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Abstract—A refined extended alternating convex optimization (REA-
CO) method is presented to synthesize multibeam sparse circular-arc
antenna arrays with minimum element spacing control by considering
real antenna array structure characteristics. This method consists of
initial step and a few refining steps. At the initial step, an initial array
with dense elements distributed on a circular-arc is considered, and
its array manifold vector is described by rotating a simulated isolated
element pattern (IEP) without considering element mutual coupling. The
collective excitation coefficient vector (CECV) and its energy bound are
introduced for each element, and consequently the common element
positions for generating desired multibeam patterns can be found by
minimizing the number of active CECVs under multiple constraints. This
minimization problem is further formulated as performing a sequence
of alternating convex optimization (ACO) in which the CECV and an
auxiliary weighting vector are alternately chosen as the optimization
variables, so that the mimimum element spacing constraint can be easily
dealt with. Once the initial optimization step is finished, a few refining
steps are performed in which the element positions and excitations are
successively updated in each step by renewing the array manifold vector
through rotating the simulated nearby active element patterns (AEPs) of
the antenna array obtained at the previous step. In such a way, the mutual
coupling can be incorporated into the multibeam sparse array synthesis.
An example of synthesizing a sparse circular-arc conformal array with
23 beams covering the space from −63.25◦ to 63.25◦ is conducted to
validate the effectiveness and advantage of the proposed method.

Index Terms—Sparse circular-arc array, alternating convex optimiza-
tion, multibeam pattern synthesis, minimum element spacing control

I. INTRODUCTION

S INGLE beam antenna arrays usually provide either a directive
beam with high gain radiation for a limited spatial coverage, or

a shaped beam with limited gain over a predefined angular range. In
contrast, multibeam antenna arrays which can generate a number of
independent high-gain directive beams across a wide spatial range
are more promising in many applications such as multi-user mobile
communications and multi-target detection systems [1], [2]. Especial-
ly, when we consider a multibeam circular-arc antenna array whose
elements are placed along a circle or conforming with a cylinder, the
generated multiple beams can cover a much larger angular range
with less gain loss than that obtained by a linear array [3], [4].
However, the multibeam antenna array requires implementation of
multiple excitation distributions in either radio-frequency (RF) or
digital domain, which significantly increases the cost of the whole
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system. In this situation, reducing the number of elements in the
multibeam antenna array is of great importance for some applications
where the weight and the cost of the system are limited [5].

As is well known, using nonuniform spacing with optimized posi-
tions provides possibility for a sparse array solution. In the past, many
advanced methods for synthesizing nonuniformly spaced arrays have
been developed. They mainly include analytical techniques [6], [7],
stochastic optimization algorithms [8], [9], compressive sensing (CS)
and Bayesian CS techniques [10]–[12], matrix pencil methods (MPM)
[13]–[15], the reweighted `1-norm optimization techniques [16]–[18]
and the efficient inflating-deflating exploration algorithm (IDEA)
[19]. Among them, a majority of methods deal with position selection
or optimization for linear or planar arrays with assumed isotropic
elements, and they cannot be directly applied to circular-arc antenna
arrays in which all the elements face in different directions and the
element patterns vary with their positions on the arc. Few methods
presented in [6], [9] and [12], can optimize the element positions on
a circular or cylindrical surface but they still adopt isotropic element
assumption or simple analytical expressions to describe element
patterns. Although this can greatly simplify the synthesis problem, it
results in limited applications as some significant factors including
the antenna element structure, mutual coupling and platform effect in
the practical circular-arc array are not considered. Besides, most of
these techniques are developed to synthesize a single pattern. When
applied to a multibeam case, they may obtain different position results
for different beams.

Recently, some advanced techniques have been developed to incor-
porate the mutual coupling into the element position synthesis [20]-
[23]. In [20], element positions are iteratively updated by finding the
optimal position perturbations using convex optimization and mutual
coupling is included by employing fast full-wave simulation scheme
to obtain active element patterns (AEPs) at each iteration. In [21],
the mutual coupling is successfully included in the element position
selection by incorporating phase-shifted AEPs into the iterative
reweighted `1-norm optimization. More recently, these techniques
have been extended to effectively deal with multibeam synthesis for
sparse linear and planar arrays [22], [23]. However, to the best of our
knowledge, element position optimization including mutual coupling
for conformal arrays have not yet been reported.

Another issue to be addressed is the minimum element spacing
control which is essential for synthesizing practical nonuniformly
spaced antenna arrays. The challenge is that this constraint is high-
ly nonlinear. Some stochastic optimization algorithms such as the
improved particle swarm optimization (IPSO) adopted in [27] may
be capable of finding the globally optimal solution, but they are
in general time consuming. More efficient sparse array synthesis
techniques such as the CS-based synthesis methods, the reweighted
`1-norm optimization methods and the MPM cannot directly deal
with this constraint even in the case of linear or planar arrays. Conse-
quently, some of the synthesized element positions may be spaced too
closely to be realized in practice. To overcome this problem, several
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merging techniques have been presented to post-process the results
obtained from the CS technique or the reweighted `1-norm optimiza-
tion methods [12], [24]- [26], and the closely spaced positions are
merged to meet the minimum element spacing constraint. Despite
its effectiveness, such post-processing may result in deterioration
in the pattern performance. In [28], a non-super directivity matrix
is introduced into the reweighted `1-norm optimization to control
the minimum element spacing for planar array layout optimization.
Recently, an iterative constrained convex optimization technique is
presented to synthesize space-tapered multibeam linear arrays where
the element position distributions are successively updated under a
preset minimum element spacing constraint [29].

Recently, we presented an alternating convex optimization (ACO)
method in which the sparse array synthesis problem is formulated
as a sequence of alternating weighted `1-norm optimizations [30].
Different from the original reweighted `1-norm optimization method,
the ACO method alternately chooses the element excitation vector and
weighting vector as the optimization variables, so that the minimum
element spacing constraint can be easily incorporated into the opti-
mization process. However, the ACO method in [30] was presented
to synthesize single-beam sparse linear arrays with the isotropic
element assumption. In this work, we will present a refined extended
ACO (REACO) method to synthesize multibeam sparse circular-arc
arrays with minimum element spacing control by considering mutual
coupling as well as platform effect. The proposed REACO method
differs from the original ACO as follows: a) for the multibeam
sparse circular-arc array, each element is associated with multiple
excitation weights for different beam patterns. In this situation, a
collective excitation coefficient vector (CECV) and its energy bound
are introduced for each element. Then the ACO is extended to
minimize the number of active CECVs with the minimum element
spacing constraint so as to find the common element positions on
the circular-arc for multibeam requirements. This is much different
from direct minimization of the number of excitations used in the
original ACO for the single-beam sparse linear array synthesis; b)
the REACO method deals with a more complicated array model
by considering circular-arc antenna array structure including mutual
coupling and platform effect. Inspired by the works in [20]– [23], the
REACO method at first performs an initial optimization step without
considering mutual coupling to find a rough distribution of element
positions and then takes a few refining steps to successively update
the element positions and excitations by using the simulated nearby
active element patterns (AEPs) of the antenna array obtained at the
previous step. In this way, the mutual coupling can be incorporated
into the refining steps. An example of synthesizing a sparse circular-
arc conformal antenna array having 23 beams covering the space
from −63.25◦ to 63.25◦ is conducted to validate the effectiveness
of the proposed method.

II. MULTIBEAM SPARSE CIRCULAR-ARC ARRAY SYNTHESIS

A. Multibeam Circular-arc Array Model

To synthesize a multibeam sparse circular-arc antenna array, we
can first define a densely spaced array located on a circular arc,
and then select the best element positions from them with optimized
multiple sets of excitations, each set of excitations being associated
with one desired beam. Let us consider a circular-arc array with N
potential elements which are located at the angles {φ1, φ2, · · · , φN}
on a circle with radius of R in xy-plane. For simplicity, we assume
that the potential elements are equally spaced with φn = φ0 + n∆φ

for n = 1, 2, · · · , N where the element spacing should satisfy
2R sin(∆φ/2) � λ for a dense potential position distribution.
We further assume that this array radiates M overlapping beams,

and each beam corresponds to a set of excitations. Then, the mth
(m = 1, 2, . . . ,M ) array pattern at xy-plane is given by

F (m)(ϕ) =

N∑
n=1

w(m)
n an(ϕ)e−jβR cos(ϕ−φn) (1)

where j =
√
−1, β = 2π/λ is the wavenumber in free space, and

w
(m)
n denotes the complex excitation of the nth element for the mth

array pattern. φn is the angle of the circle at which the nth element
is located, and an(ϕ) is the pattern of the nthe element. The array
pattern can be rewritten as the following form

F (m)(ϕ) = aT (ϕ)w(m) (2)

where

a(ϕ) =


a1(ϕ)e−jβR cos(ϕ−φ1)

a2(ϕ)e−jβR cos(ϕ−φ2)

...
aN (ϕ)e−jβR cos(ϕ−φN )

 (3)

w(m) = [w
(m)
1 , w

(m)
2 , . . . , w

(m)
N ]T (4)

In the above, the superscript ’T ’ denotes the transpose of a matrix,
and a(ϕ) is called the array manifold vector.

Note that in practical application, a circular-arc antenna array
usually conforms with a cylindrical platform, so that its antenna
elements would face in different directions and the element pattern
an(ϕ) varies with its position on the platform. If mutual coupling
is ignored or weak enough, the element patterns among different
elements have the rotationally invariant property given by

an(ϕ) ≈ ap(ϕ− (φn − φp)) (5)

This relationship will be adopted to approximately construct the array
manifold vector for sparse array optimization.

B. Multibeam Sparse Circular-arc Array Synthesis Problem

The problem of synthesizing a sparse circular-arc array with
multiple overlapping beams under minimum element spacing control
can be formulated as that of minimizing the number of elements under
multiple different constraints. For each of beam patterns, multiple
constraints can be used to accurately control the maximum beam
direction and sidelobe level (SLL). They are given as follows:

i) Multibeam direction constraints:

aT (ϕ)w(m) = 1, for ϕ = ϕ
(m)
look (6)

To avoid the mth beam direction deviating from the desired
one, a derivative constraint of ∂|aT (ϕ)w(m)|2/∂ϕ = 0 at ϕ =

ϕ
(m)
look can be used. By combining that aT (ϕ

(m)
look )w(m) = 1, the

derivative constraint can be further simplified as the following

∂{Re[aT (ϕ)w(m)]}
∂ϕ

= 0, for ϕ = ϕ
(m)
look (7)

ii) Sidelobe constraint for each beam:

|aT (ϕ)w(m)|2 ≤ U (m)
SL , for ϕ ∈ Ψ

(m)
SL (8)

where Ψ
(m)
SL and U

(m)
SL are the angle range and the specified

upper bound of the sidelobe for the mth beam, respectively.
Usually, U (m)

SL can be set as the same for different beam patterns.
That is, U (m)

SL = USL for m = 1, 2, · · · ,M .
Clearly, if the element positions of an array are fixed, the problem

with above constraints can be solved by using convex optimiza-
tion [31]. However, the considered problem is to reduce the number
of elements by selecting the common element positions for multiple
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beam patterns. It means that a large number of element positions
must be discarded from the initial dense distribution. Since each
antenna element in the multibeam circular-arc array is associated
with multiple excitations (implemented in either RF or digital multi-
beamforming network), one element can be discarded only if all
the excitations related to this element are simultaneously minimized
to zeros. This is different from single-beam sparse array synthesis
case. To overcome this problem, we introduce a collective excitation
coefficient vector (CECV) which is given by

w̆n =
{
w(1)
n , w(2)

n , . . . , w(M)
n

}T
. (9)

By introducing an auxiliary variable tn, we can constrain the energy
bound of each w̆n (n = 1, 2, · · · , N ) as the following

tn ≥
∥∥∥w(1)

n , w(2)
n , . . . , w(M)

n

∥∥∥
2
. (10)

Then, the problem of reducing the number of selected elements is
equivalent to minimizing the `0-norm ‖t‖0 under the constraints of
(6)-(8) and (10), where t = [t1, t2, · · · , tN ]T .

Another problem concerned is the minimum element spacing
constraint that is used to avoid the presence of some closely spaced
element positions in the synthesized result. In the case of circular-arc
arrays, this constraint can be given by

d ≥ dmin = 2R sin

(
Q∆φ

2

)
(11)

where d is the spacing between arbitrary two selected ele-
ments, dmin is the required minimum element spacing, and Q =
[2 arcsin(dmin/2R)]/∆φ is the total number of potential positions
contained within the required minimum spacing. This means there
are at the least (Q − 1) unselected potential positions between the
selected elements. By integrating all the constraints, we can formulate
the whole synthesis problem as the following

min{
w

(m)
n ,tn;|m=1,··· ,M

n=1,··· ,N

} ‖t‖0

Const.



tn ≥
∥∥∥w(1)

n , w
(2)
n , . . . , w

(M)
n

∥∥∥
2
,

(n = 1, 2, · · · , N); (a)

aT (ϕ)w(m) = 1 and ∂{Re[aT (ϕ)w(m)]}
∂ϕ

= 0,

for ϕ = ϕ
(m)
look (m = 1, 2, · · · ,M); (b)

|aT (ϕ)w(m)|2 ≤ U (m)
SL , for ϕ ∈ Ψ

(m)
SL

(m = 1, 2, · · · ,M); (c)
d ≥ 2R sin(Q∆φ/2), d is the distance between
arbitrary two selected elements (tn 6= 0). (d)

(12)

C. Refined Extended Alternating Convex Optimization Method

The problem in (12) is a NP-hard combinatorial optimization
problem due to the `0-norm optimization objective function. The
reweighted `1-norm optimization technique is an alternative way to
efficiently produce a sparse solution, and the technique has been
applied to many single-beam sparse array synthesis problems. By
virtue of introducing the CECV, the reweighted `1-norm optimization
technique presented in [16]- [18] can be extended to deal with the
multibeam sparse circular-arc array synthesis problem. That is,

min{
w

(m)
n ,tn;|m=1,··· ,M

n=1,··· ,N

}gT t
under Const. 12(a)-(c)

(13)

where g = [g1, g2, · · · , gN ]T is a weighting vector. In the reweighted
`1-norm optimization technique, gn is usually set as gn = 1/(tn+ δ)
where δ is a small positive number, and it can be successively

updated by adopting new tn at each iteration. This technique can
be called the extended reweighted `1-norm optimization technique.
It does produce a multibeam sparse circular-arc array solution, but the
minimum element spacing constraint cannot be easily incorporated
into the synthesis process.

In [30], we presented an ACO method to synthesize single-beam
sparse linear array with the minimum element spacing control. In
the ACO method, the excitation vector and the weighting vector are
alternatively chosen as the optimization variables, and g is updated
by solving a convex optimization problem at each iteration. In this
situation, the minimum element spacing constraint can be transformed
as controlling the distribution of elements in g by using a sequence
of additional constraints. This idea can be further extended to control
the minimum element spacing for the multibeam sparse circular-arc
array synthesis as follows

min{
w

(m)
n ,tn;|m=1,··· ,M

n=1,··· ,N

}gT∗ t
under Const. 12(a)-(c)

(14a)

min
g

gT |t∗|

Const.


0 ≤ g ≤ 1;
1Tg(n : n+Q− 1) ≥ Q− 1

(for n = 1, ..., N −Q+ 1).

(14b)

In Problem (14a), w(m)
n (m = 1, · · · ,M , n = 1, · · · , N ) and t

are optimization variables under a given g∗ which is obtained by
solving Problem (14b) at the previous step, and in Problem (14b), g
is the optimization variable under a given t∗ that is just obtained from
(14a). In the initial iteration, g∗ can be chosen as random numbers
or just set as g∗ = 1. The two subproblems are weighted `1-norm
minimization problems, and they can alternatively solved by using
convex optimization. Now, let us consider the solution to Problem
(14b). It is obvious that each Q-length segment g(n : n + Q − 1)
(for n = 1, · · · , N −Q+ 1) of the solution obtained from Problem
(14b) will have at the least Q − 1 entries of ’1’ and at the most
one entry of ’0’, provided that there are no two identical elements
in the same segment of t∗. Thus, in each iteration, the entries of ’1’
in g∗ will heavily penalize the corresponding energy bound of the
collective excitation coefficient vector in t for Problem (14a), while
the collective excitation coefficients with their energy bound in t
corresponding to ’0’ entries of g∗ will be remained. Since every Q-
length segment of g∗ has at the most one entry of ’0’, no more than
one corresponding element in each segment of t will be remained and
all others in this segment will be penalized to zeros. This explains
how the extended ACO method works for controlling the minimum
element spacing in the multibeam sparse circular-arc array synthesis.

Now, the remaining problem is that the element mutual coupling
depends on the selected element positions, and thus the accurate
array manifold vector a(ϕ) is actually unknown before the element
positions are determined. To deal with this problem, a refined
extended ACO method (REACO) is presented. At the initial step,
the mutual coupling is not considered in the synthesis. An isolated
element pattern (IEP) is obtained by full-wave simulation of a single
antenna element located at φ = 0 of a cylinder platform, and then
the array manifold vector a(ϕ) can be constructed by using the
relationship an(ϕ) ≈ aIEP(ϕ−φn) according to (5). Then the method
finds the initial element positions and excitations by performing the
extended ACO. Assume that P element positions with the angles
of Φs = {φs1, φ2, · · · , φsP } ⊂ {φ1, φ2, · · · , φN} are selected. It
should be noted that the synthesized multibeam patterns in this step
may deviate very much from the real ones including mutual coupling.
Thus, the REACO method takes a few more refining steps to include
the mutual coupling effect into the multibeam sparse circular-arc
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array synthesis. At the kth (k ≥ 1) refining step, full-wave simulation
of the antenna array with the element positions obtained at the
previous step is performed, and then the simulated active element
patterns (AEPs) are used to approximate the element patterns of a(ϕ)
at their nearby potential positions. That is given by

an(ϕ) ≈ aAEP
sp (ϕ− (φn − φ(k−1)

sp )) (15)

where p = min
p
{|φn − φ

(k−1)
sp |;φ(k−1)

sp ∈ Φ
(k−1)
s }, and aAEP

sp (ϕ)

is the AEP of the antenna element nearest to the potential position
φn. Once a(ϕ) is renewed, one more refining optimization can be
performed. To guarantee that the selected element positions are really
close to those obtained at the previous step for accurate approximation
of (15), we can add some additional constraints for controlling the
distribution of g when solving the problem (14b). That is, setting
gn = 1 when R|φn − φ

(k−1)
sp | ≥ 0.1λ for all φ(k−1)

sp ∈ Φ
(k−1)
s .

The refining optimization can be iteratively performed until the
obtained element positions remaining the same. In general, few
refining steps are required for the convergence. It should be noted
that when the obtained element positions remain the same as those
obtained at the previous step, the synthesized multi-beam patterns
will be equal to the real ones including mutual coupling. This
means that the obtained final multibeam patterns including mutual
coupling have good performance since the synthesized ones are
always obtained with multiple constraints on beam directions and
sidelobe distributions. Note that the full-wave simulations used in the
synthesis procedure can be accomplished by using either commercial
softwares such as High Frequency Structure Simulator (HFSS) [32]
or user-designed electromagnetic simulation codes. In the example
given in the following, we use the HFSS tool to implement all the
required full-wave simulations.

III. NUMERICAL RESULTS

To verify the effectiveness of the proposed REACO method, we
apply it to synthesize a multibeam sparse circular-arc conformal array
with curved E-type patch antenna elements. The curved E-type patch
antenna element mounted on a part of cylindrical surface is designed
at the center frequency of 13 GHz, and its geometry is shown in
Fig. 1. The size of the radiating E-type patch is about 0.39λ at
13 GHz. The radius of the cylinder is chosen as R = 138.5 mm
which is about 6λ at 13 GHz. Assume that the desired multibeam
patterns have 23 beams with interval of 5.5◦ covering the space from
−63.25◦ to 63.25◦, and each of beams has the first beamwidth
(FNBW) of 14◦. The desired SLL is set as USL = −16 dB
outside of the FNBW region for each beam pattern. At the initial
step, we apply the proposed method without considering mutual
coupling (i.e., the extended ACO) to find the element positions and
multiple sets of excitations for the desired multibeam patterns. The
initial array is set as a large number of potential element positions
uniformly distributed within the angle range of −75◦ to 75◦ on the
cylinder surface. To check the effectiveness of the extended ACO for
different potential element spacing settings, we choose the parameter
∆φ = [0.9554◦, 0.4777◦, 0.2389◦] such that the potential element
spacing d0 = 2R sin(∆φ/2) = [0.1, 0.05, 0.025]λ. Accordingly,
the number of potential positions is N = [158, 315, 629]. Different
minimum element spacing constraints between the selected elements
are considered by adjusting the selection of Q and ∆φ according to
dmin = 2R sin(Q∆φ/2), and they are set as dmin = 0.5λ (Q = 5)
for the case of ∆φ = 0.9554◦, dmin = [0.45, 0.5]λ (Q = [9, 10])
for the case of ∆φ = 0.4777◦, and dmin = [0.45, 0.475, 0.5]λ
(Q = [18, 19, 20]) for the case of ∆φ = 0.2389◦. In this step,
the isolated element pattern (IEP) which is obtained by using HFSS
simulation of a single element mounted on the cylinder is used
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Fig. 1: Geometry of a 21-element circular-arc conformal array (with
view of the E-type patch antenna on planar surface).

to construct the manifold vector a(ϕ) without considering mutual
coupling. Then the proposed method performs a series of alternating
convex optimizations between Problem (14a) and (14b) for each
test case. Besides, we also apply the extended reweighted `1-norm
optimization in (14) to synthesize the same example for comparison.

Table I lists the synthesis results of the proposed method at the
initial step and the extended reweighted `1-norm optimization in
terms of the synthesized minimum and maximum element spacings,
the number of selected elements as well as the maximum SLL (i.e.,
the maximum one for all the multibeam patterns). As can be seen,
for all the test cases, both of the methods can obtain the multibeam
pattern results satisfying the SLL requirement. For example, Fig. 2(a)
shows the synthesized multibeam patterns by the proposed method
at the initial step with ∆φ = 0.4777◦ and dmin = 0.5λ (Q = 10),
and Fig. 2(b) shows the pattern result by the extended reweighted
`1-norm minimization with the same ∆φ. It is confirmed that the
obtained multibeam patterns by both of the methods do meet the −16
dB SLL bound. However, the required number of elements for these
two methods are slightly different. For the case of ∆φ = 0.4777◦ and
0.2389◦, the synthesized arrays by the proposed method at the initial
step have less elements. It is important that the arrays synthesized
by the proposed method always meet the specified minimum element
spacing constraints for all the test cases given in Table I. However,
this is not true for the extended reweighted `1-norm optimization
where the minimum element spacing cannot be controlled and the
obtained arrays generally cannot meet the required minimum spacing
constraints in such a complicated multibeam synthesis situation. For
example, for the case of ∆φ = 0.4777◦, the obtained element
position angles by the proposed method and the extended reweighted
`1-norm optimization are listed in Table II. The obtained minimum
element spacing by the extended reweighted `1-norm optimization
is only 0.35λ existing between the 10th and 11th elements. Such an
array is unrealistic since the size of the E-type patch antenna element
is 0.39λ. This does not happen for the proposed method for all test
cases.

All the above synthesis results based on the rotated IEP do not
include the mutual coupling. The multbeam patterns for real antenna
array structures may deviate much from the synthesized ones. For
example, consider the synthesized 22-element array by the proposed
method at the initial step with ∆φ = 0.4777◦ and dmin = 0.5λ, and
its element positions are given in the first column of Table II. Based
on these positions, we can build the sparse cylindrical antenna array.
Fig. 2(c) shows the obtained multibeam patterns including mutual
coupling for the real antenna array structure through HFSS full-wave
simulation with the same sets of excitations used in Fig. 2(a). As can
be seen, the SLLs for the real multibeam patterns are all considerably
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TABLE I: SYNTHESIS RESULTS WITHOUT CONSIDERING MUTUAL COUPLING BY THE PROPOSED METHOD AT THE INITIAL STEP AND THE

EXTENDED REWEIGHTED `1-NORM OPTIMIZATION TECHNIQUE (P IS THE NUMBER OF SELECTED ELEMENTS).

Initial array setting Constrained The proposed REACO The extended reweighted `1-norm

N ∆φ (◦) dmin(/λ) Q
Synth. spacings (/λ)

P SLL (dB) Synth. spacings (/λ)
P SLL (dB)Min Max Min Max

158 0.9554 0.500 5 0.500 1.000 23 −16.00 0.400 1.500 22 −16.00

315 0.4777 0.450 9 0.450 1.000 22 −16.01 0.350 1.500 24 −16.000.500 10 0.500 1.100 22 −16.03

629 0.2389
0.450 18 0.450 1.725 22 −16.00

0.425 1.525 23 −16.000.475 19 0.475 1.350 22 −16.00
0.500 20 0.500 1.350 22 −16.00

TABLE II: THE SYNTHESIZED ELEMENT POSITION ANGLES ON

THE CIRCULAR-ARC BY THE PROPOSED METHOD AT DIFFERENT

STEPS AND THE EXTENDED REWEIGHTED `1-NORM OPTIMIZATION

(∆φ = 0.4777◦ , dmin = 0.5λ, R = 138.5 MM).

Elem. The REACO method Reweighted
Index Initial k = 1 k = 2 k = 3 `1-norm

1 −74.522 −75 −75 −75 −75
2 −65.446 −64.968 −65.446 −64.968 −60.669
3 −55.892 −56.369 −55.892 −55.414 −49.204
4 −49.204 −49.204 −48.726 −48.248 −42.994
5 −42.516 −42.994 −42.516 −42.038 −39.172
6 −32.006 −32.484 −32.006 −32.484 −32.006
7 −26.274 −26.752 −26.752 −26.752 −24.841
8 −21.019 −21.019 −21.019 −20.541 −21.019
9 −14.809 −14.331 −14.331 −14.809 −14.809
10 −9.554 −9.076 −9.554 −9.554 −10.987
11 −4.777 −4.299 −4.299 −4.777 −7.166
12 0.478 0.478 0.478 0.955 −3.822
13 9.554 10.032 10.032 10.032 0
14 15.287 14.809 14.809 14.809 3.822
15 22.930 x x x 10.987
16 27.707 27.229 27.707 27.707 14.809
17 34.873 34.395 34.873 35.350 21.019
18 40.605 41.083 40.605 40.605 24.841
19 47.771 48.248 47.771 48.248 32.006
20 55.892 55.892 56.369 56.847 42.994
21 65.446 64.968 65.369 64.968 49.204
22 74.522 74.522 74.045 73.567 53.503
23 60.669
24 75

increased. For example, for the first left beam pattern, the SLL is
increased from −16.01 dB to −13.39 dB, and its maximum beam
direction is also changed from −60.5◦ to −60.1◦. For the 18th
beam pattern (counted from the first left beam), the SLL is increased
from −17.36 dB to −13.85 dB, and its maximum beam direction is
changed from 33◦ to 32.5◦. The reason why the multibeam pattern
performance degrades is that the AEPs for the real sparse antenna
array deviates to some extent from those obtained by rotating the IEP
which are assumed in the synthesis at the initial step. To improve the
synthesis performance, the proposed method performs a few refining
steps in which the array manifold vector is updated in each step
by using the simulated AEPs of the antenna array obtained at the
previous step. The element positions and excitations are successively
refined. In this example, four refining steps are required to reach the
convergence, and the element positions obtained at the 4th refining
step remain the same as those at the 3rd refining step. Table II lists
the obtained element positions at initial and first three refining steps.
It is noted that the first refining step reduces the synthesized 22-
element array at the initial step to only 21 elements. One element is
saved by this refining step. The final synthesized multibeam patterns
at the 4th refining step are equal to the real ones including mutual
coupling since the selected element positions remain unchanged in
this step. Thus, the final obtained real multibeam patterns have correct
maximum beam directions and required SLL distributions as shown
in Fig. 2(d). The obtained final excitations for 21 elements also vary
from the excitations at the initial step for 22 elements. For example,
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Fig. 2: The synthesized multibeam patterns without including mutual
coupling (using rotated IEPs) by (a) the proposed REACO method at
the initial step and (b) the extended reweighted `1-norm optimization
technique, as well as the simulated multibeam patterns including
mutual coupling (using AEPs) by the proposed method (c) at the
initial step and (d) with four refining steps.

Fig. 3(a) and (b) show the obtained excitation amplitudes and phases
at the initial and 4th refining steps for the first left beam pattern,
and Fig. 3(c) and (d) show the obtained results at the initial and
4th refining steps for the 18th beam pattern. In this example, we
saved 36.4% elements if comparing with 33 λ/2-spaced elements
occupying the same circular-arc space from −75◦ to 75◦.

The time cost of the proposed method mainly comes from its
refining steps. In each refining step of this example, on average the
proposed method takes about 5.3 hours for the HFSS simulation of the
obtained antenna array and 1.1 hours for the multibeam sparse array
refining optimization, on a Dell workstation with Intel(R) Xeon(R)
CPU E5-2697v4@2.30GHz. Besides, the proposed method at the
initial step takes about 1.3 hours for initial sparse array synthesis
without considering mutual coupling. The total time cost for the initial
step and four refining steps is 26.9 hours in this example.

IV. CONCLUSION

We have presented a refined extended alternating convex opti-
mization (REACO) method which can synthesize multibeam sparse
circular-arc antenna arrays with minimum element spacing control,
considering both mutual coupling and platform effect of a real
antenna array structure. In this method, the collective excitation
coefficient vector (CECV) and its energy bound are introduced
for each potential element, and consequently the multibeam sparse
circular-arc array synthesis problem is transformed as minimizing the
number of active CECVs under multiple constraints. To deal with
the minimum element spacing constraint, this minimization problem
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Fig. 3: The synthesized excitation distributions by the proposed
method at the initial step and after four refining steps. (a) and (b)
show the excitation amplitudes and phases for the first left beam
pattern; (c) and (d) show the excitation amplitudes and phases for
the 18th beam pattern.

is solved by means of alternating convex optimization (ACO) in
which the weighting vector in each iteration is given by solving a
sub-problem of constrained optimization other than simply setting
in the reweighted `1-norm optimization technique. In addition, the
proposed method adopts a few refining steps to incorporate the mutual
coupling into the multibeam sparse array synthesis. One example of
synthesizing multibeam sparse circular-arc conformal arrays with E-
shape microstrip antenna elements is conducted. Synthesis results
show that the proposed method can control the minimum element
spacing very well at all steps, and the final obtained sparse circular-
arc array having 23 beams covering the space −63.25◦ to 63.25◦,
saved 36.4% elements compared with the one with λ/2-spaced
elements occupying the same arc. The obtained multibeam patterns
including mutual coupling for real antenna array structure have
correct beam directions and required sidelobe distributions.
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