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Abstract—In this paper, we present a scheme for realizing
reliable multi-user MIMO communications in the presence of
interference in time-varying channels. The null space of in-
terfering channels is estimated and exploited for interference
mitigation. We first introduce an improved superframe structure
to enable frequent tracking of user channels and the null space of
interfering channels. The different natures of the received user
signals and interference require different processing methods.
We improve and compare several adaptive equalizers to deal with
time-varying user channels, and propose to use a subspace-based
tracking algorithm to handle time-varying interfering channels.
Simulation results are provided and validate the effectiveness of
the scheme.

I. INTRODUCTION

Tactical wireless communication systems operate in com-
plex terrain and radio frequency (RF) contested environments.
These systems should be robust to both intentional and hostile
interference, while enabling high data rate communication
between end devices. Compared to single antenna systems,
multiple-input-multiple-output (MIMO) techniques can signif-
icantly increase system capacity and mitigate interference in
the spatial domain, and they have been proposed for tacti-
cal communications [1]–[4]. MIMO provides great potential
for interference mitigation, achieving reliable and high-speed
communications.

Numerous MIMO-based interference mitigation methods
have been investigated in tactical RF environments [5]–[10].
For example, in [5], an adaptive transmit-receive beamform-
ing scheme was proposed for MIMO system, using sub-
space projection to determine the transmitter and receiver
beamforming. An anti-jamming method in [7] was developed
based on null-steering to cope with adverse interference in
Long Term Evolution (LTE) military communications. In [8],
a tactical MIMO communication system was developed to
mitigate interference from multiple interferers. More recently,
we proposed a scheme for joint multi-user MIMO (MU-
MIMO) communication and adverse interference mitigation
[10]. Different to conventional approaches which estimate the
directions of interferers and then generate beams with nulls
in these directions, we designed an approach based on the
null space of estimated interfering channels. This method can
effectively deal with interfering signals coming from multiple

directions, and can potentially support communications with
users even when they are in similar directions to the interferers.

Practically, both users and the interferers may move around,
and the environment between them is likely to be dynamic.
This leads to time-varying channels, which are typically chal-
lenging to deal with. Time-varying channels require frequent
updates on null space estimation, channel estimation and
equalization coefficients. The user channels and interfering
channels are different in nature. The user channels can be
estimated exactly and the signals from other users can be po-
tentially removed because all users’ signals are based on nor-
mal constellation symbols. However, the interfering channels
cannot be directly estimated because the interfering signals
can be any type, even without a fixed correlation. The estimate
will depend on both the channel and the transmitted signals.
Since the statistical properties of the interfering signals can be
time-varying, the effect of the signal cannot be removed effec-
tively using existing blind channel estimation techniques. One
effective way is to estimate the null space of the interference
channels instead, to mitigate the interfering signals. However,
the null space estimation is based on the received signal, and
it is still affected by the correlation of the interfering signals.
When either the interfering channels or signals change, the
null space still needs to be updated. Otherwise, the residual
interfering signals may increase. Furthermore, we assume that
the interference is similar to additive white Gaussian noise
(AWGN). Therefore we cannot use an adaptive equalizer to
deal with both user and interference channel variations.

In this paper, we propose a scheme including several
techniques to address the problems associated with time-
varying user and interferer channels. We propose an improved
superframe structure to enable effective channel and null space
tracking. We then improve and compare several existing adap-
tive equalizers to deal with time-varying user channels, and
introduce a subspace-based tracking algorithm to handle time-
varying interfering channels. Simulation results are provided
and validate the effectiveness of the scheme.

Notations: We use (.)T , (.)∗, (.)H , and (.)−1 for transpose,
conjugate, conjugate (Hermitian) transpose, and inverse oper-
ation, respectively.
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Fig. 1: MU-MIMO system with active interferers.

II. SYSTEM MODEL AND BASIC RECEIVER SIGNAL
PROCESSING

In this section, we present our scheme by referring to an
access network with multiple user equipment (UE) and a base
station (BS), and we focus on the downlink, i.e., the BS sends
multiple spatial streams to multiple users. The scheme can also
be applied to other networks such as an ad-hoc network where
one node uses MU-MIMO to communicate to multiple other
nodes in the presence of active interferers. Consider such an
MU-MIMO downlink system in an RF contested environment,
with NT transmit antennas at the BS and Nk receive antennas
at the kth UE, as illustrated in Fig. 1. The BS communicates to
K UE using MU-MIMO. Note that the BS does not necessarily
have more antennas than UE.

There are J single-antenna active interferers that intend to
interfere with the communications between the BS and the UE
by continuously transmitting interference signals. Note that the
algorithms discussed in this paper are also suitable for multi-
antenna interferers, and an interferer with multiple antennas
can be considered as multiple single-antenna interferers. For
both cases, we assume there are a total of J antennas of
interferers’ in the system.

The number of independent data streams for the kth UE is
Sk, where Sk ≤ Nk, and S =

∑K
k=1 Sk is the total number

of independent streams. Note that at the minimum, we only
require NT ≥ S for MU-MIMO, and Nk > J for effective
interference mitigation and signal reception. In reality, due
to the channel correlation between antennas, the number of
supported streams is generally reduced. We do not require
channel reciprocity here. The channel in each communication
link of the dynamic environment including motion is assumed
to be a time-varying Rician fading channel.

At the sample time t, the received signals at the kth UE is
given by

y
k
(t) = Hk(t)Pksk(t) + Hk(t)

∑K
i 6=k Pisi(t)

+Zk(t)xj(t) + n(t), (1)

where Pk ∈ CNT×Sk is the precoding matrix applied at the BS
for the kth UE, Hk ∈ CNk×NT denotes the channel matrix

between the BS and the kth UE, sk ∈ CSk×1 denotes the
signal from the BS to the kth UE, Nsample is the number
of signal samples, Zk = [Zk1,Zk2, ...ZkJ ] ∈ CNk×J is the
channel matrix between J interferers and the kth UE, xj =
[xj1;xj2; ...xjJ ] ∈ CJ×1 stands for the transmitted interference
signals, and n ∈ CNk×1 is additive white Gaussian noise
(AWGN) with independent and identically distributed (i.i.d.)
entries of zero mean and variance σ2

n.
The precoder can be designed based on equivalent channels

fed back from the UE. This can improve the system perfor-
mance, including both detection performance and increased
number of spatial streams when NT > Nk. However, using
an explicit feedback timeslot will significantly increase the
time period of the transmission, which may become infeasible
in fast time-varying channels. Therefore direct communication
without explicitly requesting and waiting for channel feedback
is preferred. The resulted number of spatial streams will be
reduced in this case. Without loss of generality, we assume
the precoder matrix Pk is known. In the case of no channel
knowledge, this can be a submatrix of the Walsh-Hadmard
matrix with an evenly distributed data symbol in all antennas
[11].

To guarantee communications between the BS and the UE,
the MU-MIMO system needs to mitigate the interference
signals. In the null space based approach, this is achieved by
multiplying the received signal with a beam-forming matrix
derived from the null space matrix of the interference channels.
The received signal after nullification can be represented as
[10],

rk(t) =(Wk(t))
H
(
Hk(t)Pksk(t)

+ Hk(t)

K∑
i 6=k

Pisi(t) + Zk(t)xj(t) + n(t)
)
, (2)

where (Wk(t))
H ∈ CSk×Nk is the beam-forming matrix used

to nullify the received interference signals.
A straightforward method is to let W(t) be the estimate of

the null space matrix of Zk(t), Q̂k.Equalization can then be
applied to the signal rk(t) to recover the data symbols sk(t).

III. THE PROPOSED METHODOLOGY

In this section, we present the proposed scheme for realizing
reliable MU-MIMO communications in the presence of hostile
interferers in time-varying channels. We first present a design
of the superframe that enables tracking of UE channels and
null space of interfering channels. We then introduce adaptive
signal processing techniques, to support the dynamic use case
of mobile UE with time-varying null space of interfering
channels.

A. Structure of the Proposed Superframe

The proposed superframe is shown in Fig. 2. It consists
of an initial and long silent period for null space acquisition,
and several packets/frames. Within each packet and between
packets, there is a short silent period for null space tracking
and updating. The reason for using silent periods is that
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Fig. 2: Improved superframe structure for time-varying UE
and interfering channels.

signals transmitted from the BS cannot be removed from
the received signals to conduct null space estimation before
channel estimation is done, as channel estimation needs to be
based on the signals in equation (2).

Each frame consists of a preamble and many blocks. Each
block consists of symbols of data payload (including PHY
header), one conventional pilot, and several zero pilots. The
preamble includes a short training sequence (STS) and a long
training sequence (LTS). The STS is used for packet detection
and fine timing, and carrier frequency offset (CFO) estimation.
The LTS is used for channel estimation. The conventional
pilots are used for updating equalization coefficients, and the
zero pilots (no transmitted signals) are used for null space
tracking.

The use of pilots and zero pilots enables effective tracking
of both the UE channels and null space. It is noted that channel
estimation, and hence the equalization coefficients, also need
to be updated once the applied null space matrix Wk(t) is
changed. So the change of Wk(t) should generally be applied
at the start of each frame, but not after each segment of zero
pilots.

B. Adaptive Channel Equalization

To deal with time-varying UE channels, we propose to use
an adaptive equalizer, where the equalization coefficients can
be adapted to channel variations.

There have been several types of adaptive filters proposed
in the literature, such as the conjugate gradient equalizer
(CGE) for broadband MIMO systems in [12], and the adaptive
decision feedback equalizer (DFE) for V-BLAST systems in
[13]. All of these equalizers recursively compute and update
equalization coefficients. The CGE does not require matrix
inversion, and has a lower complexity and better numerical
stability. The DFE can achieve better performance, but has a
higher complexity.

In this paper, we test and compare the equalizers in [12]
and [13] for all the dynamic use cases presented here, with
some improvements detailed below.

1) Improvement on Initialization: Most of these adaptive
equalizers consider the case without a training sequence block,
and hence the initial values of the iterative algorithms are set
as random or zero values. This causes long convergence time.

Since there is a sequence of training symbols in our pro-
posed superframe structure, we can generate the initial inputs
for equalizer coefficients, using, e.g., the LTS. The correlation
matrix between received signals, between received signals and
the data symbols and so on, can all be initialized using the
received LTS signals. The performance of the adaptive filters is
found significantly improved with the proposed initialization.

2) RLS-FFE: The DFE in [13] is based on the recursive
least square (RLS) algorithm. It uses both feedforward and
feedback filtering, and requires the reordering of DFE opera-
tions. Hence it has very high complexity. A lower-complexity
filter can be derived from it by removing the feed-backward
filter and keeping the feed-forward filter. We call it RLS-FFE.
This achieves significantly reduced complexity, and is shown
to work well via simulation.

C. Estimation of the Null Space Matrix

During the initial silent period (null space acquisition pe-
riod) , the estimate of the null space matrix Q̂k can be
obtained by using singular value decomposition (SVD) of the
received interfering signals. Assume the interference channels
and signals are fixed during a period of T samples. From
(1), the received signal at the kth user at sample t can be
represented as

yj
est
k (t) = Zkxj(t) + n(t), (3)

where xj is the vector of transmitted interference signals in
the estimation process. Let

Rest
k =

1

T

t′+T∑
t=t′

yj
est
k (t) (yj

est
k (t))H (4)

be the averaged correlation matrix of yj
est
k (t).

Applying the SVD of Rest
k [14], [15], we obtain

Rest
k = [Us Un]

[
Λs 0
0 Λn

] [
UH

s

UH
n

]
, (5)

where the SVD is represented by separating signal and noise
spaces. Separation of signal and noise spaces can be based
on the estimated number of interfering streams, J , which can
be obtained via, e.g., the minimum description length (MDL)
method [16].

We can then obtain the estimated null space matrix Q̂k ∈
C(Nk−J)×Nk as

Q̂k = Un, (6)

where Un ∈ CNk×(Nk−J) spans the noise subspace [15] and
corresponds to the Nk − J least singular values.

Note that the estimated null space actually is the null
space of the received signals, Qsig

k , and does not necessarily
correspond to the null space of the channel matrix Zk, Qk.
The effectiveness of suppressing interference signals depends
on how close Q̂k is to Qk, which is affected by two major
factors.
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The first factor is the interferers’ channel variation over a
time period Tb of interest. This factor can be quantified by
TbFd, where Fd is the interference channels’ Doppler spread
[17]. For a communication system, a larger value of TbFd

means channel changes rapidly, and hence Q̂k needs to be
updated more frequently. However, frequently updating Q̂k

means more overhead for the communication system.
The second factor is the interference signals’ correlation,

which directly affects the similarity between Q̂k and Qsig
k .

When the interfering signals are uncorrelated, Qk = Qsig
k ;

but the equality does not hold when the interfering signals
are correlated. When interfering signals are correlated, we
end up with estimating Qsig

k , which is the null space of the
equivalent interfering channel matrices seen by the UE. The
estimate Q̂k becomes less effective in suppressing interference
signals when signal correlation changes. However, only if the
correlation remain unchanged, the estimated null space can
still suppress most of interfering signals.

Since some important processing after the interference nul-
lification depends on Wk(t), updating Wk(t) would require
the update of many other variables, including the equivalent
channel matrix Heq

k and the equalizer. Null space computation
involves high-complexity SVD or other similar operations, and
updating equalizer typically involves high-complexity matrix
inversion. Therefore the complexity will be very high, if
conventional approaches are used. A good idea is to update
Q̂k and WH

k (t) separately, and use the null space tracking
algorithm as will be detailed next.

D. Null Space Tracking

Many null space tracking algorithms have been proposed in
the literature to track and update the signal and/or null spaces
from SVD, such as the fast orthogonal Oja (FOOJA) [18], data
projection method (DPM) [19], and fast DPM (FDPM) [15].
The FDPM has a low complexity of O(Nk(Nk − J)), a high
convergence rate, and excellent numerical stability. Therefore,
we select FDPM for null space tracking in our proposed
method. A detailed description of the FDPM algorithm can
be found in [14], [15].

The SVD is used to acquire the initial Q̂k during the initial
long silent period, and the FDPM algorithm is applied to track
and update Q̂k during the zero-pilots and the short interframe
silent periods. Hence SVD only needs to be done once per
superframe.

It should be noted that the adaptive filter coefficients are up-
dated by using the signal after applying the matrix (Wk(t))

H ,
while the null space tracking is done by using the signal before
applying (Wk(t))

H . The null space tracking cannot be applied
to (Wk(t))

Hy
k

as Wk(t) is not full row-rank and therefore,
the tracking will not return an efficient output.

As all the normal signal processing at the receiver is based
on signals after applying (Wk(t))

H , channel and equalization
coefficients would need to be re-estimated if Wk(t) is updated
directly after null space tracking. Therefore, for convenience
we only update Wk(t) once each frame, although Q̂k is
updated every zero pilot. This enables tracking and updating
Q̂k in time, using scattered short zero pilots. But it does not

support the usage of long packets, as Wk(t) is not updated
and residual interference could become very large.

Although the channel estimate can be updated readily after
updating the null space, it is not easy to update the equalization
coefficients. The main reason is that updating the equalization
coefficients involves matrix inversion and the complexity is
high. This can be seen from the following analysis. Other
variables in the adaptive equalizer may also need to be
updated.

There exists a multiplicative relationship between the new
and current null space matrices:

Q̂k(t+ 1) = Q̂k(t)G(t+ 1), (7)

where G(t+1) is a full rank square matrix of size (Nk−J)×
(Nk − J). Since both Q̂k(t) and Q̂k(t + 1) are submatrices
of orthonormal matrices, we can get

G(t+ 1) = Q̂H
k (t)Q̂k(t+ 1). (8)

Let Wak(t) = Q̂k(t), and consider a linear equalization
matrix We(t). Updating Wk(t+ 1) to Q̂k(t+ 1) requires

We(t)Q̂k(t) = We(t)(G
H(t+ 1))−1(GH(t+ 1)Q̂H

k (t))

= (We(t)(G
H(t+ 1))−1)Wk(t+ 1), (9)

and We(t + 1) = We(t)(G
H(t + 1))−1. Thus the linear

equalization matrix We(t) needs to be updated by multiplying
the current one with an inverse matrix of GH(t+1). Unfortu-
nately, there is no fast algorithm to compute (GH(t+ 1))−1,
and the complexity is O((Nk − J)3).

An alternative approach to the FDPM tracking is updating
the correlation matrix only, by using the signals at the zero
pilots, and then conducting an SVD to estimate the null space
at the start of each packet. This may have overall lower
complexity, depending on the number of total zero pilots.
However, simulation results show that the FDPM algorithm
achieves better performance.

E. The Complete Algorithm

Algorithm 1 presents the complete methodology. It starts
with a silent period, during which the BS does not send
any signals. The channel null space is then estimated from
the received interference signal, and we obtain the initial
Q̂k ∈ C(Nk−J)×Nk . Based on Q̂k, we design Wk(t) by
letting Wk(t) = Q̂k. Since the interference signals are mostly
removed by using Wk(t), the equivalent channel

Heq

k = WH
k (t)Hk(t)Pk

can be estimated by using the LTS. Adaptive equalizers as
discussed in Section III-B are then applied to decode the
data symbols. The equalizer coefficients are updated adaptively
using received signals from the data pilots. Each UE can then
demodulate all Nk − J spatial streams, and retain the streams
for itself only. The FDPM algorithm is applied to update the
null space estimate, using the received signals corresponding
to the zero pilots. The Wk(t) is then updated and applied at
the start of the next frame.
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Algorithm 1 The complete scheme.

1: while 1 do
2: During the silent null space acquisition period, UE

estimates Q̂k.
3: At the start of each packet, design Wk(t) from Q̂k

and apply it to the received signal.
4: Synchronize and estimate the equivalent channel Heq

k

using the preamble in packets.
5: Use one of the adaptive filters in Section III-B to

equalize the signal rk(t). Demodulate the equalized sig-
nals for the streams for user k.

6: Update the null space estimate Q̂k using the FDPM
algorithm with signals received corresponding to the zero
pilots;

7: Update the coefficients of the adaptive equalizer using
the data pilot, and apply the updated coefficients for
equalization;

8: Repeat from 3.
9: end while

Parameters Meaning Values
v Moving speeds of interferers (km/h) 150 and 20

riceK Ricean factor in Ricean channels 1 and 4
Tsilence # samples in the initial silence period 64
Tpilots # zero pilots in each virtual block 3

segmentLen Length of each virtual block; 50
corrCoef Correlation coefficients of signals various

SNR Signal-to-noise ratio (dB) 35
µ Learning rate factor in FDPM between 0 and 1.

TABLE I: Basic system parameters.

IV. SIMULATION RESULTS

We provide some simulation results in this section to
validate the effectiveness of the proposed scheme. The time-
varying channel models for both UE and interferers are simu-
lated using the Jakes model [20]. A single carrier narrowband
MIMO system is considered with a bandwidth of 2MHz and
central frequency at 447 MHz. Each UE and the BS are
assumed to have a uniform linear array of 8 antennas. The
BS is communicating with four UE, each having one spatial
streams.

We first test the null space tracking algorithm, and then the
entire scheme.

A. Tracking Time-varying Null Space

The parameters used in the simulation here are shown in
Table I, unless noted otherwise.

We compare the tracking performance for the following
methods:
• PerSample: FDPM method, updated per zero pilot;
• Direct-SVD: Correlation matrix updated across zero pi-

lots, and then SVD is computed and null space updated
every segment of zero pilots;

• Ideal: Ideal null space derived directly from the channel
matrix;

• perBlock: FDPM method, but with one iteration per
segment of zero pilots. All signals are input together;

• Initial: Using the initially estimated null space, without
updating.

The tracking performance is evaluated using the normalized
residual signal power, which is defined as the ratio between
the signal power after and before applying (Wk(t))

H.
In Fig. 3, the tracking results for non-correlated signals are

presented, with µ=0.5 and 0.7, respectively. The two subfigures
show that the PerSample FDPM achieves the best tracking
performance, and the performance with µ=0.7 is slightly better
than that with µ=0.5. However, this does not mean that a
larger µ always achieves better performance. Actually, we’ve
found that the best values depend on many factors, such as the
SNR, the signal correlation, and the channel variation speed.
A general rule of thumb is, a larger µ is better for higher
SNR and rapid channel variation, and a smaller one is better
otherwise. An adaptive learning factor is yet to be investigated.
Comparing the two subfigures, we can also see that with u
increasing, the performance gap between the perSample and
perBlock methods is reduced. Since the perBlock method has
a lower complexity, this indicates that using the perBlock
method with a larger µ is preferred if a low-complexity
implementation is desired.

Fig. 4 presents the tracking performance for signals with
varying correlation coefficients. It is shown that the FDPM
method can adapt to the change of the correlation well.
Comparing the two subfigures, we can see that when the
changes of correlation coefficients are small, the adaptation
happens quickly, and the performance variation is small. When
the changes are large, convergence is slower, particularly when
the correlation coefficient decreases to a much smaller one.
The performance gap is also large when the variation is large.

B. Demodulation Performance

We present simulation results for the demodulation perfor-
mance. The simulated adaptive equalizers are CGE and RLS-
FFE, together with a zero-forcing (ZF) equalizer with fixed
coefficients for comparison. The initial parameters of all the
equalizers are determined using the LTS, and then they are
updated using the signals corresponding to the pilots. The
basic system parameters are similar to those in Table I, and
some additional parameters and revisions are shown in Table
II. The lengths of LTS is 32 and the interframe silent period is
10 samples. Correlation coefficient between interfering signals
is set as 0.1.

Parameters Meaning Values
UE moving speed Moving speeds of UE (km/h) [40 80 100 0]

Modulation 16QAM
UE SNR SNR of UE signals (dB) 25

v Interferer Moving Speeds (km/h) [40, 60]
γ Power ratio between interfering

and effective signals [2,1]
µ learning factor 0.7
Lp Length of data pilots 1

TABLE II: Additional system parameters used in simulating
demodulation performance.

We first test the performance of the equalization methods
on handling time-varying UE channels, without interfering
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(b) µ=0.7.

Fig. 3: Channel tracking results using FDPM for uncorrelated
signals.

signals. The data payload length is set as 1500 samples, to
clearly demonstrate the capabilities of these methods. The
mean BER, averaged over all UE, is shown in the first row in
Table III.

The simulation results show that the adaptive equalizers all
achieve better performance than ZF. The CGE achieves a bal-
ance between performance and complexity, and is determined
as the best option. The results also show that the proposed
adaptive equalizers are effective in dealing with time-varying
UE channels, but are not very effective in dealing with the
varying null space of the interference channels, as explained
in Section I.

We then simulate the cases with static and moving inter-
ferers, and show the mean BER results in rows 2 to 4 in
Table III. In each superframe, 5 frames are transmitted, with
an interframe interval of 10 samples. We compare the cases
including no interference, static interferers (all tracking is still
enabled), mobile interferers without any null space tracking,
mobile interferers with only interframe null space tracking,
and mobile interferers with both intra-frame and interframe
null space tracking. The data payload length in each packet is
reduced to 500 samples, to allow the update of Wk(t) in time.
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(a) Correlation coefficients [0.6, 0.3, 0.0, 0.4].
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(b) Correlation coefficients [0.1, 0.9, 0.0, 0.45].

Fig. 4: Channel tracking results using FDPM for signals with
varying correlation coefficients. Signals with each correlation
coefficient last the same period of 0.5035 ms, starting from
0ms. Here µ=0.7.

The PerSample FDPM tracking is applied, when the estimated
interferers are present.

In Fig. 5, we present the BER performance for the CGE with
moving interferers. The three groups of curves clearly show
the significant improvement achieved by using tracking, in
particular, both intra-frame and inter-frame tracking. They also
clearly demonstrate that the adaptive equalizer itself cannot
mitigate the interference due to changing interfering channels
and channel null spaces.

From the BER results in Table III, we make the following
observations:

• Both adaptive equalizers are effective in handling time-
varying UE channels, but not very effective for time-
varying null space;

• UE channel variation has smaller impact on system BER,
compared to variation of interfering channels;

• For short packets or small accumulated variation within a
packet, adaptive equalizers do not show any advantages.
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Scenarios ZF CGE RLS-FFE
No Interferer (data payload length 1500) 5.6267e-04 1.4956e-04 1.5400e-04
With fixed Interferer (with all tracking) 0.0018 0.0020 0.0021

With mobile Interferer (without any tracking) 0.1079 0.0427 0.0181
With mobile Interferer (without intra-packet tracking) 0.0172 0.0100 0.0076

With mobile Interferer (with all tracking) 0.0088 0.008 0.0064

TABLE III: BER results for various equalizers.

1 1.5 2 2.5 3 3.5 4 4.5 5
Index of packets

10-2

10-1

B
E

R

UE1

UE2

UE3

UE4

No tracking

with only interframe tracking with all tracking

Fig. 5: BER performance of the CGE for mobile interferers.
Five packets are continuously transmitted in one superframe.
The dash-dot curves with circle marks, dash-curves with
diamond marks, and solid curves with star marks are for the
cases without any tracking, with only interframe tracking and
with all tracking, respectively.

V. CONCLUSION

In this paper, we presented a scheme to overcome time-
varying user and interfering channels. We developed different
techniques to deal with these two types of channel variations.
A new improved superframe structure is proposed to allow
channel and null space tracking. A null space tracking algo-
rithm, FDPM, is tested for updating the null space matrix,
which is then used to update the equalizer at the start of each
frame. Several adaptive filters, including CGE, RLS-FFE, and
DFE, are improved and tested. Simulation results show the
effectiveness of the proposed scheme.
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