bound that is derived from jointly
maximizing radar estimation rate and communication data rate.

Only several studies have investigated the MI for JCAS
systems [20]–[22]. In [20], considering a JCAS MIMO setup,
the expressions for radar MI and communication channel
capacity were derived. In [21], [22], an integrated waveform
design was proposed for OFDM JCAS systems to improve
the MI for both communication and sensing by considering
extended targets and frequency-selective fading channels.

C. Contributions

From an information-theoretic point-of-view, this paper
studies the packet structure and spatio-temporal signal power
mask for MIMO-based JCAS. MI is used as the performance
metric of the study. (A power mask specifies the different
transmit powers of different antennas to transmit different
symbols within a frame.). MI is taken as the performance
metric of our study. It is a critical (and arguably the universal)
measure of how much information can be delivered over a
known (or estimated) channel for communication, and how
much reflections from unknown targets can be captured for
sensing [7]. Different from other metrics (e.g., detection prob-
ability [23] and false-alarm probability [24]), the use of MI
eliminates the need for (and the limitation to) a particular type
of detector or detection algorithm, and provides understanding
of JCAS.

With MI as the metric, the contributions of the paper
include:
• As of sensing (around the transmitter), we derive the

closed-form expression for the MI between the reflected
signals Yrad at the transmitter and the sensing channel
matrix G around the transmitter, given the knowledge
of the transmitter on its transmitted signals X ∈ CN×L
(consisting of both the training and data signals).

• As of communication (between the transmitter and re-
ceiver), we derive the closed-form expression for the
maximum of the MI between the transmitted data signals
Xd ∈ CN×Ld and the received signals Ycom. The
maximum captures the channel estimation error (CEE) of
the communication channel; and accounts for optimally
allocated energy between the training and data, adapting
to the statistics of the estimated channels.

• With the covariance matrices of the communication and
sensing channels, i.e., H and G, we derive the closed-
form optimal spatio-temporal power mask of the data at
the transmitter to separately maximize the sensing MI,
the communication MI, or a weighted sum of both.

Our results reveal the trade-off of the MI between communi-
cation and sensing, as well as the non-negligible impact of the
training length (and, in turn, the CEE) on JCAS.

A key difference of our work to [20]–[22] is that we
consider both the training and data, where the training is used
to estimate the communication channel and also contributes to
the sensing MI. We also allocate energy between the training
and data to maximize the best possible communication MI. In
contrast, the existing related works [20]–[22] did not consider
the training, solely focused on the data, and did not have to
optimize the energy for data transmissions. Another difference
of our work to [20]–[22] is that we consider the CEE of the
communication channel for deriving the communication MI,
allocating energy between the training and data, and optimiz-
ing the spatio-temporal power mask of the data. The spatio-
temporal power mask is optimized by taking the contributions
of both the training and data to the sensing MI into account.
In contrast, [20]–[22] did not take the CEE into account, and
all assumed that the channel was precisely estimated. Under
the assumption, those studies [20]–[22] optimized the power
mask of the data with only the contribution of the data to
the sensing MI considered. More differences of our work
to [21], [22] include that we consider a MIMO channel with
all of the transmitter, receiver, and sensor/radar equipped with
multiple antennas, as considered in [20]. In contrast, [21]
and [22] considered a wideband single-input single-output
(SISO) channel under perfect channel state information (CSI).

D. Organization and Notation

The rest of this paper is organized as follows. In Sec. II,
the system model is introduced. In Sec. III, we derive the
MI for both sensing and communication in the presence of
non-negligible CEEs of the communication channel, and a
tight lower bound for the CEE. In Sec. IV, we first design
the optimal energy arrangement between the training and data
signals, followed by the optimization of the spatio-temporal
power mask for communication, sensing, and JCAS under
the optimal energy arrangement. Sec. V presents simulation
results, and Sec. VI concludes the paper.

Notation: Lower-case bold face (x) indicates vector, and
upper-case bold face (X) indicates matrix. For a square matrix
X, Xa denotes the product matrix taking X and multiplying
it by itself a-times. I denotes the identity matrix, E(·) denotes
expectation. (·)T , (·)H , (·)∗, (·)−1 and (·)† denote transposi-
tion, conjugate transportation, conjugate, inverse and pseudo-
inverse, respectively. det(·) and Tr(·) denote the determinant
and trace of a matrix, respectively.

II. SYSTEM MODEL

We consider a JCAS MIMO system where two nodes
A and B perform point-to-point communications in time
division duplex (TDD) mode, and simultaneously sense the
environment to determine, e.g., the locations and speeds of
nearby objects, as illustrated in Fig. 1. At the stage that
node A is transmitting to node B, we consider downlink
sensing where the reflection of the transmit signal is used
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Fig. 1. A JCAS MIMO downlink system, where node A transmits data to
node B, and simultaneously senses the environment to determine, e.g., the
locations and speeds of nearby objects, by using the reflected signal. Each
node is equipped with two spatially widely separated antenna arrays, i.e.,
N transmit antennas and N receive antennas, and each antenna array has
dispersed elements to provide spatial diversity, and to suppress leakage signals
from the transmitter and enable the reception of clear sensing signals.

Training Symbols Data Symbols

Lt Ld

L

Fig. 2. Transmit symbols: including training and data symbols. For com-
munications, the non-precoded training symbols are used for synchronization
and channel estimation, and the data symbols are typically precoded data
payload. While for sensing, both the training and data symbols are used for
targets detection.

for sensing by node A. The transmitted symbols are known
to node A. The channels of sensing and communications are
correlated but different. To suppress leakage signals from the
transmitter and enable the reception of clear sensing signals,
each node is assumed to be equipped with two spatially widely
separated antenna arrays, i.e., N transmit antennas and N
receive antennas. Each antenna array has dispersed elements
to provide spatial diversity. Detailed configurations of the
transceiver for JCAS systems are beyond the scope of this
paper, and readers can refer to [4] and [6] for more details.

In practice, a communication packet typically includes data
payload, together with training signals for synchronization
and channel estimation. The training signals can have various
forms in different standards and systems. For example, it can
be comb pilots or occupy whole resource blocks in 5G New
Radio. Without loss of generality, we consider a general data
structure consisting of a sequence of Lt training symbols and
Ld data symbols for each spatial stream, as shown in Fig. 2.
The total length of the transmit signals, L = Lt + Ld, is
given in prior in the considered problem. Concatenating the
symbols from N spatial streams into a matrix X, we have X =
[Xt,Xd], where Xt = [Xt (1) , · · · ,Xt (N)]

T ∈ CN×Lt and
Xd = [Xd (1) , · · · ,Xd (N)]

T ∈ CN×Ld , with Xt(n) and
Xd(n) denoting the training and data symbols transmitted
from the n-th antenna, respectively. We assume that the co-
variance matrix of Xd(n) ∈ CLd×1 is 1

Ld
E
{
XdX

H
d

}
= ΣXd

.
Let Xt(n) ∈ CLt×1 be typically designed to be orthogonal

and Lt ≥ N , and we have 1
Lt

XtX
H
t = ΣXt

, where ΣXt

is a scaled diagonal matrix. Existing designs of orthogonal
codes, such as Walsh-Hadamard codes, can be used to encode
the training sequences, and produce 2n number of orthogonal
sequences with 2n bits per sequence [25]. By this means, the
training sequences transmitted by different antennas remain
orthogonal. The orthogonal design is a typical setting in
MIMO communication systems, and also typically used in
MIMO radar to exploit the degrees of freedom offered by
multiple antennas [26].

The transmitted signal X is used for both communication
and radio sensing. Let E be the total energy of the transmit sig-
nal, Et the energy of the training signals, and Ed the energy of
the data signals. E = Et+Ed. The average energy of the train-
ing and data symbols are σ2

t = 1
NLt

∑N
n=1 Xt(n)HXt(n),

and σ2
d = 1

NLd

∑N
n=1 E

[
Xd(n)HXd(n)

]
, respectively. We

also define a weighting value κ, 0 < κ < 1, and have
Ed = κE = NLdσ

2
d and Et = (1− κ)E = σ2

tNLt.

A. Communication Model

For communication, the received training and data signals
at node B can be respectively given by

Yt
com = HXt + Ntc; (1)

Yd
com = HXd + Ndc =

(
Ĥ + ∆H

)
Xd + Ndc

= ĤXd + ∆HXd + Ndc︸ ︷︷ ︸
N′c

, (2)

where H = [h1, · · · ,hj , · · · ,hN ] ∈ CN×N is the channel
matrix with hj = [h1,j , h2,j , · · · , hN,j ]T denoting the j-th
row of H; Ntc ∈ CN×Lt and Ndc ∈ CN×Ld are both
additive white Gaussian noise (AWGN) with zero mean and
element-wise variance σ2

n. We assume that Ntc, Ndc and
Xd are mutually independent. Yt

com is used for channel
estimation. We assume that a linear channel estimation based
on a MMSE criterion [27] is applied. In this case, the
channel estimate Ĥ and the estimation error ∆H are uncor-
related [28]. Let ∆H = [∆h1, · · · ,∆hj , · · · ,∆hN ], where
∆hj = [∆h1,j , · · · ,∆hN,j ]T is the j-th row of ∆H. The
coefficients ∆hij are random variables following i.i.d. zero
mean circularly symmetric complex Gaussian with variance
σ2
e , i.e., E

[
∆H∆HH

]
= Nσ2

eIN . We will evaluate σ2
e and

link it to Xt and Ntc in Section III-C.
The matrix N′c combines the CEE and noise, and can be

viewed as an equivalent additive noise with zero mean and
covariance. The variance σ2

n′ can be obtained as

E[N′cN
′
c
H

] = E[∆HXdX
H
d ∆HH ] + E

[
NdcN

H
dc

]
(3a)

=E
{
[∆h1,· · ·,∆hN ]

T
ΣXd

[∆h∗1,· · ·,∆h∗N ]
}

+E
[
NdcN

H
dc

]
(3b)

=diag
{
Tr
(
ΣXd

E[∆h∗1∆hT1 ]
)
,· · ·,Tr

(
ΣXd

E[∆h∗N∆hTN ]
)}

+ Ldσ
2
nIN (3c)

=NLdσ
2
dσ

2
eIN + Ldσ

2
nIN ,Ldσ

′2
n IN , (3d)

where σ′2n = Ed
Ld
σ2
e + σ2

n. Let RH = 1
NE[HHH] be the

channel covariance matrix, Tr(RH) = Nσ2
h, and RH is a
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positive semi-definite matrix. We assume that RH is known
to Node A. We can write the random channel matrix as
H = H0R

1
2

H , where the entries of H0 are i.i.d. zero mean
circularly symmetric complex Gaussian with unit variance.

B. Sensing Model
Node A uses the reflection of the transmitted signal for

sensing. The received signal, denoted by Yrad, is given by

Yrad = GX + N = [GXt + Ntr,GXd + Ntr], (4)

where G = [g1, · · · ,gN ] is the channel matrix to be
sensed with its j-th column being gj = [g1,j , · · · , gN,j ]T ,
and elements of gj are independent of each other; Ntr =
[ntr,1, · · · ,ntr,N ] ∈ CLt×N and Ndr = [ndr,1, · · · ,ndr,N ] ∈
CLd×N are AWGN with zero mean and covariance matrix
E
{
NtrN

H
tr

}
= Nσ2

nILt and E
{
NdrN

H
dr

}
= Nσ2

nILd . Let
ΣG = 1

NE{GGH} be the spatial correlation matrix. It is
assumed to be full-rank and also known to Node A.

Note that for both communication and sensing, the channel
matrices include large-scale path loss and small-scale fading.
The path loss of sensing can vary for different multi-path
components depending on the number of nearby objects and
their locations, and therefore, we consider the mean path loss
herein. Our optimization results only depend on the ratio
between the mean path losses of communication and sensing.

III. MUTUAL INFORMATION

In this section, we first derive the expression for the sensing
MI by using both the training and data symbols. Then, we
present the MI for communications under CEEs, followed
by the development of a lower bound for the CEE of the
communication channel based on the training symbols.

A. MI for Sensing
The MI between the sensing channel matrix G (or the

“target impulse response” matrix in radar) and reflected signals
Yrad given the knowledge of X can be used to measure the
sensing performance [11]. With our model (4), the MI is

I (G; Yrad|X) = h (Yrad|X)− h (Yrad|X,G)

= h
(
Yrad|[Xt,Xd]

T
)
− h (Nr) ,

(5)

where h(·) denotes the entropy of a random variable. Pro-

vided the noise vector Nr,j =

[
ntr,j
ndr,j

]
, j = 1, · · · , N are

independent of each other, the conditional probability density
function (PDF) of Yrad conditioned on X is given by

p (Yrad|X)=

N∏
j=1

p
(
yrad,j |[Xt,Xd]

T
)

(6a)

=

N∏
j=1

1

πL det ([Xt,Xd]TΣG[Xt,Xd]∗ + σ2
nIL)

(6b)

×exp
(
−yHrad,j

(
[Xt,Xd]

TΣG[Xt,Xd]
∗ + σ2

nIL
)−1

yrad,j

)
=

1

πLN detN ([Xt,Xd]TΣG[Xt,Xd]∗ + σ2
nIL)

(6c)

×exp
{
−Tr

[(
[Xt,Xd]

TΣG[Xt,Xd]
∗+σ2

nIL
)−1

YradYH
rad

]}
,

where (6b) is obtained based on the PDF of circularly sym-
metric complex Gaussian distribution, and

E{yrad,iy
H
rad,i} = [Xt,Xd]

TE{gjgHj }[Xt,Xd]
∗

+ E{diag{ntr,jnHtr,j ,ndr,jnHdr,j}} (7a)

=
1

N
[Xt,Xd]

TΣG[Xt,Xd]
∗ + σ2

nIL, (7b)

where (7a) is conditioned on X, and E{gjgHj } =
1
NE{GGH} = ΣG in (7b) since gj , j = 1, · · · , N are
independent of each other.

Based on (6), the entropy of Yrad conditional on X can be
obtained as

h (Yrad|X) = LN log2(π) + LN

+N log2

[
det
(
[Xt,Xd]

TΣG[Xt,Xd]
∗ + σ2

nIL
)]

(8a)
= LN log2(π) + LN

+N log2

[
(σ2
n)L−N det

(
X∗tX

T
t ΣG+X∗dX

T
dΣG+σ2

nIN
)]
,

(8b)

where (8b) is based on the Sylvester’s determinant
theorem [29], i.e., det

(
AM×NBN×M + σ2

nIM
)

=
(σ2
n)M−N det

(
BN×MAM×N + σ2

nIN
)
. The columns

of the noise matrix Nr follow the i.i.d. multivariate complex
Gaussian distribution with zero mean and covariance matrix
σ2
nIN , and the entropy of Nr is given by

h (Nr) = LN log2(π) + LN +N log2

[
det
(
σ2
nIN

)]
. (9)

By substituting (8) and (9) into (5), the sensing MI is

I (G; Yrad|X)=N log2

[
det

(
X∗tX

T
t ΣG+X∗dX

T
dΣG

(σ2
n)
L−N +IN

)]
.

(10)

B. MI for Communication

The MI for communication is defined as the mutual depen-
dence between the transmit signals of node A and the received
signals at node B, conditional on Ĥ. With the Gaussian
assumption of CEE, the conditional PDF of Yd

com on Ĥ is

p
(
Yd

com|Ĥ
)

=

Ld∏
i=1

p
(
ydcom,i|Ĥ

)
(11a)

=
1

πLdN detLd
(
ĤΣXd

ĤH + σ2
n′IN

)×
exp

{
−Tr

[(
ĤΣXd

ĤH + σ2
n′IN

)−1

YcomYH
com

]}
. (11b)

The columns of N′c follow the i.i.d. multivariate complex
Gaussian distribution with zero mean and covariance matrix
σ′2n IN . By referring to (8) – (9), the entropy of N′c can be
given by

h (N′c)=LdN log2(π)+LdN+Ld log2

[
det
(
σ2
n′IN

)]
. (12)
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Therefore, the conditional MI between Xd and Yd
com is

obtained as

I
(
Xd; Y

d
com|Ĥ

)
= h

(
Yd

com|Ĥ
)
− h (N′c)

= Ld log2

[
det

(
ĤΣXd

ĤH

σ2
n′

+IN

)]
,

(13)

where σ′2n = Ed
Ld
σ2
e + σ2

n.

C. Estimation Error (CEE) of Communication Channel

With an MMSE MIMO channel estimation, the estimated
MIMO channel matrix is [10]

Ĥ=H−∆H

=HXtX
H
t

(
σ2
nIN+XtX

H
t

)−1
+NtX

H
t

(
σ2
nIN+XtX

H
t

)−1
,

which is the actual channel matrix H, contaminated by an
additive estimation error ∆H. Here, Xt is the N × Lt
training symbol matrix with the average energy σ2

t per en-
try. Take the singular value decomposition (SVD) of RH .
RH = UHΛHUH

H , where ΛH = diag(δ1, δ2, · · · , δN ), and
1
N

∑N
i=1 δi = 1

NTr(RH) , σ2
h. Let ΛCRLB be the Cramér-

Rao lower bound (CRLB) of the channel matrix estima-
tion [30]. We have

E
[
∆H∆HH

]
= E

[(
H− Ĥ

)(
H− Ĥ

)H]
≥ΛCRLB =

(
ΣXt

σ2
n

+R−1
H

)−1

=

(
UH
HΣXt

UH

σ2
n

+ΛH
−1

)−1

=diag

(
σ2
nδ1

σ2
n+Ltσ2

t δ1
,· · ·, σ2

nδi
σ2
n+Ltσ2

t δi
,· · ·, σ2

nδN
σ2
n+Ltσ2

t δN

)
,

which is due to the fact that ΣXt = XtX
H
t = Ltσ

2
t IN . A

lower bound of the CEE is given by Ct = Tr(ΛCRLB) =∑N
i=1

σ2
nδi

σ2
n+Ltσ2

t δi
. The lower bound depends on the channel

covariance matrix RH . In other words, Ct is a function of δi
with the constraint

∑N
i=1 δi = Tr(RH) = Nσ2

h.
We proceed to minimize the lower bound of the CEE Ct,

given the knowledge of average channel gains. We can obtain
the lower bound of Ct by applying the Lagrange multiplier
method. The Lagrangian function is given by

L (ΛH) =

N∑
i=1

σ2
nδi

σ2
n + Ltσ2

t δi
+ τ

(
N∑
i=1

δi − Tr(RH)

)
,

where τ is the Lagrange multiplier. By solving ∂L(ΛH)
∂δi

=

0, we have σ4
n

(σ2
n+δiLtσ2

t )2
+ τ = 0, which shows that

the lower bound is achieved when δi = 1
NTr(RH) =

1
N

∑N
i=1 δi= σ2

h, i = 1, · · · , N . The lower bound of Ct is
Ct ≥ Nσ2

nσ
2
h

σ2
n+Ltσ2

tσ
2
h

= Clt. Therefore, for any diagonal element
of ΛCRLB(i), we have

ΛCRLB(i) ≥ σ2
nσ

2
h

σ2
n + Ltσ2

t σ
2
h

, Ce, i = 1, · · · , N. (14)

It is noted that the channel characteristics are not controllable.
Therefore, the equality in (14) can only be achieved when RH

is a scaled identity matrix, i.e., δ1 = · · · = δN . Nevertheless,

the minimum achievable lower bound, i.e., the right-hand side
of (14), allows us evaluating the maximum possible MI of
the communication from the transmitter to the receiver in
Section IV-A.

IV. OPTIMAL SPATIO-TEMPORAL POWER MASK OF DATA

In this section, we optimize the spatio-temporal structure of
transmit signals, given an energy budget and a total number
of symbols for the transmission. For mathematical tractability,
the problem is decoupled into the following two stages.
• Stage 1: Given a transmission duration, we divide the to-

tal energy budget between training and data to maximize
the upper bound of communication MI in the presence of
the non-negligible CEEs of the communication channel.

• Stage 2: We optimize the spatio-temporal power mask
of the data to maximize the communication MI, sensing
MI and their weighted sum, given the allocated energy
for the data and the a-priori knowledge of the correlation
matrices of the communication and/or sensing channels.

A. Energy splitting between Training and Data

In general, there are some constraints on the maximum
and average transmission powers of a transmitter. When such
constraints are applied, there is a motivation for optimizing
the energy arrangement between the training and data signals,
especially for maximizing the MI for communications. Here,
we optimize the energy arrangement only by referring to the
communication MI, because its impact on communication MI
is much stronger than on sensing MI. Larger CEE can cause
substantially deteriorate communication performance while
sensing MI can only be slightly affected since the training
sequences are directly used for sensing.

Since Ĥ = H−∆H, we can obtain that Ĥ is a random vari-
able with zero mean and variance σ2

Ĥ
= 1

N2E
[
Tr{ĤĤH}

]
.

According to the orthogonality principle for MMSE [9] and
the obtained lower bound of CEE, we have σ2

Ĥ
= σ2

h − σ2
e .

Therefore, Ĥ can be normalized as H̃ = 1
σĤ

Ĥ, which
has elements following i.i.d. Complex Gaussian distribution
CN (0, 1). The MI in (13) can be upper bounded by

I
(
Xd; Y

d
com|Ĥ

)
≤Ld log2

[
det

(
σ2
h−Ce

Ed
Ld
Ce+σ2

n

H̃ΣXd
H̃H+IN

)]
,

(15)
which is due to the lower bound of CEE, i.e., σ2

e ≥ Clt.
By substituting Ce of (14) into (15) and exploiting Jensen’s

inequality, we can obtain the optimal energy arrangement that
minimizes the CEE as summarized in the following theorem.

Theorem 1. The optimal energy arrangement for maximizing
the channel capacity under the training symbols is given by

κop =


Γ +

√
Γ(Γ− 1), if Ld < N ;

1

2
, if Ld = N ;

Γ−
√

Γ(Γ− 1), if Ld > N,

(16)

where Γ = Ld
Ld−N

(
1 +

Nσ2
n

Eσ2
h

)
.
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The lower bound of the CEE can be given by

Clt =
Nσ2

nσ
2
h

Nσ2
n + (1− κop)Eσ2

h

. (17)

Proof. The proof is provided in Appendix A.

Corollary 1. In a high SNR regime, Γ and κop can be
approximated as Γ ≈ Ld

Ld−N and κop ≈
√
Ld√

Ld+
√
N

. In this case,
ρ ≈ ρmax = Ld

(
√
Ld+
√
N)2

E
Nσ2

n
. We can find that, in the high

SNR regime, the energy arrangement between the data and
training symbols depends on the number of the data symbols,
Ld, and the number of antennas, N . Moreover, κop decreases
with the growth of both Ld and N .

In a low SNR regime, Γ and κop can be approximated as
Γ ≈ LdNσ

2
n

(Ld−N)Eσ2
h

and κop ≈ 1
2 . In this case, ρ ≈ ρmax =

E2σ4
h

4N2σ4
n

. We find that half of the total energy are allocated to
the training symbols, and the maximum SNR in the low SNR
regime quadratically increases with P

σ2
n

.

The optimal training length achieving the largest possi-
ble communication MI under imperfect channel estimation,
i.e., (36), is provided in Corollary 2.

Corollary 2. Given Ltσ
2
t + Ldσ

2
d = E, the optimal length

of the training sequence is Lt = N for all L, and the upper
bound of ρmax is given by

ρmax ≤



(L−N)E

(L− 2N)Nσ2
n

(√
Γc −

√
Γc − 1

)2

, L > 2N ;

E2σ4
h

4Nσ2
n(Nσ2

n + Eσ2
h)
, L = 2N ;

(L−N)E

(L− 2N)Nσ2
n

(√
−Γc −

√
−Γc − 1

)2

, L < 2N,

(18)
where Γc = L−N

L−2N

(
1 +

Nσ2
n

Eσ2
h

)
.

Proof. In the case of Ld > N , the maximal SNR ρmax =
LdE

(Ld−N)Nσ2
n

(√
Γ−
√

Γ− 1
)2

is a function of Ld. The first-
order derivative of ρmax with respect to Ld is given by

∂ρmax

∂Ld
=

(√
Γ−
√

Γ− 1
)2

E

(Ld −N)
2
σ2
n

(
−1 +

Ld
N
·
√

Γ√
Γ− 1

)
.

(19)
Clearly, ∂ρmax

∂Ld
> 0 for Ld > N . As Ld = L − Lt,

we have ∂ρmax

∂Lt
< 0 for Lt < L − N , and ρmax is a

monotonically decreasing function of Lt. Since the shortest
training length is N (i.e., Lt ≥ N ). Therefore, the optimal
ρmax is achieved when Lt = N , the optimal training length

is N , and ρcmax = (L−N)E
(L−2N)Nσ2

n

(√
Γ−
√

Γ− 1
)2

, where

Γc = L−N
L−2N

(
1 +

Nσ2
n

Eσ2
h

)
. Likewise, this conclusion can also

be drawn in the cases of Ld = N and Ld < N . The details
are suppressed.

Hereafter, we use the optimal energy allocation (16) and
let Cle =

Clt
N =

σ2
nσ

2
h

Nσ2
n+(1−κop)Pσ2

h
; unless otherwise stated. Our

results are consistent with existing waveform designs based
on the MSE or channel capacity [9], [10].

B. Optimal Waveform Design for Radio Sensing Only

To achieve the maximum sensing MI, or in other words, to
make received signals Yrad containing rich information about
G, the transmit signals X (including Xt and Xd) should be
designed according to G. Since Xt and Xd are independent
and have different correlations, the optimization problem for
maximizing the sensing MI can be decoupled into two separate
optimization problems. As assumed, Xt contains deterministic
orthogonal rows and XtX

H
t = Ltσ

2
t IN . We only need to

consider the optimization problem for the data signals.
For the data signals, the spatial correlation matrix can

be diagonalized through SVD, i.e., ΣG = 1
NE{GGH} =

UGΛGUH
G , where UG is a unitary matrix and ΛG =

diag {λ11, · · · , λii, · · · , λNN} is a diagonal matrix with λii
being the singular values. σ2

g =
∑
i=1 λii is the mean channel

gain for sensing channels. The MI in (10) can be rewritten
as (20), where (20b) is based on Sylvester’s determinant
theorem. Define Q(t) =

(
XT
t UG

)H
XT
t UG and Q(d) =(

XT
d UG

)H
XT
d UG, and their (i, j)-th entries are q(t)

ij and q(d)
ij .

According to Hadamard’s inequality for the determinant
and trace of an N × N positive semi-definite Hermitian
matrix, we have the following inequalities: det

(
Q

(t)
N×N

)
≤∏N

i=1 q
(t)
ii , det

(
Q

(d)
N×N

)
≤
∏N
i=1 q

(d)
ii , and Tr

(
Q

(t)
N×N

−1)
≥∏N

i=1
1

q
(t)
ii

, Tr
(
Q

(d)
N×N

−1)
≥
∏N
i=1

1

q
(d)
ii

, where the equalities
are achieved if and only if QN×N is diagonal. As a result,
the MI can be rewritten as

I (G; Yrad|X)≤N log2

[
N∏
i=1

(
λii(q

(t)
ii +q

(d)
ii )

(σ2
n)

L
N

+1

)]
. (21)

Since UG is unitary, we find Tr
(
Q(d)

)
=

Tr
((

XT
d UG

)H
XT
d UG

)
= Tr

(
ZHZ

)
, where Z = XT

d UG is
an Ld×N matrix. Under the constraint that E is finite, we have
Tr
(
Q(d)

)
≤ Ed = κopE. Since Xt satisfies the orthogonality

condition, we have Tr
(
Q(t)

)
= Tr

((
XT
t UG

)H
XT
t UG

)
=

Tr (X∗tX
t
t) = Tr

(
XtX

H
t

)
= Et = (1 − κop)E and

q
(t)
ii = Et

N =
(1−κop)E

N . Therefore, the maximum MI can be
obtained by solving the following constrained problem:

Fr=max
Q(d)

N∑
i=1

log2

λii
(
Et
N + q

(d)
ii

)
(σ2
n)

L
N

+ 1

 ,

subject to Tr
(
Q(d)

)
≤ Ed;

q
(d)
ii ≥ 0, 1 ≤ i ≤ N.

(22)

We can apply the Lagrange multiplier method to solve (22).
The Lagrangian can be written as

L
(
Q(d)

)
=

N∑
i=1

log2

λii
(
Et
N +q

(d)
ii

)
(σ2
n)

L
N

+1

+ α

N∑
i=1

q
(d)
ii ,

(23)
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I (G; Yrad|X) = N log2

[
det

(
X∗tX

T
t UGΛGUH

G + X∗dX
T
d UGΛGUH

G

(σ2
n)

L
N

+ IN

)]
(20a)

= N log2

[
det

(
ΛG

(
XT
t UG

)H
XT
t UG+ΛG

(
XT
d UG

)H
XT
d UG

(σ2
n)

L
N

+ IN

)]
, (20b)

where α is the Lagrange multiplier associated with q(d)
ii , i =

1, · · · , N . Differentiating L(Q(d)) with respect to q
(d)
ii , and

setting the first-order derivative as 0, we can obtain q(d)
ii as

q
(d)
ii =

−(σ2
n

) L
N

α ln 2
− Et
N
−
(
σ2
n

) L
N

λii

+

, i = 1, · · · , N, (24)

the optimality conditions are satisfied if∑N
i=1

(
− (σ2

n)
L
N

α ln 2 −
Et
N −

(σ2
n)

L
N

λii

)+

= κopE holds. Since

the diagonal elements of Q(d) are real and greater than 0,
Q(d)

1
2 exists. For any Ld × N matrix Ψ with orthogonal

columns, if ΨHΨ = IN , we have Z = ΨQ(d)
1
2 . Since

Z = XH
d UG, we have Xd =

(
ΨQ(d)

1
2 UH

G

)H
.

With the optimal Xd for sensing, we can derive the corre-
sponding communication MI which is not necessarily optimal,
as given by

I
(
Xd; Y

d
com|Ĥ

)
≤ Ld log2

[
det

(
(σ2
h−Cle)H̃ΣXd

H̃H

Ed
Ld
Cle + σ2

n

+IN

)]
(25a)

=Ld log2

[
det

(
(σ2
h − Cle)UGQ(d)UH

G H̃HH̃
Ed
Ld
Cle + σ2

n

+IN

)]
,

(25b)

where (25b) is obtained due to ΣXd
= 1

Ld
E
{
XdX

H
d

}
=(

ΨQ(d)
1
2 UH

G

)H
ΨQ(d)

1
2 UH

G = UGQ(d)UH
G .

Note that maximizing the sensing MI, i.e., (22), provides
the maximal information extraction of the reflected signals at
the transmitter. In other words, the higher the sensing MI is,
the better estimation result can be expected to achieve.

C. Optimal Waveform Design for Communication Only

Based on the optimal energy allocation (i.e., Theorem 1)
and correlated channel matrix H̃, we analyze the maxi-
mum MI of the communication by optimizing the spatio-
temporal waveforms of the data signals, i.e., Xd. Let the
SVD of the spatial correlation matrix of H̃ be ΣH̃ =
1
NE{H̃H̃H} = UH̃ΛH̃UH

H̃
, where UH̃ is a unitary ma-

trix and ΛH̃ = diag {µ11, · · · , µii, · · · , µNN} is a diagonal
matrix with µii being the singular values. Also let Ξ =
(XdUH̃)

H
XdUH̃ = (Yd

com)HYd
com with its (i, j)-th entry

being ξij . Based on Hadamard’s inequality for the determinant
and trace of a positive semi-definite Hermitian matrix, we
have det (ΞN×N ) ≤

∏N
i=1 ξii. As derived in the proof of

Theorem 1 in Appendix A, the maximum possible MI can be

obtained by further maximizing the upper bound of the MI,
as given by

Fc = maxLd

N∑
i=1

{
log2

[(
σ2
h − Cle

)
µiiξii

Ed
Ld
Cle + σ2

n

+ 1

]}
subject to Tr (Ξ) ≤ κopE;

ξii ≥ 0, 1 ≤ i ≤ N.

(26)

The optimal solution for (26) satisfies∑N
i=1

[
− 1
β′ ln 2 −

σ2
n+

Ed
Ld
Cle

µii(σ2
h−Cle)

]+

= κopE, where β′ is

the Lagrange multiplier associated with ξii. Therefore, ξii
can be obtained as

ξii =

[
− 1

β′ ln 2
−

σ2
n + Ed

Ld
Cle

µii (σ2
h − Cle)

]+

, i = 1, · · · , N. (27)

Since the diagonal elements of Ξ are real and positive, Ξ
1
2

exists. For any Ld×N matrix Θ with orthonormal columns, if
ΘHΘ = IN , we have Yd

com = ΘΞ
1
2 . Since Yd

com = XdUH̃,

we have Xd =
(
ΘΞ

1
2 UH

H̃

)H
. Based on the optimal singular

values of the covariance matrix for the data signals in (27),
we can obtain the sensing MI under the maximum possible
communication MI, as given by

I (G; Yrad|X)

= N log2

det

(XT
t UG

)H
XT
t UG+UH̃ΞUH

H̃
ΣG

(σ2
n)

L
N

+IN

,
which is obtained due to ΣXd

= 1
Ld

E
{
X∗dX

T
d

}
=

1
Ld

E
{
XdX

H
d

}
=
(
ΘΞ

1
2 UH

H̃

)H
ΘΞ

1
2 UH

H̃
= UH̃ΞUH

H̃
.

D. Joint Maximization of a Weighted Sum of MI

In this section, we conduct the waveform optimization
for jointly considering the MI for both communication and
radio sensing. Since there is generally no solution that can
simultaneously maximize the MI for communication and radio
sensing, a weighted sum of them is exploited and given by

Fw=
wr
Fr
I (G; Yrad|X) +

1− wr
Fc

I
(
Xd; Y

d
com|Ĥ

)
. (29)

To maximize the weighted sum, Xd is designed according
to the correlation matrices of both H and G. Based on
the SVD, ΣH = 1

NE{HHH} = UHΛHUH
H and ΣG =

1
NE{GGH} = UGΛGUH

G , (29) can be rewritten as (27).
Define Π = (XT

d UH)HXT
d UH = (XT

d UG)HXT
d UG

with the (i, j)-th entry, $ij , and tr (Π) = tr (ΣXd
). Ac-

cording to Hadamard’s inequality for the determinant and
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Fw =
wrN

Fr
log2

[
det

(
ΛG

(
XT
t UG

)H
XT
t UG + ΛG

(
XT
d UG

)H
XT
d UG

(σ2
n)

L
N

+ IN

)]

+
(1− wr)Ld

Fc
log2

[
det

(
(σ2
h − Cle)ΛH̃ (XdUH̃)

H
XdUH̃

Pd
Ld
Cle + σ2

n

+ IN

)]
. (27a)

trace of a positive semi-definite Hermitian matrix, we have
det (ΠN×N ) ≤

∏N
i=1$ii. The MI maximization problem is

formulated as

Fw ≤ max
Π

N∑
i=1

{
wr
Fr
N log2

(
λii
(
Et
N +$ii

)
(σ2
n)

L
N

+1

)

+
1− wr
Fc

Ld log2

((
σ2
h − Cle

)
µii$ii

Ed
Ld
Cle+σ2

n

+1

)}
(30a)

subject to Tr (Π) ≤ Pd; $ii ≥ 0, 1 ≤ i ≤ N, (30b)

where ωr is the weighting coefficient of sensing, Fr and Fc are
the maximum MI (22) in Section IV-B and the communication
capacity (26) in Section IV-C, respectively.

The objective function in (30a) is concave, since it is a non-
negative weighted sum of two concave functions of $ii, i.e.,

N log2

(
λii
(
Et
N +$ii

)
(σ2
n)

L
N

+1

)
; Ld log2

((
σ2
h−Cle

)
µii$ii

Ed
Ld
Cle+σ2

n

+1

)
.

Besides, Tr (Π) ≤ Ed and $ii ≥ 0 are affine. Therefore, the
maximization of the concave problem in (30) can be refor-
mulated equivalently to minimize the convex objective. The
optimization problem can be solved by using Karush-Kuhn-

Tucker (KKT) conditions. Let νi = λii

(σ2
n)

L
N

, ϕi =
(σ2
h−C

l
e)µii

Ed
Ld
Cle+σ2

n

,

ε = wrN
ln 2Fr

, and η = (1−wr)Ld
ln 2Fc

, we have

ζ − ζi =
ενi

1 + νi(
Et
N +$ii)

+
ηϕi

1 + ϕi$ii
; (31a)

ζ

(
N∑
i=1

$ii − Ed

)
= 0; ζi$ii = 0; (31b)

ζ ≥ 0; ζi ≥ 0, i = 1, · · · , N, (31c)

where ζ and ζi, i = 1, · · · , N , are the Lagrange multipliers.
Since $̂ii 6= 0, we have ζi = 0, i = 1, · · · , N . By solving
(31a), the optimal solution for (31) is given by

$̂ii =
1

2

[
1

ζ
(ε+ η)−

(
Et
N

+
1

νi
+

1

ϕi

)

+

√[(
Et
N

+
1

νi
− 1

ϕi

)
+

1

ζ
(η − ε)

]2

+
4εη

ζ2

+

,

(32)

where [x]
+

= max {x, 0}, and $̂ii satisfy the equality:∑N
i=1 $̂ii − Ed = 0. The positive ζ can be obtained

by the bisection search over the interval: 0 < 1
ζ <

1/min
i

{
ενi

(
Et
N +Ed)νi+1

+ ηϕi
ϕiEd+1

}
. Once ζ is obtained, the

optimal covariance matrix of the data signals in (30) can be
obtained. In the case of wr = 0, $̂ii is consistent with (27) in

Section IV-C. In the case of wr = 1, $̂ii coincides with (24),
as described in Section IV-B.

The maximum relative MI, i.e., the sum of the relative
communication and sensing MI, is given by

Rtotal =

N∑
i=1

{
N

Fr
log2

(
λii(

Et
N + $̂ii)

(σ2
n)

L
N

+ 1

)

+
Ld
Fc

log2

[
(σ2
h − Cle)µii$̂ii

Ed
Ld
Cle + σ2

n

+ 1

]}
.

(33)

E. Complexity Analysis

The computational complexities of JCAS, OPTC and OPTS
are in the same order of magnitude. In particular, OPTC and
OPTS are solved by using the water-filling technique (a special
class of the Lagrange multiplier method in coupling with the
KKT conditions) [31]. At each iteration with a given Lagrange
multiplier (or in other words, the water level, i.e., α and β′ in
(24) and (27), respectively), each of OPTC and OPTS has a
computational complexity of O(N) to evaluate (24) and (27)
for i = 1, · · · , N , respectively. The water level is recursively
adjusted until convergence. With a targeted accuracy of the
convergent Lagrange multiplier, ε0, the overall complexity
of OPTC and OPTS is O(N log( 1

ε0
)). JCAS is also solved

by using the Lagrange multiplier method in coupling with
the KKT conditions. At each iteration with the Lagrange
multiplier ζ (since ζi = 0 for i = 1, · · · , N ), JCAS has
the computational complexity of O(N) to evaluate (32) for
i = 1, · · · , N . The Lagrange multiplier ζ is recursively
adjusted until convergence. With the targeted accuracy of the
convergent Lagrange multiplier, ε0, the overall complexity
of JCAS is also O(N log( 1

ε0
)). As a result, all of OPTC,

OPTS and JCAS have a linear complexity with the number
of antennas, N .

V. SIMULATION RESULTS

In this section, we conduct extensive simulations to evaluate
the proposed methods. A system with 2 nodes is considered,
and each node is equipped with 8 antennas. We consider
(correlated) MIMO Rayleigh fading for both the communica-
tions and sensing channels, and the channels are independent
of each other. The channels remain unchanged during the
transmission of L symbols. Correlated channels are generated
based on the Kronecker model, where the normalized corre-
lation matrix has identical diagonal elements and random off-
diagonal elements following uniform distributions between 0
and a maximal correlation coefficient εc. The values of εc are
0.1 and 0.8 for communication and sensing, respectively. We
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assume that the communication and sensing channels have the
same mean path losses, i.e., σ2

h = σ2
g = 1. This corresponds

to the case where the mean sensing distance is approximately
the square root of the communication distance. In all the
simulations, the noise is a complex AWGN. The length of the
training sequences Lt is equal to the number of antennas N .
Without loss of generality, we set N = Lt = 8, and L = 160.
The value of SNR is (E/L)/σ2

n. For any given SNR and L,
we compute the value of E with σ2

n = 1, and then decide the
value for Et and Ed based on κop in Theorem 1.

To provide comparable results to the communication rate,
we introduce the sensing rate as the sensing MI per unit
time, and assume each symbol lasts 1 unit time. Hence, the
sensing rate and communication rate are equal to the ratios
between their respective MI and the total number of symbols
transmitted. Note that the term “sensing rate” is not widely
used in the literature as the sensing channel is typically
assumed to remain unchanged during the period of interest.
Hence the sensing rate depends on how fast sensing channel
changes.

For convenience, the abbreviations of the spatio-temporal
signal design schemes proposed in this paper and other com-
parison schemes for the legends in figures are listed as follows,
where all the schemes include optimal energy arrangement
(EA), unless otherwise specified.
• OPTC with CEE (OPTC w/ CEE or OPTC): produces the

spatio-temporal power mask, where the singular values of
the covariance matrix of the power masks are optimized
to maximize the communication MI with CEE at the re-
ceiver, given the covariance matrix of the communication
channel.

• OPTC without (w/o) CEE [20]: produces the spatio-
temporal power mask, where the singular values of the
covariance matrix of the power masks are optimized to
maximize the communication MI without CEE at the re-
ceiver, given the covariance matrix of the communication
channel.

• OPTS: produces the spatio-temporal power mask, where
the singular values of the covariance matrix of the power
masks are optimized to maximize the sensing MI, given
the covariance matrix of the sensing channel.

• Equal: produces the spatio-temporal power mask, where
the singular values of the covariance matrix of the power
mask are configured to be invariably equal (as opposed
to being optimized in response to the statistics of the
communication or sensing channel).

• Random: produces the spatio-temporal power mask,
where the singular values of the covariance matrix of the
power mask are randomly configured.

For each result, Monte-Carlo simulations with 5,000 indepen-
dent trials are conducted and the average results are provided.

Fig. 3 plots the communication rates of the schemes under
correlated channels with CEE. Fig. 4 plots the corresponding
sensing rates. In Fig. 3, we also see that OPTC w/o CEE [20]
is better than OPTC w/ CEE, and the gap decreases with
the growth of the SNR. The impact of the CEE is non-
negligible on the communication MI, as shown in (13). JCAS
lies between OPTC and OPTS, and the gap to OPTC decreases

with the growth of the SNR. Further, we see that OPTC w/o
EA is lower than OPTC w/ CEE, especially in low SNR
regimes, and the gap decreases with the increase of the SNR.
In Fig. 4, we see that the sensing rate of JCAS approaches that
of OPTS with the increasing SNR. Equal provides the lowest
sensing rate, but its gaps to the other schemes decrease with
the increase of the SNR.

Fig. 5 plots the communication rates of the considered
schemes against the ratio of the training length to the total
signal length under SNR = 1 dB and 10 dB. Fig. 6 provides
the corresponding sensing rates. To plot the curves, we change
the ratio of the training while keeping the total length L
unchanged. We see in Fig. 5 that the communication rates of
the schemes decrease significantly with the growing ratio of
the training, because the number of data symbols reduces and
consequently the communication rate decreases. We also see in
Fig. 5 that OPTC w/ CEE is consistently better than the other
schemes in terms of the communication rate, as it is optimized
to maximize the communication MI. OPTS is optimized on a
different purpose to maximize the sensing MI. As shown in
Fig. 6, OPTS is invariably better than the other schemes in
terms of the sensing rate, as it is optimized purposefully.

We see in Fig. 6 that the sensing rates of OPTC, OPTS,
and JCAS decline, as the ratio of the training increases. One
reason is because the feasible solution regions of problems
(22), (26), and (30) are bounded by the energy for the data.
With the increasing training energy, the energy for the data
decreases and consequently the feasible solution regions of
problems (22), (26), and (30) reduce. As a result, the objectives
of problems (22), (26), and (30) decrease. In the case of OPTS,
another reason for the decreasing sensing rate with the increas-
ing training energy is that we notice that the maximization of
the sensing MI requires the sum of the corresponding singular
values of the training and data, i.e., Et

N + q
(d)
ii in (22), to be

large for large λii’s; see (24). This follows the optimal water-
filling principle [31], since (22) exhibits the standard structure
of a water-filling problem if Et

N +q
(d)
ii is treated in whole as an

optimization variable. To this end, the more energy is allocated
for the training (and evenly distributed between the singular
values λii, ∀i), the less energy could be spared to increase q(d)

ii

(or Et
N + q

(d)
ii ) for the large λii’s, and the differences between

Et
N + q

(d)
ii , ∀i are smaller. As a result, the benefit of water-

filling in terms of improving the objective of problem (22)
decreases, and so does the sensing MI.

In Fig. 6, we also see a big sensing rate drop, as the ratio
of the training symbols approaches 1. The reason is that all
the methods become training-only, as the ratio of the training
approaches 1. The training consists of orthogonal sequences
and is the same across the different methods. Therefore, all
the methods converge to the same sensing MI value offered
by the orthogonal training. On the other hand, Equal has equal
singular values of the covariance matrix of the data, as the
orthogonal training sequences do. As a result, the sensing rate
of Equal is unaffected by the ratio of the training, as shown
in Fig. 6.

Fig. 7 plots the total relative MI, i.e., the sum of the relative
communication MI and sensing MI, against the weighting co-
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(c) Impact of signal structure.

Fig. 3. Communication rate vs. SNR, where L = 160, and Lt = 8.

efficient of sensing, ωr, under different signal design schemes
and the maximal correlation coefficient εc. We see that the
total relative MI of JCAS is the highest when εc = 0.1 for
communication and εc = 0.8 for sensing. The total relative
MI of JCAS increases first and then decreases with wr, while
the total relative MI of the other schemes does not change with
wr. The total relative MI of JCAS under wr = 0 and wr = 1
is equal to the total relative MI of OPTC and OPTS. Random
has the lowest total relative MI. In the case of εc = 0.5 for both
communication and sensing, we see the weighted sum of the
communication MI and sensing MI is nearly the same between
OPTC, OPTS and JCAS. In other words, the transmit signal
can be optimized to maximize both the communication and
sensing MI, when the communication and sensing channels
exhibit the same correlation characteristics.

Fig. 8 plots the total relative MI against the εc of the sensing
channel G under both SNR = 1 dB and 10 dB. We can
see that the total relative MI decreases with the growth of
εc, especially when εc is large. JCAS is less affected by the
channel correlation and outperforms the other schemes. In
contrast, the increase of εc has a significant impact on the total
relative MI for random and Equal, and the MI is drastically
reduced with the increasing correlation.

Fig. 9 plots the sensing rate versus the communication rate,
where OPTC, OPTS and JCAS are considered. The curves are

plotted by varying the SNR values. As shown in the figure,
OPTS and OPTC have a consistent gap with the increase of
the SNR. We note that OPTC and OPTS are two special cases
of JCAS when only the communication MI or the sensing MI
is maximized. In contrast, JCAS maximizes a weighted sum of
the communication and sensing MI. JCAS offers the flexibility
to accommodate both the communication and sensing and
bridges the gap between OPTC and OPTS by adjusting the
weights of the two aspects in the optimization of the spatio-
temporal power mask of the data (as compared to the sole
focus of OPTC and OPTS on one of the aspects).

The benefit of JCAS is to provide the flexibility to trade
off between the communication and sensing capabilities in
an effective way. As shown in Fig. 9, OPTS maximizes the
sensing rate at the cost of communication rate. As also shown
in Fig. 9, the use of JCAS bridges the gap between OPTS and
OPTC, and strives for high communication capacity without
substantially penalizing the sensing capability (or the other
way around).

By maximizing the sensing MI, the considered system
maximizes its capacity to detect and resolve subtle changes
in the sensing channel (e.g., caused by small changes in
the environment, e.g., intruders or trespassers). Given the
maximized sensing MI or capacity, the detection accuracy is
expected to improve. In Fig. 10, we take the MMSE-based
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Fig. 4. Sensing rate vs. SNR, where L = 160, and Lt = 8.
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estimation of the sensing channel for example. Fig. 10(a) com-
pares the estimation errors based on the differently optimized
spatio-temporal power masks of the data signals, including
OPTS, OPTC, JCAS (and Equal). We see that the lowest root
mean square error (RMSE) is achieved based on the spatio-
temporal power mask optimized by OPTS to maximize the
sensing MI, followed by the one optimized by JCAS to jointly
consider both the communication and sensing MI, and the
one optimized by OPTC to maximize the communication MI.
As also shown in Fig. 10(a), the gain of OPTS over OPTC
is considerable, especially when the SNR is low. OPTS and
OPTC are two special cases of JCAS, and provide the tight
performance bounds for JCAS. In particular, JCAS can turn
into OPTS or OPTC by configuring the weighting coefficients
of sensing and communication MI.

In Figs. 10(b) and 10(c), we pre-populate the 5,000 real-
izations of the sensing channel used to plot Fig. 10(a), and

nominate the one with the smallest total distance to the rest
of the realizations to be the target-free sensing channel. We
run the MMSE technique to estimate the sensing channel and
measure the Euclidean distance between the estimated channel
and the target-free sensing channel. The distance is normalized
by the number of pairwise channels. We can compare the
distance against a detection threshold, δth, and alert significant
changes exceeding the threshold in the sensing channel. For
each SNR and detection threshold value, the proposed algo-
rithms are tested under all the realizations with independently
generated receiver noises. The results in Figs. 10(b) and 10(c)
are consistent with Fig. 10(a).

VI. CONCLUSION

We presented the optimal signal designs of MIMO JCAS
systems by considering both training and data symbols. We
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proposed an optimal energy arrangement scheme under MMSE
estimators for MIMO communication channels. Among the
three optimization strategies we studied, the design that max-
imizes a weighted sum of relative MI is shown to achieve the
best overall performance for JCAS. The design is also less
affected by the varying channel correlation than the other two
design methods. Extensive simulations corroborated the merit
of the proposed techniques.

APPENDIX A
PROOF OF THEOREM 1

As defined earlier, the SVD of spatial correlation matrix
of H̃ is ΣH̃ = 1

NE{H̃H̃H} = UH̃ΛH̃UH
H̃

, where UH̃ is a
unitary matrix and ΛH̃ = diag {µ11, · · · , µNN} is a diagonal
matrix. Based on (13) and the lower bound of CEE, we can
get an upper bound for the MI between Xd and Yd

com as

I
(
Xd; Y

d
com|Ĥ

)
≤Ld log2

[
det

((
σ2
h−Ce

)
XdUH̃ΛH̃UH

H̃
XH
d

Ed
Ld
Ce + σ2

n

+IN

)]
(34a)

=Ld log2

[
det

((
σ2
h−Ce

)
ΛH̃(XdUH̃)

H
XdUH̃

Ed
Ld
Ce+σ2

n

+IN

)]
,

(34b)

where the equality in (34a) is achieved when the lower
bound CEE Ce is achieved; (34b) is based on the Sylvester’s
determinant theorem [29].

Because Ξ = (XdUH̃)
H

XdUH̃ = (Yd
com)HYd

com and its
(i, j)-th entry is ξij , based on Hadamard’s inequality for the
determinant and trace of a positive semi-definite Hermitian
matrix, we have det (ΞN×N ) ≤

∏N
i=1 ξii. The upper bound

of the MI between Xd and Yd
com can be obtained as

I
(
Xd; Y

d
com|Ĥ

)
≤

N∑
i=1

{
Ld log2

[(
σ2
h−Ce

)
µiiξii

Ed
Ld
Ce + σ2

n

+1

]}
︸ ︷︷ ︸

f(ξii)

,
(35)

where the equality is achieved if and only if Ξ is a diagonal
matrix.

As f (ξii) is a monotonically decreasing and concave func-
tion of ξii, based on Jensen’s inequality, we can obtain the
expectation of I

(
Xd; Y

d
com|Ĥ

)
, i.e., E

[
I
(
Xd; Y

d
com|Ĥ

)]
,

as given in (36), where (36c) is obtained by substituting
E [ξii] = 1

N Tr (ΣXd
) = 1

N Tr (Ξ) = Ldσ
2
d = κE

N and
(1− κ)E = NLtσ

2
t into (36b).

E
[
I
(
Xd; Y

d
com|Ĥ

)]
≤ E

[
N∑
i=1

f (ξii)

]
(36a)

=

N∑
i=1

E [f (ξii)] ≤
N∑
i=1

f (E [ξii]) (36b)

=Ld

N∑
i=1

log2

 ELd
(Ld−N)Nσ2

n

κ (1− κ)

−κ+ Ld
Ld−N

(
1+

Nσ2
n

Eσ2
h

)+1

.
(36c)

From (36c), we can see that different values of κ can
lead to different mean MI given E and N , denoted as
ρ = LdE

(Ld−N)Nσ2
n
· κ(1−κ)

−κ+ Ld
Ld−N

(
1+

Nσ2n
Eσ2

h

) . Referring to the cases

considered in [9], to maximize ρ over 0 ≤ κ ≤ 1, we can
consider the following three cases:

1) Ld = N : The maximal ρ, denoted by ρmax, is ρmax =
E2σ4

h

4Nσ2
n(Nσ2

n+Eσ2
h)

, from which it follows that κop = 1
2 .

2) Ld > N : We rewrite ρ as ρ = LdE
(Ld−N)Nσ2

n
·

κ(1−κ)
−κ+Γ , where Γ = Ld

Ld−N

(
1 +

Nσ2
n

Eσ2
h

)
> 1. The

maximal SNR ρmax can be obtained as ρmax =
LdE

(Ld−N)Nσ2
n

(√
Γ−
√

Γ− 1
)2

, and it follows that κop =

Γ−
√

Γ(Γ− 1).
3) Ld < N : We rewrite ρ as ρ = LdE

(N−Ld)Nσ2
n
·

κ(1−κ)
κ−Γ , where Γ = Ld

Ld−N

(
1 +

Nσ2
n

Eσ2
h

)
< 0. The

maximal SNR ρmax can be obtained as ρmax =
LdE

(Ld−N)Nσ2
n

(√
−Γ−

√
−Γ− 1

)2
, and it follows that κop =

Γ +
√

Γ(Γ− 1).
Therefore, we can obtain the lower bound of the CEE as

presented in (17).
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