
“©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

1

Projected Kernel Least Mean p-power Algorithm:
Convergence Analyses and Modifications

Ji Zhao, Hongbin Zhang, Senior Member, IEEE, Gang Wang, Jian Andrew Zhang, Senior Member, IEEE

Abstract—Sparsified kernel adaptive filters (SKAFs) is an
attractive filtering solution with low memory and computational
complexity. Most of existing SKAFs are based on the mean square
error (MSE) criterion under Gaussian noise assumption for its
simplicity and convenience. When the assumption deviates largely
from the underlying truth, the performance of these methods
could degrade significantly. In this paper, we propose a novel
SKAF, named as projected kernel least mean p-power algorithm
(PKLMP), based on the mean p-power error (MPE) criterion
and vector projection (VP) method. We provide convergence
analyses in terms of the stead-state MSE, based on a Taylor
expansion method, and derive the lower and upper bounds for
the steady-state excess MSE. We also conduct mean convergence
analysis for PKLMP, and derive convergence conditions. To
exploit the information in the desired outputs, we further derive
a modified PKLMP by smoothing the desired signal. Finally, a
simple and effective online variable kernel centers strategy is
proposed to improve the filtering performance of the proposed
KAFs. Simulation results under a static function estimation, a
chaotic time-series prediction, and two real-world time-series
predictions are conducted and validate the effectiveness of the
proposed PKLMP algorithms.

Index Terms—Sparsification, Smoothed output, Variable cen-
ter, Kernel adaptive filter, Least mean p-power, Convergence
analysis.

I. INTRODUCTION

THE kernel method has been widely used to solve non-
linear problems, e.g., time series prediction, nonlinear

regression, patter classification, and image processing [1].
However, most kernel methods are batch algorithms having
computational complexity and memory costing in the order
of O(N3) and O(N2), respectively [2]. This limits kernel
methods to real-time applications. As an online version of
kernel method, the kernel adaptive filter (KAF) is receiving
increasing attention in the signal processing community.

Among the best known kernel adaptive filtering algorithms
are the kernel recursive least-squares algorithm (KRLS) [3],
the kernel least-mean-square algorithm (KLMS) [2], the kernel
affine projection algorithm [4], and the kernel normalized
least-mean-square algorithm [5]. Compared with their corre-
sponding linear counterparts, these KAFs can achieve faster

This work was supported in part by the National Natural Science Foundation
of China (Grant nos. 61971100), the China Schoparship Council (Grant no.
201806070013).

J. Zhao, H. Zhang and G. Wang are with the School of Information and
Communication Engineering, University of Electronic Science and Technol-
ogy of China, Chengdu, 611731, PR China. (e-mail: zhaoji@std.uestc.edu.cn,
zhanghb@uestc.edu.cn, wanggang hld@uestc.edu.cn).

J. Andrew.Zhang is with the Global Big Data Technologies Centre,
University of Technology Sydney, Sydney, NSW 2007 Australia. (e-mail:
Andrew.Zhang@uts.edu.au).

convergence rate and superior filtering accuracy in nonlinear
system identification problems.

The main drawback of KAFs is that the functional represen-
tation of classical kernel-based algorithms grows linearly with
the number of processed data, which results in increased mem-
ory and computational complexity. To overcome this problem,
a variety of sparsification methods have been proposed, e.g.,
approximate linear dependency [3], coherence criterion (CC)
[5], novelty criterion (NC) [6], surprise criterion [7], vector
quantization (VQ) method [8], sparsity-promoting regulariza-
tion [9], fixed memory budget model [10], and sliding window
method [11]. From these methods, sparsified KAFs (SKAFs)
are derived and shown to be capable of effectively suppressing
the growth of the structure. Recently, from the perspective
of a feature space, we proposed a new and sample online
sparsification method, called as vector projection (VP) method
[12], [13]. VP can project the transformed input data to its
most relevant center (MRC) in a dictionary. Similar to VQ,
the VP method utilizes the discarded redundant data to update
the coefficients of the MRC in the dictionary. Furthermore, VP
can also exploit the hidden information from the input data
to refine the corresponding coefficients for filtering accuracy
improvement.

Note that almost all the aforementioned KAFs or sparsified
ones are developed from the mean square error (MSE) criterion
under the additive Gaussian noise assumption for mathematical
simplicity and convenience. However, in practical circum-
stances, the signals are often contaminated by non-Gaussian
and impulsive noises, and the KAFs can suffer from severe
performance degradation owing to merely considering the
second-order statistics contained in the MSE. Hence, it is
necessary to find robust models to deal with non-Gaussian
noises.

Recently, the mixed-norm criterion switching between the
mean fourth error and MSE [14], and a kernel affine pro-
jection algorithm with sign error [15] were proposed to deal
with impulsive noises modelled by Bernoulli-Gaussian (BG)
distribution. However, the BG distribution is not suitable for
modelling the fat-tailed noise process, which widely exists in
physics and in various fields of engineering applications. The
α-stable distribution with low probability but large amplitude
is regarded as a better model. For this model, various adaptive
algorithms based upon the least mean p-power error (MPE)
criterion have been developed, because MPE is an appropriate
measure of optimality for minimizing the fractional lower-
order statistics of the prediction error [16]. The celebrated
adaptive filters based on MPE include the least mean p-power
(LMP) [16], the diffusion LMP [17], the smoothed LMP [18],

2

the recursive least p-power (RLP) [19] and its combination
[20]. Furthermore, MPE was applied into reproducing kernel
Hibert space (RKHS) to develop the kernelized LMP (KLMP)
[21] and kernelized RLP (KRLP) filters [22], which can be
viewed as generalizations of KLMS and KRLS, respectively.
However, both KLMP and KRLP also have the limitation of
linearly increasing network structure.

In this paper, by introducing the MPE criterion and VP
method, we propose a novel SKAF, named as projected kernel
least mean p-power algorithm (PKLMP), which can overcome
the aforementioned problems. The main contributions of this
paper are as follows:

• We incorporate the VP method into KLMP to develop
the PKLMP algorithm for overcoming the problem of
growing kernel network;

• We provide an analytical sufficient condition for the
convergence of PKLMP, in terms of the MSE. Based on a
Taylor expansion method, we derive theoretical lower and
upper bounds for the steady-state excess MSE (EMSE),
which are applicable to numerous types of noises, includ-
ing the α-stable noises (α-SN). For p ∈ [1, 2), we also
prove that PKLMP can achieve better filtering accuracy
than quantized KLMS (QKLMS) [8] in the presence of
impulsive noise;

• We provide mean convergence analysis for PKLMP, and
derive conditions for convergence;

• We propose a modified PKLMP by smoothing the de-
sired signal, called as PKLMP-SD, which can effectively
deal with the situation when the desired outputs of the
projected data are different to those of MRCs. This can
happen when, e.g., the underlying systems are contami-
nated by α-SN;

• We also introduce a simple strategy to change online
kernel centers, which can further improve the filtering
performance of the proposed PKLMP algorithm.

The rest of this paper is organized as follows. In Section II,
we first introduce KLMP, and then describe the concept of VP
and derive PKLMP. In Section III, we conduct convergence
analyses for PKLMP with different values of p. In Section
IV, further modifications are proposed for PKLMP. Simulation
results are presented in Section V to verify the effectiveness
of PKLMP and the modified methods. Finally, concluding
remarks are given in Section VI.

II. PROJECTED KERNEL LEAST MEAN p-POWER
ALGORITHM

Consider the learning of a continuous nonlinear input-output
mapping f : U → R based on the sequence of input-output
pairs {u(n), d(n)}+∞n=1, where u(n) ∈ U ⊂ Rl is the input
data vector, and d(n) ∈ R is the desired output at discrete
time n. KAF is a kernel-based sequential estimator of f such
that fn is refined on the basis of the last estimate fn−1

and current sample {u(n), d(n)}. We start with revisiting the
KLMP algorithm and the VP method, and then introduce our
proposed PKLMP algorithm.

A. Kernel Least Mean p-power Algorithm

A Mercer kernel is a continuous, symmetric and positive-
definite function k(·, ·) : U × U → R. The most important
property of a Mercer kernel is the kernel trick, which allows
inner-product based algorithms to be performed in a relatively
high dimensional feature space F [24], i.e.,

k(u,u′) = 〈ϕ(u), ϕ(u′)〉F, (1)

where u ∈ U, 〈·, ·〉F denotes the inner product in F, ϕ(·) is a
nonlinear mapping function induced by κ(·, ·), and ϕ(u) ∈ F.
In addition, the F space is essentially the same as a RKHS
induced by the kernel if we identify ϕ(u) = κ(u, ·) [25]. In
this work, we do not distinguish between these two spaces if
no confusion arises.

KLMP is actually the linear LMP algorithm in F [21], [22].
First of all, ϕ(·) is applied to transform the input u(n) into
F. Then, applying the LMP algorithm to a new sample pair
{ϕ(u(n)), d(n)}, we obtain

Ω(0) = 0

e(n) = d(n)−Ω(n− 1)Tϕ(n)

Ω(n) = Ω(n− 1) + η|e(n)|p−2e(n)ϕ(n),

(2)

where e(n) is the estimation error at iteration n, η > 0 is the
step size, p ≥ 1 ensures the convexity of MPE [31], [33],
ϕ(n) = ϕ(u(n)), Ω(n) denotes the corresponding weight
vector in F, and T stands for the transposition of a matrix
or vector. Actually, fn is the linear composition of Ω(n) and
ϕ(·) [24], i.e., fn = Ω(n)Tϕ(·).

Hence, we define the learning rule in the input space as
follows

f0 = 0

e(n) = d(n)− fn−1(u(n))

fn = fn−1 + η|e(n)|p−2e(n)κ(u(n), ·).
(3)

Let ω(n) = [ω1(n), ω2(n), . . . , ωn(n)]T be a kernel-
weight vector (KWV) at instant n, and D(n) =
{D1(n),D2(n), . . . ,Dn(n)} be a dictionary. Then fn in (3)
can be represented as

fn =

n∑
l=1

ωl(n)κ(Dl(n), ·), (4)

where ωl(n) = η|e(l)|p−2e(l), Dl(n) = u(l), |D(n)|c = n,
and | · |c denotes the cardinality of a set.

Remark 1. Compared with KLMS [2], we can observe that
KLMP is actually a variable-step-size KLMS with η(n) =
η|e(n)|p−2. Hence, they have almost the same computational
complexity. When the α-SN is present, e(n) will become
larger, which results in a smaller η(n) due to 1 ≤ p < 2. In
this case, η(n) is robust to larger outliers. However, in online
learning, KLMP yields a growing kernel network by allocating
a new kernel unit to every new sample.

B. Projected Kernel Least Mean p-power Algorithm

Recently, to suppress the growing structure of a KAF, we
proposed a simple and efficient online vector projection (VP)
method in F [12], [13]. In this paper, applying the VP method

3

to KLMP, we develop a projected kernel least mean p-power
(PKLMP) algorithm.

Let j? = arg max
1≤j≤M

cos(ϕ(n), ϕ(Dj(n− 1)))

Θ = cos
(
ϕ(n), ϕ(Dj?(n− 1))

)
,

(5)

where the cosine-relation function cos(x,y) = 〈x,y〉F
‖x‖F·‖y‖F , with

‖ · ‖F denoting the norm in the space F. Using the idea of VP,
PKLMP can be obtained by projecting ϕ(n) on the weight-
update equation Ω(n) = Ω(n − 1) + η|e(n)|p−2e(n)ϕ(n) in
(2), namely

Ω(0) = 0

e(n) = d(n)−Ω(n− 1)Tϕ(n)

Ω(n) = Ω(n− 1) + η|e(n)|p−2e(n)P (ϕ(n)),

(6)

where P (·) is the vector projection operator, and P (ϕ(n)) =
a(n)ϕ(Dj?(n− 1)). Here, a(n) is an approximation factor in
VP and can be estimated as

a(n) =

κ(u(n),Dj?(n− 1))

‖ϕ(Dj?(n− 1))‖2F
, if Θ ≥ εc

1, otherwise,

(7)

where Dj?(n− 1) is the j?th entry of a dictionary D(n− 1)
with M codewords at iteration n− 1, and εc is a pre-selected
coherence threshold, which provides a tradeoff between the
filtering accuracy and computation complexity.

The learning rule for PKLMP in the original input space U
can then be represented as

f0 = 0, e(n) = d(n)− fn−1(u(n))

fn = hn−j? + hnj?

hn−j? =

M∑
l=1,l 6=j?

ωl(n− 1)κ(Dl(n− 1), ·)

hnj? = (ωj?(n− 1) + η|e(n)|p−2a(n)e(n))

× κ(Dj?(n− 1), ·),

(8)

where hn−j? contains all entries of ω(n) except for the j?th,
which is contained in hnj? . Therefore, we can obtain the
PKLMP algorithm as summarized in Algorithm 1.

The main steps of Algorithm 1 are 3), 4) and 5). Based
on the cosine-relation between ϕ(n) and ϕ(D(n − 1)),
PKLMP decides whether to change the dictionary or not. In
step 4), PKLMP keeps the dictionary unchanged, and uses
η|e(n)|p−2a(n)e(n) to update the j?th entry of KWV at
instant n − 1. In step 5), the dictionary absorbs u(n) as its
new element, and KWV uses η|e(n)|p−2e(n) to expand itself.

Remark 2. From Algorithm 1, one can see that PKLMP
only absorbs the data which satisfies the significant criterion
(i.e., Θ < εc). With the evolution of adaption, PKLMP
achieves a SKAF with |D(n)|c = M � n. Although, we
operate the vector projection in F, as shown in (8), PKLMP
can be effectively executed in U.

Moreover, when p = 2, PKLMP becomes a PKLMS
algorithm, and there are some close relationships between the
PKLMS algorithm and several existing ones such as QKLMS
and the modified QKLMS (MQKLMS) algorithm [23]. When

Algorithm 1: Projected Kernel Least Mean p-power
(PKLMP) Algorithm

Initialization:
step size η > 0, Mercer kernel κ(·, ·)
coherence threshold 0 < εc < 1
dictionary D(1) = {u(1)} with M = 1
KWV ω(1) = [η|d(1)|p−2d(1)]T

Computation:
while {u(n), d(n)} (n ≥ 2) available do
1) the output:
fn−1(u(n)) =

∑M
l=1 ωl(n− 1)κ(Dl(n− 1),u(n))

2) the estimation error:
e(n) = d(n)− fn−1(u(n))

3) the cosine-relation between ϕ(n) and ϕ(D(n− 1)):
Θ = max1≤j≤M

〈ϕ(n),ϕ(Dj(n−1))〉F
‖ϕ(n)‖F·‖ϕ(Dj(n−1))‖F

4) if Θ ≥ εc
keep the dictionary unchanged:
D(n) = D(n− 1), M ⇐M
update the coefficient of the MRC:
ωj?(n) = ωj?(n− 1) + η|e(n)|p−2a(n)e(n)

with a(n) =
κ(u(n),Dj? (n−1))

‖ϕ(Dj? (n−1))‖2F
5) otherwise

change the dictionary:
D(n) = {D(n− 1),u(n)}, M ⇐M + 1
update the KWV:
ω(n) = [ω(n− 1)T , η|e(n)|p−2e(n)]T

end while

a Gaussian kernel (with a kernel size h) is applied to PKLMS,
we have

a(n) = κ(u(n),Dj?(n− 1))

fn = hn−Gj? + hnGj?

hnGj? =
(
ωj?(n− 1) + ηe(n)κ(u(n),Dj?(n− 1))

)
× κ(Dj?(n− 1), ·),

(9)

where hn−Gj? and hnGj? are similar to hn−j? and hnj? , respec-
tively, except that a Gaussian kernel is used in the former.
In this case, PKLMS has the same update formations as
MQKLMS. However, there exist significant differences be-
tween the two. MQKLMS uses the VQ method in the original
space to control the network size, and it considers the term
κ(u(n),Dj?(n − 1)) (in (9) of [23]) from the perspective
of gradient method. Comparatively, PKLMS applies the VP
method in a feature space to reduce the computational com-
plexity, and the term κ(u(n),Dj?(n−1)) in the approximation
factor a(n) is an integrated part of the VP method in PKLMS.
Furthermore, when κ(u(n),Dj?(n− 1)) ≈ 1, we can get{

fn = hn−Gj? + hn1
Gj?

hn1
Gj? = (ωj?(n− 1) + ηe(n))κ(Dj?(n− 1), ·),

(10)

and PKLMS becomes equivalent to QKLMS. Hence, the pro-
posed PKLMP can be viewed as a generalization of MQKLMS
and QKLMS.

4

TABLE I: Differences between PKLMS and other related
algorithms with hnGj? = (j?a + ηj?b)j?c : j?a = ωj?(n− 1), j?c =
κ(Dj?(n− 1), ·).

Algorithm Expressions of j?b
PKLMS e(n)κ(u(n),Dj? (n− 1))
QKLMS e(n)

MQKLMS e(n)κ(u(n),Dj? (n− 1))
HYPASS e(n)

κ(u(n),Dj? (n−1))Q = 1

In addition, from the perspective of projection, PKLMS is
also related to the hyperplane projection along affine subspace
(HYPASS) algorithm with Q = 1 [26], which is based on the
projection-onto-convex-sets theory [27]. And, the difference
between PKLMS and HYPASS is that κ(u(n),Dj?(n − 1))
in PKLMS becomes a denominator in HYPASS. Table I sum-
marizes the differences among PKLMS, QKLMS, MQKLMS
and HYPASS.

III. CONVERGENCE ANALYSES

In this section, we first provide a stability analysis, and then
conduct mean-square convergence analyses for PKLMP with
different values of p, i.e., converging in terms of the steady-
state MSE. We also analyse the mean convergence behaviour
of PKLMP and derive its convergence conditions.

Let fo denote the unknown nonlinear model that needs
to be evaluated. According to the universal approximation
property [28], there is an optimal vector Ωo ∈ F such that
fo = 〈Ωo, ϕ(·)〉F. Thus, we can represent the desired signal
d(n) as

d(n) = fo(u(n)) + v(n) = 〈Ωo, ϕ(n)〉F + v(n), (11)

where v(n) is the disturbance noise.

A. Stability Analysis

According to (11), the estimation error e(n) can be ex-
pressed as

e(n) = d(n)−Ω(n− 1)Tϕ(n) = ea(n) + v(n), (12)

where ea(n) = Ω̃(n − 1)Tϕ(n) denotes the a-priori error,
and Ω̃(n− 1) = Ωo −Ω(n− 1) is the weight error.

Subtracting Ωo from both sides of the last line of (6), we
have

Ωo −Ω (n)︸ ︷︷ ︸
Ω̃(n)

= Ωo −Ω (n− 1)︸ ︷︷ ︸
Ω̃(n−1)

−η |e (n)|p−2
e (n)︸ ︷︷ ︸

F (e(n))

P (ϕ (n))︸ ︷︷ ︸
a(n)ϕp(n)

⇒ Ω̃ (n) = Ω̃ (n− 1)− ηF (e(n))a(n)ϕp(n). (13)

Squaring both sides of last line of (13), and then taking the
expectations, we have

E
[
‖Ω̃(n)‖2F

]
− E

[
‖Ω̃(n− 1)‖2F

]
= E

[
(ηa(n)F (e(n)))2κp(n)

]
− 2E

[
ηa(n)F (e(n))Ω̃(n− 1)Tϕp(n)

]
, (14)

where κp(n) = 〈ϕp(n), ϕp(n)〉F. To guarantee a converging
solution, E[‖Ω̃(n)‖2F] − E[‖Ω̃(n − 1)‖2F] ≤ 0 should be

satisfied, which means the value of η in PKLMP at ∀n should
satisfy

E
[
‖Ω̃(n)‖2F

]
− E

[
‖Ω̃(n− 1)‖2F

]
≤ 0

⇓
E
[
a(n)F (e(n))Ω̃(n− 1)Tϕp(n)

]
> 0

0 < η ≤
2E
[
a(n)F (e(n))Ω̃(n− 1)Tϕp(n)

]
E [a(n)2κp(n)F (e(n))2]

.

(15)

Remark 3. The last inequality in (15) presents a sufficient
condition for mean-square convergence of PKLMP. However,
in practice, it is difficult to know the upper bound exactly.
Hence, it merely indicates that η needs to be small enough to
make the algorithm converge, and cannot be directly applied
as a strict convergence condition for KAFs.

B. Convergence in terms of Steady-state MSE

We define the EMSE as ξ = limn→∞E[ea(n)2], and use it
to study the steady-state MSE of PKLMP. Before proceeding,
we list the following assumptions that are used in the rest of
this section.
A1. The noise signal v(n) follow multiple independent and

identical distributions with zero-mean and the finite
variance σ2

v , and are independent of the input sequence
{u(n)}.

A2. The a-priori error ea(n) with zero-mean is independent
of v(n).

Assumptions A1 and A2 are commonly used in steady-state
performance analysis for adaptive filters, e.g., in [8], [23], and
[29]. Taking the limits of both sides of (14), we get

lim
n→∞

E
[
‖Ω̃(n)‖2F

]
− lim
n→∞

E
[
‖Ω̃(n− 1)‖2F

]
= lim
n→∞

E
[
(ηa(n)F (e(n)))2κp(n)

]
− 2 lim

n→∞
E
[
ηa(n)F (e(n))Ω̃(n− 1)Tϕp(n)

]
. (16)

When the algorithm reaches the steady-state, we have
limn→∞E[‖Ω̃(n)‖2F] = limn→∞E[‖Ω̃(n− 1)‖2F], and then

η lim
n→∞

E
[
a(n)2κp(n)F (e(n))2

]
= 2 lim

n→∞
E
[
a(n)F (e(n))Ω̃(n− 1)Tϕp(n)

]
. (17)

We further assume that a2(n)κp(n) and F (e(n))2 are
asymptotically uncorrelated (the rationality of this assumption
was discussed in [29]). Since a(n) is only an approximation
factor in VP, we can assume that a(n) is asymptotically
uncorrelated with F (e(n))Ω̃(n − 1)Tϕp(n). In particular, if
we set a(n) = 1, this assumption becomes a truth. Then (17)
becomes
η

2
lim
n→∞

E
[
a(n)2κp(n)

]
lim
n→∞

E
[
F (e(n))2

]
= lim
n→∞

E [a(n)] lim
n→∞

E
[
F (e(n))Ω̃(n− 1)Tϕp(n)

]
. (18)

It is well known that adaptive filters based on LMP achieve
different performance for different values of p. Hence, we
derive the steady-state performance of PKLMP using a Taylor

5

expansion method, which can decouple the correlation be-
tween ea(n) and v(n) [31].

Since F (e) = |e|p−2e and e = ea + v, taking the Taylor
expansion of F (e) with respect to ea around v, we get

F (e) = F (v) + F ′(v)ea +
1

2
F ′′(v)e2

a +O(e2
a)

F ′(v) = (p− 1)|v|p−2

F ′′(v) = (p− 1)(p− 2)|v|p−4v,

(19)

where F ′(v) and F ′′(v) denote the first and second derivatives,
and O(e2

a) contains the third and higher-order terms. Hence,
based on (19), we can have

F (e(n))2 = F (v(n))2 + 2F (v(n))F ′(v(n))ea(n)

+ F (v(n))F ′′(v(n))e2
a(n) + F ′(v(n))2e2

a(n) +O(e2
a(n))

= |v(n)|2p−2 + 2(p− 1)|v(n)|2p−4ea(n)

+ (p− 1)(2p− 3)e2
a(n) +O(e2

a(n)), (20)

and, based on A1 and A2, we have

lim
n→∞

E[F (e(n))2] = E
[
|v(n)|2p−2

]
+ E

[
O(e2

a(n))
]

+ (p− 1)(2p− 3)E
[
|v(n)|2p−4

]
lim
n→∞

E
[
e2
a(n)

]
= ξ2p−2

v + (p− 1)(2p− 3)ξ2p−4
v ξ, (21)

where ξpv = E[|v|p] and E
[
O(e2

a(n))
]

is ignored, and

lim
n→∞

E
[
F (e(n))Ω̃(n− 1)Tϕp(n)

]
= (p− 1)ξp−2

v

(
ξ + lim

n→∞
E [ea(n)gp(n)]

)
, (22)

where gp(n) = Ω̃(n − 1)T (ϕp(n) − ϕ(n)). Combining (18),
(21) and (22), and after some calculations, we obtain

ξ =
ηaκ∞ξ

2p−2
v − 2a∞ limn→∞E[ea(n)gp(n))]

2a∞(p− 1)ξp−2
v − ηaκ∞(p− 1)(2p− 3)ξ2p−4

v

a∞ = lim
n→∞

E[a(n)]

aκ∞ = lim
n→∞

E[a(n)2κp(n)].

(23)

When a Gaussian kernel is used in PKLMP, we get κp(n) =
1, and thus aκ∞ ≈ (a∞)2. In the steady-state, a∞ can be
approximated by εc. Hence, (23) can be rewritten as

ξ =
ηεcξ

2p−2
v − 2 limn→∞E[ea(n)gp(n))]

2(p− 1)ξp−2
v − ηεc(p− 1)(2p− 3)ξ2p−4

v

. (24)

We can see that κ(Dj?(n−1),u(n)) ≥ εc in the steady-state,
and we also have∣∣∣E [Ω̃(n− 1)Tϕ(n)gp(n)

]∣∣∣
≤ E

[∥∥∥Ω̃(n− 1)
∥∥∥2

F

]
‖ϕp(n)− ϕ(n)‖F︸ ︷︷ ︸√

2−2κ(ϕp(n),ϕ(n))

(a)

≤ E
[
‖Ωo‖2F

]√
2− 2εc, (25)

where the inequality (a) is obtained based on the fact
‖Ω̃(n)‖2F ≤ ‖Ω̃(n − 1)‖2F‖ ≤ . . . ≤ ‖Ωo‖2F. Therefore,

injecting (25) into (24), we get

Low(p, εc) ≤ ξ ≤ Up(p, εc)

Low(p, εc) = max

{
ηεcξ

2p−2
v − 2C

Ωo

εc

Cpξvεc

, 0

}

Up(p, εc) =
ηεcξ

2p−2
v + 2CΩo

εc

Cpξvεc

CΩo

εc = E
[
‖Ωo‖2F

]√
2− 2εc

Cpξvεc = 2(p− 1)ξp−2
v − ηεc(p− 1)(2p− 3)ξ2p−4

v ,

(26)

where Low(p, εc) and Up(p, εc) denote the lower and upper
bounds of ξ, respectively.

Remark 4. The EMSE ξ is derived in (24), however, it
is hard to estimate the value of ϕp(n) and then evaluate the
EMSE exactly. Therefore, we provide the bounds of ξ in (26)
to characterize the EMSE. In addition, for any given p ≥ 1, it
is not difficult to find ξ’s bounds numerically from (26). And,
from this formulation, we can obtain the following important
observations:
• When p = 2, (26) reduces to

Low(2, εc) ≤ ξ ≤ Up(2, εc)

Low(2, εc) = max

{
ηεcσ

2
v − 2C

Ωo

εc

2− ηεc
, 0

}

Up(2, εc) =
ηεcσ

2
v + 2C

Ωo

εc

2− ηεc
.

(27)

From (27) we can see that, when εc = 1, the EMSE of
PKLMP with p = 2 is ξ =

ησ2
ν

2−η , which is actually the
EMSE for KLMS [8];

• When 1 ≤ p < 2, we consider the fractional lower order
moment (FLOM) of |e(n)| and the noise v(n) modeled
by the α-SN. The α-SN has infinite variance, with finite
pth-order moments for p < α ∈ (0, 2], where α denotes
the characteristic factor that measures the tail heaviness of
the distribution. Other three parameters related to the α-
SN are: β ∈ (−∞,+∞) denotes the location parameter;
γ > 0 is the dispersion parameter; and δ ∈ [−1, 1] is the
symmetry parameter [32]. Hence, based on the FLOM
property of α-SN, (26) becomes

Low(p<, εc) ≤ ξ ≤ Up(p<, εc)

Low(p<, εc) = max

{
ηεcC

γp<
α1 − 2C

Ωo

εc

Cpαεc
, 0

}

Up(p<, εc) =
ηεcC

γp<
α1 + 2C

Ωo

εc

Cpαεc
Cpαεc = 2(p− 1)(Cγp<α2 − ηεc(2p− 3)Cγp<α3)

Cγp<α1 = C(2p− 2, α)γ
2p−2
α

Cγp<α2 = C(p− 2, α)γ
p−2
α

Cγp<α3 = C(2p− 4, α)γ
2p−4
α ,

(28)

where “p<” denotes that p takes values over [1, 2), and

C(p, α) =
2p+1Γ(p+1

2)Γ(−pα)

α
√
πΓ(−p2)

, (29)

6

with Γ(·) denoting the Gamma function [32].
In addition, for 1 ≤ p < 2, We also provide a qualitative

analysis to demonstrate that the steady-state EMSE of PKLMP
is lower than that of QKLMS. As mentioned in Remark 1,
when 1 ≤ p < 2, the KLMP is robust to the impulsive noise.
Hence, when larger outliers are present, we assume |e(n)| > 1.
Under a Gaussian kernel, based on (6), we can get

η(n) = ηa(n)|e(n)|p−2 ≤ ηκ(u(n),Dj?(n− 1)) < η. (30)

To this end, we can approximate η(n) with a fixed step size
η′, which is not related to e(n) and fulfills η′ < η. Replacing
η(n) with η′ in (17) yields

η′

2
lim
n→∞

E
[
e(n)2

]
= lim
n→∞

E
[
e(n)Ω̃(n− 1)Tϕp(n)

]
, (31)

where κp(n) = 1 for a Gaussian kernel.
Applying e(n) = ea(n) + v(n) and A1 into (31), we get

ξ = lim
n→∞

E[ea(n)2]

=
η′σ2

v − 2 limn→∞E[Ω̃(n− 1)Tϕ(n)Ω̃(n− 1)Tϕp(n)]

2− η′

<
ησ2

v − 2 limn→∞E[Ω̃(n− 1)Tϕ(n)Ω̃(n− 1)Tϕp(n)]

2− η
= ξQKLMS . (32)

Remark 5. Based on (32), the EMSE of PKLMP is always
smaller than that of QKLMS when a Gaussian kernel is used,
p ∈ [1, 2), εc is set to exp(−‖u(n)−D(n− 1)‖2/2h2), and
the initial step size of PKLMP is less than that of QKLMS.
This means that, in the impulsive noise environments, PKLMP
can achieve better filtering accuracy than QKLMS, as will be
validated by simulation results in Section V.

C. Mean Convergence Analysis

In this part, with some approximations, we analyze the mean
convergence behavior of the proposed PKLMP algorithm.
Taking the expectation operation on both sides of last row
in (6), we obtain

E [Ω(n)] = E [Ω(n− 1)] + η×
E
[
|e(n)|p−2

(
d(n)−Ω(n− 1)Tϕ(n)

)
a(n)ϕp(n)

]
. (33)

Assume that |e(n)|p−2 is uncorrelated with (d(n) − Ω(n −
1)Tϕ(n))a(n)ϕp(n). This is a strong assumption, but it fa-
cilitates the analysis [33]. Together with the assumption of
independence between the input sequence and weight vector,
(33) can be represented as

E[Ω(n)] = E[Ω(n− 1)] + ηE[|e(n)|p−2]×
a(n) (rdp −RnpE[Ω(n− 1)]) , (34)

where rdp = E[d(n)ϕp(n)], and Rnp = E[ϕp(n)ϕ(n)T]
(assuming Rnp is positive definite).

Since e(n) = ea(n) + v(n), when the variance of v(n)
is larger than that of ea(n), we can assume that e(n) is
dominated by v(n) in the transient state. Therefore, to make
(34) numerically assessable, we can replace |e(n)|p−2 by

|v(n)|p−2 in (34). Subtracting E[Ωo] on both sides of (34),
we obtain the following stochastic difference formulation

ζ(n) = (I − ηE[|v(n)|p−2]a(n)Rnp)ζ(n− 1)

+ ηE[|v(n)|p−2]a(n)(rdp −RnpE[Ωo]), (35)

where ζ(n) = E[Ωo − Ω(n)], and I is an identity matrix.
To guarantee the convergence of (35), the following condition
needs to be satisfied |1− ηE[|v(n)|p−2]a(n)λmax| < 1, i.e.,

0 < η <
2

E[|v(n)|p−2]a(n)λmax
, (36)

where λmax means the maximal eigenvalue of Rnp. A more
conservative condition can be obtained as

0 < η <
2

E[|v(n)|p−2]a(n)Tr(Rnp)
, (37)

where Tr(Rnp) denotes the trace of Rnp. Moreover, when no
sparsification method is applied and a Gaussian kernel is used,
(37) reduces to

0 < η <
2

E[|v(n)|p−2]
. (38)

Remark 6. For the following two types of noise v(n), (38)
can be further elaborated.
• The noise v(n) has finite variance, i.e., σ2

v <∞. In this
case, we can approximate E[|v(n)|p−2] as E[|v(n)|2]

p−2
2 ,

hence (38) becomes

0 < η <
2

E[|v(n)|2]
p−2

2

, (39)

which is a convergence condition for KLMP with p ≥ 2.
• The noise v(n) has infinite variance, and more specifi-

cally we consider the α-SN. In this case, E[|v(n)|p−2] =

C(p − 2, α)γ
p−2
α , where C(p − 2, α) is defined in (29).

Thus, (38) becomes

0 < η <
2

C(p− 2, α)γ
p−2
α

, (40)

which is a convergence condition for KLMP with p ∈
[1, 2) under the α-SN environment.

IV. MODIFICATIONS TO PKLMP

In this section, firstly, we discuss how to improve the
filtering accuracy of PKLMP by exploiting the information
embedded in the output data. Then we propose a simple
and efficient method for updating the centers of a dictionary
D(n− 1). In general, the centers of a dictionary are fixed in
most sparsification methods, and dated centers may result in
performance degradation of KAFs.

A. PKLMP with Smoothed Desired Outputs

As we can see, PKLMP only considers the feature space
(equivalent with the input space) compression, and assumes
that the corresponding outputs of the projected data are equal
to those of MRC in the dictionary. In the impulsive noise
cases, however, the outputs in a neighborhood may have large

7

variation. Such disturbance in desired outputs may dramati-
cally deteriorate the filtering accuracy. Hence, it is necessary
to smooth the outputs to improve the performance.

In the PKLMP algorithm, we can minimize the following
instantaneous cost function

J(n) = |e(n)|p, (41)

where e(n) = d(n)−fn−1(u(n)) denotes the estimation error,
and p > 0. Applying the gradient descent method to minimize
J(n) in the output space, we obtain

ds(n) = d(n)− η1∇d(n)J(n)

= d(n)− η1|e(n)|p−2e(n), (42)

where ds(n) denotes the smoothed output, ∇d(n)J(n) is the
gradient of the loss function J(n) with respect to d(n), η1

denotes the step size for refining the current output. In this
way, d(n) can be adjusted to constrain large disturbances
induced by large outliers. Then, the prediction error is also
updated by es(n) = ds(n)−fn−1(u(n)), and the loss function
therefore becomes

Js(n) = |es(n)|p. (43)

To this end, the methods similar to those in PKLMP can be
applied to obtain

f0 = 0, e(n) = d(n)− fn−1(u(n))

ds(n) = d(n)− η1|e(n)|p−2e(n)

es(n) = ds(n)− fn−1(u(n))

fn = hn−sj? + hnsj?

hn−sj? =

M∑
l=1,l 6=j?

ωl(n− 1)κ(Dl(n− 1), ·)

hnsj? = (ωj?(n− 1) + η|es(n)|p−2a(n)es(n))

× κ(Dj?(n− 1), ·),

(44)

where hn−sj? and hnsj? are similar to hn−j? and hnj? , respec-
tively, except that es(n) is used in the former. We call this
modified PKLMP method as projected kernel least p-power
with smoothed desired output (PKLMP-SD), and summarize
it in Algorithm 2.

Remark 7. We can see that, in (42), the gradient-based
method only considers d(n) and e(n), which does not cause
large increase in the computational complexity and storage
cost. Hence, PKLMP-SD has similar complexity to PKLMP.
Furthermore, PKLMP-SD considers the case that, for two
MRCs in a projection region, their corresponding desired out-
puts may be significantly different. Compared with PKLMP,
the PKLMP-SD algorithm not only exploits the information
hidden in the output space, but also smoothes the es(n) of hnsj?
in (44), thereby leading to filtering accuracy improvement.

B. KAF with Variable Centers

In most sparsification methods, the centers of a dictionary
are fixed. However, variable centers (VC) may lead to a better
filtering performance for KAFs. From the idea of VP, we know
that, when Θ ≥ εc, the dictionary remains unchanged, and

u(n) is just replaced by Dj?(n− 1), as shown in the step 4)
in Algorithm1. Actually, we can use the information contained
in u(n) to update Dj?(n−1) and the learning system. Hence,
we propose a simple method to vary the centers of a dictionary
as follows:{

if Θ ≥ εc
then Dj?(n) = Dj?(n− 1)− ηD∇D?j J(n),

(45)

where Θ and j? are given in Algorithm 1, ηD > 0 denotes
the step size, and J(n) is defined in (41). When a Gaussian
kernel is used, ∇Dj?J(n) can be represented as

∇Dj?J(n) = −pκ(u(n),Dj?)ωj?

h2|e(n)|1−p
(u(n)−Dj?), (46)

where κ(u(n),Dj?) = exp
(
−‖u(n)−Dj? (n−1)‖2

2h2

)
.

Injecting (46) into (45) and letting η2 = ηDp/h
2, we get

Dj?(n) = Dj?(n− 1) + η2κ(u(n),Dj?)ωj?

× |e(n)|p−2e(n)(u(n)−Dj?). (47)

Remark 8. The proposed VC method is simple but can
improve the filtering performances of KAFs in most situations.
It is worth noting that, when one uses the VC method,
Dj?(n) should be updated after wj?(n) = wj?(n − 1) +
η|e(n)|p−2a(n)e(n). The variable centers method is integrated
in Algorithm 2.

Remark 9. We briefly analyze the computational complex-
ity of the proposed algorithms. For PKLMP, the complexity for
computing fn−1(u(n)) =

∑M
l=1 ωl(n− 1)κ(Dl(n− 1),u(n))

scales linearly with the dictionary size M . With the Gaussian
kernel, no computation is required for the cosine-relation
Θ = max1≤j≤M

〈ϕ(n),ϕ(Dj(n−1))〉F
‖ϕ(n)‖F·‖ϕ(Dj(n−1))‖F , since ‖ϕ(n)‖F =

‖ϕ(Dj(n− 1))‖F = 1 and 〈ϕ(n), ϕ(Dj(n− 1))〉F have been
calculated in fn−1(u(n)). Hence, the complexity of PKLMP is
O(M); For PKLMP-SD, the extra complexity is for computing
ds(n) and es(n). Therefore, the complexity of PKLMP-SD
is still O(M); For the VC method, as an extra operation,
the Dj?(n) = Dj?(n − 1) − ηD∇D?j J(n) has computational
complexity of O(1). Therefore, the cost of PKLMP-SD-VC is
also O(M).

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we conduct simulations to demonstrate the
effectiveness of the proposed PKLMP methods. The tested
examples include estimation for an artificial static function,
prediction for the short-term Chua’s chaotic time series, and
prediction for the real-world Internet traffic and the real-world
Sunspot number. Unless stated otherwise, we apply a Gaussian
kernel with a kernel size h = 1 in the experiments. To
evaluate the filtering performance, we use the metric testing
MSE (TMSE), which is defined as [8], [24]

TMSE =
1

N

N∑
n=1

(d(n)− fn−1(u(n)))
2
, (48)

where N is the number samples in a testing set.
We define some subclasses of PKLMP schemes based on the

value of the approximation factor a(n), which has a key role

8

Algorithm 2: Modifications of PKLMP

Initialization:
step size η > 0, η1 > 0, η2 > 0, Mercer kernel κ(·, ·)
coherence threshold 0 < εc < 1,
dictionary D(1) = {u(1)} with M = 1,
KWV w(1) = [η|d(1)|p−2d(1)].

Computation:
while {u(n), d(n)} (n ≥ 2) available do
1) the output:
fn−1(u(n)) = η

∑M
l=1 wl(n− 1)κ(Dl(n− 1),u(n))

2) the estimation error: e(n) = d(n)− fn−1(u(n))
3) the cosine-relation between ϕ(n) and ϕ(D(n− 1)) :

Θ = max1≤j≤M
〈ϕ(n),ϕ(Dj(n−1))〉F
‖ϕ(n)‖F‖ϕ(Dj(n−1))‖F

4) if Θ ≥ εc
smooth the corresponding output:
ds(n) = d(n)− η1|e(n)|p−2e(n)
update the estimation error:
es(n) = ds(n)− fn−1(u(n))
keep the dictionary: D(n) = D(n− 1), M ⇐M
update the coefficient of the MRC:
wj?(n) = wj?(n− 1) + η|es(n)|p−2a(n)es(n)

with a(n) =
κ(u(n),Dj? (n−1))

‖ϕ(Dj? (n−1))‖2F
if apply VC

then Dj?(n) = Dj?(n− 1)− ηD∇D?j J(n)
else Dj?(n) = Dj?(n)

5) Otherwise
smooth the corresponding output: ds(n) = d(n)
update the estimation error: es(n) = e(n)
change the dictionary:
D(n) = {D(n− 1),u(n)}, M ⇐M + 1
update the KWV:
w(n) =

[
w(n− 1)T , η|es(n)|p−2es(n)

]
end while

in PKLMP. As we explained in Remark 2, when a Gaussian
kernel is used, a(n) is smaller than and approaching to 1. So
we set a(n) = 1, and call the PKLMP scheme in this case as
hard PKLMP (HP-KLMP). Accordingly, we call the original
PKLMP with the exact a(n) as soft PKLMP (SP-KLMP).
Similarly, we get SP-KLMS and HP-KLMS for KLMS, and
SP-KLMP-SD and HP-KLMP-SD for KLMP-SD.

A. Static Function Estimation (SFE)

We consider the following artificial function [8],

d(n) =
exp

(
(u(n)+1)2

−2

)
+ exp

(
(u(n)−1)2

−2

)
5

+ v(n), (49)

where the input samples {u(n)} ∈ R are generated following a
white Gaussian process with zero-mean and variance σ2

u = 1,
and the noise {v(n)} is independent of {u(n)}. In this section,
the numbers of training and testing data are 500 and 100,
respectively. And, all simulation results are averaged over 500
independent runs.

1) Lower and Upper Bounds: We first verify the accuracy
of the lower and upper bounds (27) for SP-KLMP with
p = 2, i.e., SP-KLMS. For comparison, we also consider the
corresponding lower and upper bounds for QKLMS in (36) of
[8]. In this trial, {v(n)} is white Gaussian noise with mean
0 and variance σ2

v = 0.04. The step size is η = 0.6 for both
algorithms1. For a fair comparison, the coherence threshold εc
is estimated via εc = exp(−0.5ε2

U), where εU is the distance
threshold of QKLMS. According to (27), we need to estimate
E[‖Ωo‖2F]. Generally, it is hard to get the optimal solution.
Fortunately, (49) can be model as{

d(n) = fo + v(n)

fo = 0.2(κ(·, 1) + κ(·,−1)),
(50)

where κ(·, 1) = exp
(
−0.5(· − 1)2

)
and κ(·,−1) =

exp
(
−0.5(·+ 1)2

)
. Hence, E[‖Ωo‖2F] = ‖fo‖2 = 0.0908.

Fig. 1 plots the EMSE for these two algorithms. From this
figure, we can have the following observations:
• The EMSE indeed lies between the derived lower and

upper bounds for SP-KLMS;
• The lower bound of SP-KLMS has very similar behavior

to that of QKLMS;
• When εU increases from 0.35 to 10 (namely, εU decreases

from 0.9406 to 0), SP-KLMS has smaller upper bound
than that of QKLMS, which means the upper bound
Up(εc) in (27) is more accurate;

• When εU ≈ 0 (namely, εc ≈ 1), the EMSE of SP-KLMS
is close to that of KLMS, which can be theoretically
estimated as ξ =

ησ2
ν

2−η = 0.0171;
• When εc ∈ (0.00073, 0.9406), SP-KLMS can realize

smaller EMSE than KLMS. Furthermore, when εc ∈
(0.1103, 0.9406), SP-KLMS outperforms QKLMS in
terms of EMSE.

0.01 0.1 0.35 1 2.1 3.8 10

distance threshold
U

10
-4

10
-3

10
-2

10
-1

E
M

S
E

SP-KLMS

SP-KLMS-Up

SP-KLMS-Low

QKLMS

QKLMS-Up

QKLMS-Low

KLMS

EMSE for KLMS = 0.0171

c
= 0.1103

c
= 0.00073

c
= 0.9406

c
 0

Fig. 1: The EMSE for SP-KLMS and QKLMS versus the
distance threshold εU ∈ [0.01, 10] in SFE.

Fig. 2 shows the TMSE learning curves for SP-KLMS with
εc = 0.3247, QKLMS with εU = 1.5, HYPASS with Q =
1 and step size 0.45, and KLMS. Their final network sizes
are 3.617, 3.617, 3.617 and 500. The proposed SP-KLMS is
shown to outperform the other three algorithms.

1Note that η = 0.6 < 2 in (39) guarantees the convergence of KLMS, and
it also fits for PKLMS to achieve convergence as shown in Fig. 2.

9

0 50 100 150 200 250 300 350 400 450 500

iterations

0.01

0.015

0.02

0.025

0.03

T
M

S
E

SP-KLMS Size = 3.617

QKLMS Size = 3.617

HYPASS Size = 3.617

KLMS Size = 500

Fig. 2: The TMSE learning curves for SP-KLMS, QKLMS,
HYPASS and KLMS, when εU = 1.5 or εc = 0.3247 in SFE.

2) Selection of the Step Size: A proper value of the step
size η can ensure the convergence of PKLMP. We validate
the bound of η in (40) instead of (37), because it is generally
hard to obtain Tr(Rnp) in (37). In other words, we study the
influence of η on the convergence of KLMP with p ∈ [1, 2).
Here, the noise {v(n)} is modeled by the α-SN with a
parameter vector Pα = [α, β, γ, δ]. In this trial, we set
η ∈ {0.05, 0.15, 0.3, 0.69}, p = 1.5, Pα = [1.6, 0, 0.1, 0],
and thus 2/

(
C(p − 2, α)γ

p−2
α

)
= 0.6814. Fig. 3 plots the

corresponding TMSE learning curves. From this figure, we
obtain the following observations:
• The value η = 0.69 > 0.6814 diverges the TMSE

learning cure, which demonstrates the tightness of the
theoretic bound for η in (40).

• A smaller η value, such as 0.05, 0.15 and 0.3, leads to
convergence of the algorithm. This result is consistent
with the usual rule for step size in adaptive filtering
algorithms.

0 50 100 150 200 250 300 350 400 450 500

iterations

10
-2

10
-1

T
M

S
E

 = 0.05

 = 0.15

 = 0.3

 = 0.69

Fig. 3: The TMSE learning curves for KLMP with p = 1.5
and η ∈ {0.05, 0.15, 0.3, 0.69} in SFE.

3) Coherence Threshold: We then investigate how the
coherence threshold εc affects the performance of SP-KLMP
in the presence of α-SN, where Pα = [1.6, 0, 0.1, 0]. In this
trial, based on the results in Fig. 3, we set η = 0.05 for SP-
KLMP. Fig. 4 shows the steady-state TMSE estimated by the
last 100 TMSE for different SP-KLMP algorithms with respect
to various values of εc ∈ [0.02, 1]. From this figure, we can
get the following observations:
• The two steady-state TMSE curves for p ∈ {1, 1.3} are

smoother than the other two, and SP-KLMP with p = 1.3

outperforms that with p = 1;
• For a majority values of εc, SP-KLMP with p = 1.6

achieves the lowest final TMSE;
• The final TMSE curve for p = 1.9 fluctuates widely, since
p = 1.9 > α = 1.6, resulting in larger misalignment.

Therefore, we can conclude that, in impulsive noise environ-
ments modelled by α-SN, εc has less negative influence on
the filtering accuracy of SP-KLMP when p is smaller than but
close to the characteristic factor α. Table II summarizes some
averaged dictionary sizes for these SP-KLMP algorithms with
respect to εc ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cohenerce threshold
c

10
-3

10
-2

st
ea

d
y

-s
ta

te
 T

M
S

E SP-KLMP-1.0

SP-KLMP-1.3

SP-KLMP-1.6

SP-KLMP-1.9

Fig. 4: The steady-state TMSE curves for SP-KLMP with
different values of p versus εc ∈ [0.02, 1] in SFE.

4) Filtering Performance: Using the example of the im-
pulsive noise above, we test the filtering performance for
SP-KLMP, HP-KLMP, SP-KLMP-SD and HP-KLMP-SD. For
comparisons, the NC and CC sparsification methods are ap-
plied to KLMP, and are denoted as NC-KLMP and CC-KLMP,
respectively. In this experiment, we set p = 1.5 for all KLMP
algorithms. Other parameters of the algorithms are chosen such
that they have almost the same initial convergence rate. Hence,
η = 0.05 and εc = 0.4 for all PKLMP algorithms, η1 = 0.1
for two smoothed out algorithms, the step sizes for CC-KLMP
and NC-KLMP are set as 0.1 and 0.08, respectively, εc = 0.97
for CC-KLMP, and δ1 = 0.2 and δ2 = 0.01 for NC-KLMP.
Fig. 5 plots the TMSE learning curves for these six KLMP
algorithms, and delivers the following messages:
• Under similar initial convergence rates, the KLMP algo-

rithms using VP outperform NC-KLMP and CC-KLMP
in terms of filtering accuracy and the dictionary size;

• SP-KLMP-SD and HP-KLMP-SD achieve better filtering
accuracy than SP-KLMP and HP-KLMP, respectively.
This indicates that the smooth-desired output method
does improve the filtering performance for KAF;

• Compared to the two HP-KLMPs2, the two SP-KLMPs
achieve smaller TMSE.

Hence we can conclude that the VP method can efficiently
improve the filtering performance for KLMP.

5) VC Method: We demonstrate the effectiveness of the
proposed VC method. From Fig. 5, we know that HP-KLMP
and SP-KLMP-SD achieve the worst and best filtering accu-
racy, respectively, among four PKLMPs. Therefore, we apply

2As mentioned in (10), HP-KLMP can be treated as KLMP sparsified by
the VQ method, since the approximation factor a(n) = 1 in HP-KLMP.

10

VC to HP-KLMP and SP-KLMP-SD, and denote them as
HP-KLMP-VC and SP-KLMP-SD-VC, respectively. Except
for η2 = 0.5, other parameters are the same as those in the
fourth experiment. In addition, we also use the random feature
method [35] and the Nyström method [36] to KLMP, and
they are denoted as RF-KLMP and Nys-KLMP, respectively.
For RF-KLMP, the D = 20, σ = 5, and step-size is 0.002;
For Nys-KLMP, the m = 10, σ = 1, and step-size is 0.05.
Fig. 6 shows the TMSE curves for the six algorithms. From
this figure, we have following observations:
• HP-KLMP-VC and SP-KLMP-SD-VC achieve better fil-

tering accuracy than HP-KLMP and SP-KLMP-SD, re-
spectively, which indicates that the VC method is effi-
cient.

• RF-KLMP and Nys-KLMP can realize slightly better
filtering accuracy than HP-KLMP and HP-KLMP-VC.
However, two SP-KLMP-SD algorithms outperform RF-
KLMP and Nys-KLMP in terms of TMSE accuracy.

0 50 100 150 200 250 300 350 400 450 500

iterations

10
-2

T
M

S
E

SP-KLMP Size = 3.94

HP-KLMP Size = 3.94

SP-KLMP-SD Size = 3.94

HP-KLMP-SD Size = 3.94

CC-KLMP Size = 3.94

NC-KLMP Size = 4.37

Fig. 5: The TMSE learning curves for the six KLMPs in SFE.

In Fig. 7, we also validate that the proposed PKLMP
algorithms can work effectively in the case of p ∈ (0, 1).
The proposed algorithms are shown to have good convergence
behaviour when the value of p approaches 1.

0 50 100 150 200 250 300 350 400 450 500

iterations

10
-3

10
-2

T
M

S
E

SP-KLMP-SD Size = 3.93

SP-KLMP-SD-VC Size = 4.00

HP-KLMP Size = 3.93

HP-KLMP-VC Size = 4.00

RF-KLMP

Nys-KLMP

445 450 455 460

1.5

2

10
-3

Fig. 6: The TMSE learning curves for these KLMPs in SFE.

6) Comparison with other error criteria: To test the ef-
ficient of VP method, we apply it to other KAFs based on
some error criteria, such as logarithmic error loss (LEL) [37],
kernel risk-sensitive loss (KRSL) [30], kernel mean p-power
error (KMPE) [38], and maximum correntropy (MC) [34].
And correspond algorithms are named as SP-LEL, SP-KRSL,
SP-KMPE and SP-MC, respectively. For comparison, the VQ

0 50 100 150 200 250 300 350 400 450 500

iterations

10
-1

10
0

10
1

T
M

S
E

SP-KLMP-0.5

HP-KLMP-0.5

SP-KLMP-SD-0.5

HP-KLMP-SD-0.5

SP-KLMP-SD-VC-0.5

HP-KLMP-SD-VC-0.5

(a) p = 0.5

0 50 100 150 200 250 300 350 400 450 500

iterations

0.015

0.02

0.025

0.03

0.035

0.04

T
M

S
E

SP-KLMP-0.75

HP-KLMP-0.75

SP-KLMP-SD-0.75

HP-KLMP-SD-0.75

SP-KLMP-SD-VC-0.75

HP-KLMP-SD-VC-0.75

(b) p = 0.75

0 50 100 150 200 250 300 350 400 450 500

iterations

0.01

0.02

0.03

0.04

T
M

S
E

SP-KLMP-0.9

HP-KLMP-0.9

SP-KLMP-SD-0.9

HP-KLMP-SD-0.9

SP-KLMP-SD-VC-0.9

HP-KLMP-SD-VC-0.9

(c) p = 0.9

Fig. 7: The averaged TMSE learning curves for proposed
KLMPs with p ∈ {0.5, 0.75, 0.9} in SFE.

method is also applied to these criteria resulting in Q-LEL, Q-
KRSL, Q-KMPE and Q-MC. For all algorithms, the step-size
is 0.05; for LEL, the p = 2 and α = 1; for KRSL, the λ = 2
and σ1 = 1; for KMPE, the p = 1 and σ = 2; for MC, the
σ = 2; for all SP algorithms, the εc = 0.4; for all quantized
ones, the εU =

√
−2 ln(εc). Fig. 8 plots the corresponding

TMSE learning curves including the one of SP-KLMP-SD-
VC. From this figure, we can observe that

• All SP algorithms achieve bettering filtering accuracy
than their corresponding quantized versions.

• KAFs based on these error criteria cannot always realize
better TMSE result than the KAF based on LMP, i.e.,
SP-KLMP-SD-VC.

TABLE II: Some averaged dictionary sizes for SP-KLMP
algorithms in SFE.

εc Size εc Size εc Size
0.1 2.66 0.2 3.08 0.3 3.46
0.4 3.94 0.5 4.44 0.6 5.04
0.7 5.86 0.8 7.02 0.9 10.42

11

0 50 100 150 200 250 300 350 400 450 500

iterations

10
-3

10
-2

T
M

S
E

SP-KLMP-SD-VC

Q-MC

SP-MC

Q-KRSL

SP-KRSL

Q-KMPE

SP-KMPE

Q-LEL

SP-LEL

445 450 455 460

1

1.2

1.4

1.6

10
-3

Fig. 8: The TMSE learning curves of SP and quantized KAFs
based on various error criteria in static function estimation.

B. Prediction for Chua’s Chaotic Time Series

Chua’s circuit in a dimensionless form [23] is represented
as

x′ = a(y − x− g(x))

y′ = x− y + z

z′ = −by,
(51)

where a > 0, b > 0, and g(x) is a piecewise-linear function
given by

g(x) =

{
dx − 1 < x < 1

cx+ (d− c)sgn(x) |x| ≥ 1,
(52)

where d < c < 0. If we set a = 15.6, b = 28, c = −1.143,
d = −0.714, and the initial conditions are x(0) = 0.7, y(0) =
z(0) = 0, the system (51) generates chaotic time series. The
time series is obtained using the function ode45 in Matlab.
The first component (i.e., x) is used in the following learning
tasks. Before the training, the signal is preprocessed to have
zero mean and unit variance.

In this part, we apply the latest five samples u(n) = [x(n−
5), . . . , x(n − 1)]T to predict the current point d(n) = x(n).
We separate the whole sampled data into 40 segments with
1800 × 200 data points in total for performance evaluation,
and in each simulation, the training size is 1800 and the
testing size is 200. The performance is evaluated over 40
independent simulations. A segment of the processed Chua’s
chaotic time series and its noisy version contaminated by α-
SN with Pα = [1.6, 0, 0.1, 0] are shown in Fig. 9. In the
simulation, the Gaussian kernel with h = 0.75 is used for
all KLMPs with p = 1.5, and other parameters are listed in
Table III. Fig. 10 plots the TMSE curves for various KLMP
algorithms, and Fig. 11 shows the network size evolution
curves for these KLMP algorithms. We can have the following
observations from both figures:
• At almost the same initial convergence rate, SP-KLMP-

SD-VC and HP-KLMP-SD-VC achieve better filtering
accuracy compared with other algorithms;

• All PKLMP algorithms achieve smaller TMSE than NC-
KLMP, CC-KLMP, RF-KLMP and Nys-KLMP;

• The VC method can increase convergence rate and
improve filtering accuracy for SP-KLMP-SD and HP-
KLMP-SD;

0 200 400 600 800 1000 1200 1400 1600 1800

sample

-4

-2

0

2

4

A
m

p
li

tu
d
e

Processed Noisy

Fig. 9: A segment of the processed chaotic time series and its
noisy version.

• Three SP-KLMPs (i.e., SP-KLMP, SP-KLMP-SD, and
SP-KLMP-SD-VC) achieve slightly better filtering accu-
racy than the corresponding three HP-KLMPs (i.e., HP-
KLMP, HP-KLMP-SD, and HP-KLMP-SD-VC);

• All PKLMP algorithms show almost the same network
size evolution behavior, and they achieve much smaller
network size than NC-KLMP and CC-KLMP.

Furthermore, we also compare SP-KLMP-SD-VC with
other SP and quantized algorithms mentioned in Fig. 8.
Table III lists the parameters and steady-state TMSE reults.
The corresponding averaged TMSE learning curves are shown
in Fig. 12. From this figure, we can see that
• Among all KAFs, SP-KLMP-SD-VC achieves the best

TMSE result;
• In comparison with VQ, the VP method can slightly

improve the filtering accuracy of KAFs.

TABLE III: Parameters setting and filtering results for Chua’s
chaotic time series.

Algorithm Parameters TMSE Size

NC-KLMP η = 0.115 0.0130 364.8
δ1 = 0.09 δ2 = 0.002

CC-KLMP η = 0.115 εc = 0.991 0.0153 306.3
SP-KLMP η = 0.05 0.0069 40.5
HP-KLMP εc = 0.9 0.0070 40.5

SP-KLMP-SD η = 0.05 η1 = 0.1 0.0067 40.5
HP-KLMP-SD εc = 0.9 0.0068 40.5

SP-KLMP-SD-VC η = 0.05 η1 = 0.1 0.0055 39.8
HP-KLMP-SD-VC η2 = 0.5 εc = 0.9 0.0057 39.9

RF-KLMP σ = 1 D = 80 η = 0.005 0.0157 −
Nys-KLMP η = 0.1 σ = 1 m = 200 0.0094 −

Q-KRSL εU = 0.3443 σ1 = 1 0.0073 40.5
SP-KRSL λ = 2 η = 0.1 εc = 0.9 0.0071 40.5
Q-KMPE εU = 0.3443 σ = 2 0.0084 40.5
SP-KMPE p = 1 η = 0.1 εc = 0.9 0.0084 40.5

Q-LEL εU = 0.3443 α = 1 0.0077 40.5
SP-LEL p = 2 η = 0.1 εc = 0.9 0.0075 40.5
Q-MC εU = 0.3443 σ = 2 0.0067 40.5
SP-MC η = 0.1 εc = 0.9 0.0066 40.5

C. Prediction for Real-World Data

In this experiment, two types of real-world data is adopted
to test the performance of SP-KLMP-SD-VC and HP-KLMP-
SD-VC, which achieve better filtering performance than other
PKLMPs as demonstrated in Fig. 10. The first dataset is the

12

0 200 400 600 800 1000 1200 1400 1600 1800

iterations

10
-2

10
-1

10
0

T
M

S
E

NC-KLMP

CC-KLMP

SP-KLMP

HP-KLMP

SP-KLMP-SD

HP-KLMP-SD

SP-KLMP-SD-VC

HP-KLMP-SD-VC

RF-KLMP

Nys-KLMP

1620 1640 1660 1680

5

5.5

6

6.5

7

10
-3

Fig. 10: The TMSE learning curves for different KLMP
algorithms in Chua’s chaotic time series.

0 200 400 600 800 1000 1200 1400 1600 1800

iterations

0

50

100

150

200

250

300

350

N
e
tw

o
rk

 S
iz

e

NC-KLMP

CC-KLMP

SP-KLMP

HP-KLMP

SP-KLMP-SD

HP-KLMP-SD

SP-KLMP-SD-VC

HP-KLMP-SD-VC

1400 1450 1500 1550 1600

39

40

Fig. 11: The network size evolution curves for different KLMP
algorithms Chua’s chaotic time series.

Internet traffic named A5M from the homepage of Prof. Paulo
Cortez3. There are 14772 samples in the dataset. In this first
trial, the task is to predict the current point using the previous
ten consecutive points, and we separate the whole data into 7
segments with 1800× 200 samples. The second dataset is the
Sunspot number recorded from January 1749 to September
20184, and the total number of the dataset is 3235. In the
second trial, we use the 4 past points to predict the current
one, and apply the first 3000 samples to train KAFs and the
rest 235 points for testing.

For convenience of computation, the A5M dataset and
Sunspot dataset are normalized to the range [0, 1]. For the
two trials, we set h = 1 and p = 3 for A5M, and set h = 0.5
and p = 2 for Sunspot. In addition, Table IV and Table V list
other parameters for the two datasets, respectively, which are
chosen such that all algorithms produce almost the same final
network size.

Fig. 13 and Fig. 14 plot the TMSE learning curves different
sparsified KLMP algorithms and KAFs based on various error
criteria for the Internet traffic dataset, respectively. From these
two figures, we can see:
• HP-KLMP-SD-VC and SP-KLMP-SD-VC can realize

almost the same filtering performance as that of Nys-
KLMP. And these three algorithms outperform CC-
KLMP, NC-KLMP and RF-KLMP;

3http://www3.dsi.uminho.pt/pcortez/series/
4http://www.sidc.be/silso/datafiles

0 200 400 600 800 1000 1200 1400 1600 1800

iterations

10
-2

10
-1

10
0

T
M

S
E

SP-KLMP-SD-VC

Q-KRSL

SP-KRSL

Q-KMPE

SP-KMPE

Q-LEL

SP-LEL

Q-MC

SP-MC

1700 1750 1800

6

8

10
10

-3

Fig. 12: The TMSE learning curves of SP and quantized KAFs
based on various error criteria in Chua’s chaotic time series.

• SP-KLMP-SD-VC achieves the best filtering accuracy
among all KAFs. In addition, various SP algorithms real-
ize slightly better TMSE results than their corresponding
quantized algorithms as shown in Table IV.

Fig. 15 and Fig. 16 plot the TMSE learning curves different
sparsified KLMP algorithms and KAFs based on various error
criteria for the Internet traffic dataset, respectively. From these
two figures, we can see:
• HP-KLMP-SD-VC and SP-KLMP-SD-VC can achieve

faster convergence rate than RF-KLMP and Nys-KLMP.
All of the four schemes can realize similar steady-state
misalignment and they outperform CC-KLMP and NC-
KLMP;

• Among all KAFs, SP-KLMP-SD-VC realizes the fastest
convergence rate. KAFs sparsified by VP can realize
almost the same filtering accuracy as the quantized al-
gorithms as shown in Table V.

0 200 400 600 800 1000 1200 1400 1600 1800

iterations

10
-2

10
-1

T
M

S
E

SP-KLMP-SD-VC

HP-KLMP-SD-VC

CC-KLMP

NC-KLMP

RF-KLMP

Nys-KLMP

1650 1700 1750 1800

4
4.5

5
10

-3

Fig. 13: The TMSE learning curves for different KLMP
algorithms in Internet traffic dataset.

VI. CONCLUSION

In this paper, we applied vector projection to suppress the
growth of network size for the KLMP algorithm, and obtained
a new class of SKAF, named projected KLMP (PKLMP). The-
oretical convergence analyses were provided and validated by
simulation results. Based on the stability analysis in RKHS, we
derived a sufficient condition for the mean-square convergence
for PKLMP. Based on a Taylor expansion method, we derived
the general EMSE expression for PKLMP, and obtained its

13

0 200 400 600 800 1000 1200 1400 1600 1800

iterations

10
-2

10
-1

T
M

S
E

SP-KLMP-SD-VC

Q-LEL

SP-LEL

Q-KMPE

SP-KMPE

Q-MC

SP-MC

Q-KRSL

SP-KRSL

1700 1740

3.7

3.8

3.9

10
-3

Fig. 14: The TMSE learning curves of SP and quantized KAFs
based on various error criteria in Internet traffic dataset.

0 500 1000 1500 2000 2500 3000

iterations

10
-2

10
-1

T
M

S
E

SP-KLMP-SD-VC

HP-KLMP-SD-VC

CC-KLMP

NC-KLMP

RF-KLMP

Nys-KLMP

2600 2700 2800 2900 3000

3.2
3.4
3.6
3.8

4
4.2

10
-3

Fig. 15: The TMSE learning curves for different KLMP
algorithms for Sunspot dataset.

lower and upper bounds when a Gaussian kernel is used. For
p ∈ [1, 2) we show analytically that PKLMP can achieve better
filtering accuracy than QKLMS under impulsive noises. In
addition, with some approximations, we conducted the mean
convergence analysis for PKLMP. We applied the gradient
method to update the output of MRC, which is shown to be
able to better exploit the information contained in a desired
output. Finally we presented a simple yet efficient variable
centers method, which can improve the filtering accuracy
and convergence rate for PKLMP. A number of simulations
validate the efficiency of proposed algorithms.

TABLE IV: Parameters setting and filtering results for internet
traffic

Algorithm Parameters TMSE Size
NC-KLMP η = 0.2 δ1 = 0.3 δ2 = 0.01 0.0741 12.57
CC-KLMP η = 0.2 εc = 0.96 0.0706 13.14

SP-KLMP-SD-VC η = 0.05 η1 = 0.1 0.0042 12.86
HP-KLMP-SD-VC η2 = 0.5 εc = 0.96 0.0042 12.86

RF-KLMP σ = 2 D = 50 η = 0.01 0.0124 −
Nys-KLMP η = 0.1 σ = 1 m = 100 0.0041 −

Q-KRSL εU = 0.2857 σ1 = 1 0.0046 13.14
SP-KRSL λ = 2 η = 0.1 εc = 0.96 0.0047 13.14
Q-KMPE εU = 0.2857 σ = 2 0.0080 13.14
SP-KMPE p = 1 η = 0.1 εc = 0.96 0.0076 13.14

Q-LEL εU = 0.2857 α = 1 0.0045 13.14
SP-LEL p = 2 η = 0.01 εc = 0.96 0.0045 13.14
Q-MC εU = 0.2857 σ = 1 0.0101 13.14
SP-MC η = 0.05 εc = 0.96 0.0097 13.14

0 500 1000 1500 2000 2500 3000

iterations

10
-2T

M
S

E

SP-KLMP-SD-VC

Q-LEL

SP-LEL

Q-KMPE

SP-KMPE

Q-MC

SP-MC

Q-KRSL

SP-KRSL

2600 2800 3000

3.2

3.4

3.6

3.8

4

4.2

10
-3

Fig. 16: The TMSE learning curves of SP and quantized KAFs
based on various error criteria for Sunspot dataset.

TABLE V: Parameters setting and filtering results for sunspot

Algorithm Parameters TMSE Size
NC-KLMP η = 0.15 δ1 = 0.3 δ2 = 0.025 0.0068 18
CC-KLMP η = 0.15 εc = 0.83 0.0047 17

SP-KLMP-SD-VC η = 0.02 η1 = 0.1 0.0033 17
HP-KLMP-SD-VC η2 = 0.1 εc = 0.83 0.0033 17

RF-KLMP σ = 0.5 D = 50 η = 0.001 0.0034 −
Nys-KLMP η = 0.01 σ = 0.5 m = 200 0.0033 −

Q-KRSL εU = 0.3052 σ1 = 1 0.0034 17
SP-KRSL λ = 2 η = 0.01 εc = 0.83 0.0034 17
Q-KMPE εU = 0.3052 σ = 2 0.0035 17
SP-KMPE p = 1.5 η = 0.01 εc = 0.83 0.0034 17

Q-LEL εU = 0.3052 α = 1 0.0034 17
SP-LEL p = 2 η = 0.01 εc = 0.83 0.0034 17
Q-MC εU = 0.3052 σ = 1 0.0034 17
SP-MC η = 0.01 εc = 0.83 0.0034 17

The methods provided in this paper can be extended to
other KAFs based on some error criteria, i.e., LEL, KRSL,
KMPE and MC. Particularly, when SD and VC methods are
applied to these criteria, one can change the cost function
(41) to one of them, which may improve the performance of
KAFs. Furthermore, the VP method only considers simplified
cosine-relation of two transformed data, some complicated
relationships, such as transformed data distribution, may be
applied to vector projection to achieve better performance.

REFERENCES

[1] H. Fan and Q. Song, “A linear recurrent kernel online learning algorithm
with sparse updates,” Neural Netw., vol. 50, pp. 142–153, 2014.

[2] W. Liu, P. P. Pokharel, and J. C. Prı́ncipe, “The kernel least-mean-square
algorithm,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 543–554,
Feb. 2008.

[3] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275–2285,
Aug. 2004.

[4] W. Liu and J. C. Prı́ncipe, “Kernel affine projection algorithm,”
EURASIP J. Adv. Signal Process., vol. 2008, no. 1, pp. 1–13, Mar. 2008.

[5] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction of
time series data with kernels,” IEEE Trans. Signal Process., vol. 57, no.
3, pp. 1058–1067, Mar. 2009.

[6] J. Platt, “A resource-allocating network for function interpolation,”
Neural Comput., vol. 3, no. 2, pp. 213–225, 1991.

[7] W. Liu, I. Park, and J. C. Prı́ncipe, “An information theoretic approach
of designing sparse kernel adaptive filters,” IEEE Trans. Neural Netw.,
vol. 20, no. 12, pp. 1950–1961, Dec. 2009.

[8] B. Chen, S. Zhao, P. Zhu, and J. C. Prı́ncipe, “Quantized kernel least
mean squares algorithm,” IEEE Trans. Neural Netw. Learn. Syst., vol.
23, no. 1, pp. 22–32, Jan. 2012.

14

[9] B. Chen, N. Zheng, and J. C. Prı́ncipe, “Sparse kernel recursive least
squares using L1 regularization and a fixed-point sub-iteration,” in IEEE
Int. Conf., Acoust. Speech Signal Process. (ICASSP), 2014, pp. 5257–
5261.

[10] S. Zhao, B. Chen, P. Zhu, and J. C. Prı́ncipe, “Fixed budget quantized
kernel least-mean-square algorithm,” Signal Process., vol. 93, no. 9, pp.
2759–2770, 2013.

[11] V. S. Vaerenbergh, J. Via, and I. Santamaria, “A sliding-window kernel
RLS algorithm algorithm and its application to nonliear channel identi-
fication,” in IEEE Int. Conf., Acoust. Speech Signal Process. (ICASSP),
2006, pp. 789–792.

[12] J. Zhao, H. Zhang, and G. Wang, “Projected kernel recursive maximum
correntropy,”, IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no.
7, pp. 963–967, Jul. 2018.

[13] J. Zhao and H. Zhang, “Projected kernel recursive least squares algo-
rithm,” in Int. Conf., Neural Inform., Process. (ICONIP), 2017, pp. 356–
365.

[14] Q. Y. Miao and C. G. Li, “Kernel least-mean mixed-norm algorithm,”
in Int. Conf., Automat. Contor. Artif. Intell. (ACAI), 2012, vol.2 , no.6
pp. 1285–1288.

[15] S. Wang, J. Feng, and C. K. Tse, “Kernel affine projection sign
algorithms for combating impulse interference,” IEEE Trans. Circuits
Syst. II Express Briefs, vol. 60, no. 11, pp. 811–815, Nov. 2013.

[16] S. Pei and C. Tseng, “Least mean p-power error criterion for adaptive
FIR filter,” IEEE J. Sel. areas Commun., vol. 12, no. 9, pp. 154–1547,
Dec. 1994.

[17] F. Wen, “Diffusion least-mean p-power algorithms for distributed esti-
mation in alpha-stable noise environments,” Electron. Lett., vol. 49, no.
21, pp. 1355–1356, 2013.

[18] B. Chen, L. Xing, Z. Wu, J. Liang, and J. C. Prncipe, “Smoothed
least mean p-power error criterion for adaptive filtering,” Digit. Signal
Process., vol.40, pp. 154–163, 2015.

[19] M. Belge and E. L. Miller, “A sliding window RLS-like adaptive
algorithm for filtering alpha-stable noise,” IEEE Signal Process. Lett.,
vol. 7, no. 4, pp. 86–89, Apr. 2000.

[20] A. N. Vzquez and J. A. Garca, “Combination of recursive least p-
norm algorithms for filtering in alpha-stable noise,” IEEE Trans. Signal
Process., vol. 60, no. 3, pp. 1478–1482, Mar. 2012.

[21] W. Gao and J. Chen, “Kernel least mean p-power algorithm,” IEEE
Signal Process. Lett., vol. 24, no. 7, pp. 996–1000, Jul. 2017.

[22] W. Ma, J. Duan, W. Man, H. Zhao, and B. Chen, “Robust kernel
adaptive filters based on mean p-power error for noisy chaotic time
series prediction,” Eng. Appl. Artif. Intell., vol. 58, pp. 101–110, 2017.

[23] Y. Zheng, S. Wang, J. Feng, and C. K. Tse, “A modified quantized kernel
least mean square algorithm for prediction of chaotic time series,” Digit.
Signal Process., vol. 48, pp. 130–136, 2016.

[24] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering: A
Comprehensive Introduction, New York: Wiley, 2010.

[25] C. A. Micchelli, X. Yuesheng, and Z. Haizhang, “Universal Kernels,” J.
Mach. Learn. Res., vol. 7, pp. 2651–2667, 2006.

[26] M. Yukawa and R. Ishii, “An efficient kernel adaptive filtering algorithm
using hyperplane projection along affine subspace,” 2012 Proceed-
ings of the 20th European Signal Processing Conference (EUSIPCO),
Bucharest, pp. 2183–2187, 2012.

[27] S. Theodoridis, K. Slavakis and I. Yamada, “Adaptive learning in a world
of projections,” IEEE Signal Process. Mag., vol. 28, no. 1, pp. 97–123,
Jan. 2011.

[28] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167,
1998.

[29] T. Y. A. Naffouri and A. H. Sayed, “Adaptive filters with error nonlin-
earities: Mean-square analysis and optimum design,” EURASIP J. Appl.
Signal Processing, vol. 2001, no. 4, pp. 192–205, 2001.

[30] X. Luo, J. Deng, W. Wang, J. Wang and W. Zhao, “A quantized kernel
learning algorithm using a minimum kernel risk-sensitive loss criterion
and bilateral gradient technique,” Entropy, vol. 19, no. 7, p. 365, 2017.

[31] B. Lin, R. He, X. Wang and B. Wang, “The steady-state mean-square
error analysis for least mean p-order algorithm,” IEEE Signal Process.
Lett., vol. 16, no. 3, pp. 176–179, Mar. 2009.

[32] M. Shao and C.L. Nikias, “Signal processing with fractional lower order
moments: stable processes and their applications,” Proceed. IEEE, vol.
81, no. 7, pp. 986–1010, Jul. 1993.

[33] B. Weng and K. E. Barner, “Nonlinear system identification in impulsive
environments,” IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2588–
2594, Jul. 2005.

[34] S. Wang, Y. Zheng, S. Duan, L. Wang and H. Tao, “Quantized kernel
maximum correntropy and its mean square convergence analysis,” Digit.
Signal Process., vol. 63, pp. 164–176, Apr. 2017.

[35] A. Sign, N. Ahuja, and P. Mouline, “Online learning with kernels:
Overcoming the growing sum problem,” in: Proc. IEEE Int. Workshop
Mach. Learn. Signal Process., Sep. 2012, pp. 1–6.

[36] S. Wang, W. Wang, L. Dang, and Y. Jiang, “Kernel least mean square
based on the Nyström method,” Circuits Syst. Signal Process., vol.38,
pp. 3133–3151, 2019.

[37] K. Xiong and S. Wang, “Robust least mean logarithmic square adaptive
filtering algorithms,” J. Franklin I., vol.356, pp. 654–674, 2019.

[38] B. Chen, L. Xing, X. Wang, J. Qin, and N. Zheng, “Robust learning with
kernel mean p-power error loss,” IEEE Trans. Cybern., vol.48, no.7, pp.
2101–2113, Jul. 2018.

Ji Zhao received the BEng degree in Communi-
cation Engineering from Southwest University of
Science and Technology, Mianyang, China, in 2013,
and the MEng degrees in Signal and Information
Processing from Southwest University, Chongqing,
China, in 2016. Now, he is a PhD. candidate of Cir-
cuit and System in University of Electronic Science
and Technology of China, Chengdu. From October
2018 to October 2019, he was a joint PhD. Student in
Global Big Data Technologies Centre, University of
Technology Sydney, Sydney, NSW 2007 Australia.

His current research interests include adaptive kernel filtering, signal process-
ing, and machine learning.

Hongbin Zhang (M’06-SM’12) received the BEng
degree in Aerocraft Design from Northwestern Poly-
technical University, Xian, China, in 1999, and the
MEng and PhD. degrees in Circuits and Systems
from the University of Electronic Science and Tech-
nology of China, Chengdu, in 2002 and 2006, re-
spectively. From 2002 to 2017, He was a Professor
with the School of Electrical Engineering, University
of Electronic Science and Technology of China.
From 2018, he has been a Professor with School
of Information and Communication Engineering,

University of Electronic Science and Technology of China. From December
2011 to December 2014, he was a Post-Doctor with School of Automation,,
Nanjing University of Science and Technology, Nanjing, Jiangsu. His current
research interests include fuzzy control, stochastic control and time-delay
control systems, and non-linear signal processing.

Gang Wang received the B.E. degree in com-
munication engineering and the Ph.D. degree in
biomedical engineering from the University of Elec-
tronic Science and Technology of China, Chengdu,
China, in 1999 and 2008, respectively, where he
is currently an Associate Professor with the School
of Information and Communication Engineering.His
current research interests include distributed signal
processing and intelligent systems.

J. Andrew Zhang (M’04-SM’11) received the
B.Sc. degree from Xi’an JiaoTong University, China,
in 1996, the M.Sc. degree from Nanjing University
of Posts and Telecommunications, China, in 1999,
and the Ph.D. degree from the Australian National
University, in 2004. Currently, Dr. Zhang is an
Associate Professor in the School of Electrical and
Data Engineering, University of Technology Sydney,
Australia. He was a researcher with Data61, CSIRO,
Australia from 2010 to 2016, the Networked Sys-
tems, NICTA, Australia from 2004 to 2010, and ZTE

Corp., Nanjing, China from 1999 to 2001. Dr. Zhang’s research interests are
in the area of signal processing for wireless communications and sensing.
He has published more than 170 papers in leading international Journals and
conference proceedings, and has won 5 best paper awards. He is a recipient
of CSIRO Chairman’s Medal and the Australian Engineering Innovation
Award in 2012 for exceptional research achievements in multi-gigabit wireless
communications.

	20xx IEEE
	a5aa47e4-a72c-4346-80a6-298700d523dc

