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Abstract—Channel estimation is challenging for hybrid mil-
limeter wave (mmWave) large-scale antenna arrays which are
promising in 5G/B5G applications. The challenges are associated
with angular resolution losses resulting from hybrid front-
ends, beam squinting, and susceptibility to the receiver noises.
Based on tensor signal processing, this paper presents a novel
multi-dimensional approach to channel parameter estimation
with large-scale mmWave hybrid uniform circular cylindrical
arrays (UCyAs) which are compact in size and immune to
mutual coupling but known to suffer from infinite-dimensional
array responses and intractability. We design a new resolution-
preserving hybrid beamformer and a low-complexity beam
squinting suppression method, and reveal the existence of shift-
invariance relations in the tensor models of received array
signals at the UCyA. Exploiting these relations, we propose a
new tensor-based subspace estimation algorithm to suppress the
receiver noises in all dimensions (time, frequency, and space).
The algorithm can accurately estimate the channel parameters
from both coherent and incoherent signals. Corroborated by the
Cramér-Rao lower bound (CRLB), simulation results show that
the proposed algorithm is able to achieve substantially higher
estimation accuracy than existing matrix-based techniques, with
a comparable computational complexity.

Index Terms—5G/B5G, millimeter wave, large-scale antenna
array, tensor, hybrid beamformer.

I. INTRODUCTION

Massive hybrid antenna arrays can balance the hardware
cost and complexity of wideband millimeter wave (mmWave)
transceivers in fifth generation (5G) and beyond 5G (B5G)
mobile communications [1]. Wideband mmWave hybrid cir-
cular arrays are particularly interesting owing to their compact
size, strong immunity to mutual coupling, and inherently
symmetric structure that enables 360-degree azimuth coverage
[2]. Channel parameter estimation for wideband mmWave
hybrid circular arrays is challenging, due to high-dimensional
parameters, large signal bandwidth, large signal propagation
loss, and subsequent susceptibility to noises [3]–[5].

Existing channel parameter estimation algorithms (for the
azimuth and elevation angles, and the propagation delay of
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an incident signal) have typically been matrix-based. By
those matrix-based algorithms, the relations between different
dimensions (i.e., domains) of the signal become obscure, be-
cause the received multi-dimensional (i.e., space, time and fre-
quency) signals are stacked into two-dimensional matrices [6],
[7]. Moreover, typical high-resolution matrix-based subspace
estimation algorithms, such as multiple signal classification
(MUSIC) [8] and estimation of signal parameters via rotational
invariance techniques (ESPRIT) [9], were designed for nar-
rowband systems, where channel parameters vary negligibly
within the system band and are unaffected by an adverse beam
squinting effect [10].

Wideband signal-subspace methods (WSSMs) [11], [12]
have been used to remove the frequency dependence of
array steering vectors and suppress the beam squinting effect,
before applying (narrowband) subspace estimation algorithms
in wideband mmWave systems. Existing incoherent WSSMs
(IWSSMs) [13], [14] decompose received signals into multi-
ple non-overlapping narrowbands, and estimate the parame-
ters independently at each narrowband. These methods [13],
[14] do not utilize the high temporal resolution offered by
wideband mmWave systems. In [11], [15], coherent WSSMs
(CWSSMs) map the frequency-dependent array steering matri-
ces to a reference frequency by producing so-called focusing
matrices. The generation of the focusing matrices in these
methods requires initial values, and the performance of the
methods is susceptible to the initial values. A variation of
CWSSM, named unitary constrained array manifold interpola-
tion (UCAMI), is proposed in [3], [16]. It eliminates the need
for initial estimates and avoids focusing loss1. However, the
focusing matrices of UCAMI are obtained by solving multi-
dimensional optimization problems. The dimension of the
problems is equal to the number of estimation parameters, and
UCAMI is computationally expensive. To overcome the beam
squinting effect, an approximated channel model is developed
in [17] to quantize the angular space, which would introduce
errors and grid mismatches leading to a degraded channel
estimation accuracy. To circumvent the grid mismatch, the
algorithm developed in [17] repeatedly refines the angular grid
and applies compressive sensing to estimate parameters. As
a result, multiple iterative reweighted least squares problems
need to be solved.

Tensor-based channel parameter estimations have been

1Focusing loss refers to the ratio between the array signal-to-noise ratios
after and before focusing operations. Focusing loss can be avoided by
constraining that the focusing matrices are unitary [11].
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Fig. 1. The flow diagram of the proposed localization approach. From left to right, the four key steps are described in Section III, Section IV, Section V-C,
and Sections V-A and V-B, respectively.

demonstrated to be more powerful than conventional matrix-
based techniques in [6], [18], [19]. By arranging the received
signals in a tensor form and applying tensor decomposition,
the multi-dimensional parameters can be estimated with super-
high accuracy [6], [7]. The papers [7], [20]–[22] present
tensor-based algorithms for multi-dimensional channel param-
eter estimation, which preserve the multi-dimensional structure
of signals and improve estimation accuracy in scatter-rich
microwave-band channels. The authors of [23] and [24] exploit
the sparsity of mmWave channels to further improve the
estimation accuracy. However, their algorithms require an
alternating-least-squares procedure with no guarantee of con-
vergence. In addition, the algorithm in [24] is only suitable for
narrowband systems with uniform rectangular arrays (URAs).

This paper presents a novel tensor-based approach for
multi-dimensional wideband channel estimation in large-scale
mmWave hybrid uniform cylindrical arrays (UCyAs). The key
contributions of the paper are as follows:

• We design the hybrid beamformers by using quasi-
discrete Fourier transform (Q-DFT) to maintain the an-
gular resolution of the hybrid UCyA with a reduced
number of radio frequency (RF) chains. Developing and
applying a low-complexity UCAMI, we suppress the
beam squinting effect and enable coherent combining
across the wideband. These are two salient steps for our
new tensor-based parameter estimation.

• We propose a new tensor-based subspace estimation
algorithm to jointly estimate the delay and the azimuth
and elevation angles of each received signal by ex-
ploiting the important shift-invariance relations in the
constructed truncated higher-order singular value decom-
position (HOSVD) model. The algorithm can suppress
the receiver noises in all of the time, frequency, and
space dimensions, and hence accurately estimate the high-
dimensional channel parameters of multiple coherent or
incoherent signal sources.

• We introduce a new way to rearrange the measurement
tensor of the received signals to decorrelate coherent
signals at the hybrid UCyA, i.e., spatial smoothing. Co-
herent signals can then be separated and can be estimated
independently by using the proposed tensor subspace
estimation algorithm.

The steps of the proposed approach are illustrated in Fig. 1,
and elaborated on in the rest of this paper. In the first step, the
received signals are first synthesized by a hybrid directional
beamformer, which uses Q-DFT to reduce the number of
required RF chains (with a negligible cost of the channel
estimation accuracy at the later stages of the technique). In

other words, this step reduces the dimension of the received
signals, so that the signals can be processed with much fewer
RF chains (than antennas). The second step is a proposed
low-complexity UCAMI, which suppresses the beam squinting
effect efficiently by only optimizing the focusing matrices in
the elevation angular domain. The third step is to reveal and
exploit the inherent linear recurrence relations in the first mode
of the measure tensor and run spatial smoothing to decorrelate
the coherent signals. Finally, the new tensor-based joint delay-
angle estimation algorithm is carried out to estimate the delay
and azimuth and elevation angles based on the constructed
truncated HOSVD model of the measure tensor.

Validated by the Cramér-Rao lower bound (CRLB), sim-
ulation results show that the proposed algorithm is able to
achieve much higher accuracy than state-of-the-art matrix-
based techniques for wideband mmWave hybrid UCyAs. The
new tensor-based algorithms work well even when the signal-
to-noise ratio (SNR) is low, credited to the effective noise
suppression in all of the time, space, and frequency domains.

Different from the existing studies, e.g, [17], we develop a
new low-complexity UCAMI to suppress the beam squinting
effect, which does not quantize the angular space and hence no
quantization error will occur. Moreover, we reveal and exploit
inherent shift-invariance relations [25] in each domain/mode
of the measurement tensor. As a result, our algorithm only
needs to solve a one-time HOSVD of the measurement tensor
to estimate the multi-dimensional parameters jointly.

The rest of this paper is organized as follows. The system
model is introduced in Sections II. In Sections III and IV,
we design the hybrid beamformers and suppress the beam
squinting effect in the received signals. In Section V, we
introduce the new tensor-based parameter estimation algo-
rithm. Simulations are provided in Section VI, followed by
conclusions in Section VII.

A. Preliminary and Notation

Notations a, a, A, and A stand for scalar, column vector,
matrix, and set, respectively. IK and 0M×K denote a K ×K
identity matrix and an M ×K zero matrix, respectively. A∗,
AT and AH denote the conjugate, transpose and conjugate
transpose of A, respectively. ‖A‖F denotes the Frobenius
norm of A. ⊗ and � denote the Kronecker product and Khatri-
Rao product, respectively. â denotes the estimate of a.

Tensor is the generalization of scalar (which has a zero-
order mode), vector (which has one-order mode), and matrix
(which has two-order modes) to arrays with an arbitrary order
of modes. We use A ∈ CI1×I2×···×IN to denote an order-
N tensor, whose elements (entries) are ai1,i2,··· ,iN , in =
1, 2, . . . , In, and the index of A in the n-th mode ranges from
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Fig. 2. Illustration on the proposed system and signal models. (a) System configuration; (b) Signal tensor model.

1 to In. By fixing some of the indices, a subtensor of A can
be formed: A:,:,··· ,:,in=k,:,··· ,: with the index of the mode-n set
to k (0 ≤ k ≤ In). ×n and ◦ stand for tensor n-mode product
and outer product, respectively. [A tn B] denotes the tensor
concatenation of A and B in mode-n. The mode-n unfolding
(also known as matricization) of a tensor A ∈ CI1×I2×···×IN ,
denoted by A(n) ∈ CIn×(I1I2···IN/In), arranges the fibers in
the n-th mode of A as the columns of the resulting matrix
A(n). Some important properties of tensor operations used in
this paper are presented in Appendix I.

II. SYSTEM MODEL

In our system, a base station (BS) is equipped with a large-
scale hybrid mmWave UCyA with Mbs antennas, consisting
of Mv vertically placed uniform circular arrays (UCAs) each
with Mh antenna elements, and Mbs = MvMh. Let r be the
radius of the UCyA, and h be the vertical distance between
any two adjacent vertical elements. A hybrid front-end is
adopted (i.e., there are fewer RF chains than antennas) with
consideration of hardware cost, energy consumption, weight
and size. Consider a wideband orthogonal frequency division
multiplexing (OFDM) system, with Mf subcarriers. There are
a total of K three-dimensional (3D) sources, each of which is
equipped with a single antenna with an isotropic beam pattern.

We apply vertical beam sweeping to obtain the signals
from the sources, as shown in Fig.2(a). Mb evenly spaced
elevation angles are swept successively. For each elevation
angle, signal samples of Mt time frames are collected within
a sweeping time interval τb. In the mb-th sweeping beam
(mb = 1, . . . ,Mb), the signals from Kmb sources are captured
at the BS (and K ≤

∑Mb
mb=1Kmb , due to the partially

overlapping sweeping beams). The signal sample associated
with the mf-th subcarrier (mf = 1, . . . ,Mf) at the mt-th time
frame (mt = 1, . . . ,Mt) can be expressed as [1]:

xmf,mt,mb =

Kmb∑
kmb =1

smt,kmb
afbs,mf,mb(τkmb

)BH
mf,mb

× abs,mf,mb(φkmb
, θkmb

) + nmf,mt,mb , (1)

where φkmb
and θkmb

are the azimuth and elevation
angles-of-arrivals (AOAs) of the kmb -th path, respectively;
abs,mf,mb(φkmb

, θkmb
) ∈ CMbs denotes the steering vector of

the hybrid UCyA; smt,kmb
= αkmb

s̃mt,kmb
/
√
ρkmb

, where
s̃mt,kmb

is the transmitted symbol, αkmb
is the signal power,

and ρkmb
is the pathloss from the kmb -th source to the BS;

nmf,mb,mt ∈∈ CMbsd denotes the additive white Gaussian noise
(AWGN); Bmf,mb = BabBdb,mf,mb ∈ CMbs×Mbsd is the hybrid
beamforming matrix, composed of an analog beamforming
matrix Bab ∈ CMbs×Mbsr and a digital beamforming matrix
Bdb,mf,mb ∈ CMbsr×Mbsd ; Mbsr is the number of RF chains;
Mbsd is the number of data streams after hybrid beamforming;
and

afbs,mf,mb(τkmb
) = af,mf(τkmb

)bf,mb , (2)

where af,mf(τkmb
) = e−j2πfmfτkmb and bf,mb =

e−j2πfmf (mb−1)τb with τkmb
being the delay of the kmb -

th signal and fmf being the mf-th subcarrier frequency. The
delay τkmb

can be used to estimate the source distance.
Given the structure of UCyA, the array steering vector, i.e.,

abs,mf,mb(φkmb
, θkmb

), can be given as the Kronecker product
of the vertical and horizontal array steering vectors:

abs,mf,mb(φkmb
, θkmb

)

= av,mf,mb(θkmb
)⊗ ah,mf,mb(θkmb

, φkmb
). (3)

The elements of av,mf,mb(θkmb
) and ah,mf,mb(θkmb

, φkmb
) are:[

av,mf,mb(θkmb
)
]
mv,1

= av,mv,mf,mb(θkmb
)

=
1√
Mv

exp

(
−j 2π

c
fmfh(mv − 1) cos(θkmb

)

)
, (4)

[
ah,mf,mb(θkmb

, φkmb
)
]
mh,1

= ah,mh,mf,mb(θkmb
, φkmb

)

=
1√
Mh

exp

(
j

2π

c
fmfr sin(θkmb

) cos(φkmb
− ϕmh)

)
, (5)

where c is the speed of light, and ϕmh = 2π(mh − 1)/Mh is
the difference between the central angles of the mh-th antenna
and the first antenna of each UCA.



III. HYBRID DIRECTIONAL BEAMFORMING DESIGN

In this section, we design the analog and digital beamform-
ing matrices, Bab and Bdb,mf,mb , for the hybrid directional
beamformer, as the first step shown in Fig. 1. The number of
required RF chains is reduced while the angular resolution of
the UCyA is not compromised as compared to its fully digital
counterparts.

We decouple Bab between the vertical and horizontal planes,
i.e., Bab = Bvab ⊗ Bhab with Bvab ∈ CMv×Mvr and Bhab ∈
CMh×Mhr . By decoupling the beamformers into the Kronecker
products of horizontal and vertical matrices, we preserve the
shift-invariance relations on the vertical and horizontal planes,
as will be revealed later in Section V. To maintain the angular
resolution of the hybrid UCyA, we design Bhab based on the
following theorem.

Theorem 1. Suppose that Mh ≥
⌊
4πfmfr/c

⌋
. The array

response vector ah,mf,mb(θkmb
, φkmb

) can be transformed into
a beamspace by using Q-DFT. If the index for a beamspace
dimension, p, is larger than

⌊
2πfmfr/c

⌋
, the element in the

dimension is negligible and can be suppressed. The expression
for the elements in the other dimensions is given by:

aQDFT,p,mf,mb(θkmb
, φkmb

)

≈
√
Mhj

pJp

(
γmf(θkmb

)
)

exp
(
−jpφkmb

)
, (6)

where γmf(θkmb
) = 2πfmfr sin(θkmb

)/c, p = −P,−P +

1, . . . , P , and Jp

(
γmf(θkmb

)
)

is the Bessel function of the
first kind of order p.

Proof: See Appendix II.
Theorem 1 shows that, with the application of Q-DFT

[26], the Mh-dimensional array response vector of each UCA,
ah,mf,mb(θkmb

, φkmb
), can be transformed to be (2P + 1)-

dimensional, where P = b2πfmfr/cc. As a result, only
Mhr = (2P + 1) RF chains are required on the horizontal
plane. Specifically, according to Theorem 1, we design Bhab
as [Bhab]mh,mhr+P+1 = e−j2π(mh−1)mhr/Mh , where mhr =
−P,−P + 1, . . . , P . We set Bvab = IMv to preserve the
recurrence relation between the UCAs, i.e., the shift-invariance
relation. The relation is crucial for the subspace-based estima-
tion algorithms, and exploited to estimate the elevation AOAs
in this paper. With this design, the number of required RF
chains is only Mbsr = MvrMhr = Mv(2P + 1).

Then, we design the digital beamformer Bdb,mf,mb as

Bdb,mf,mb = diag (bdb,1,mf,mb , . . . , bdb,Mbsr,mf,mb) , (7)

where bdb,mbsr,mf,mb (mbsr = 1, 2, . . . ,Mbsr) is the beamform-
ing weight coefficients. Since Bdb,mf,mb is diagonal, we have
Mbsr = Mbsd. Considering that sweeping beams on both
the vertical and horizontal planes would take a longer time,
we design the beamformers to sweep on the vertical plane
only, and operate omnidirectionally on the horizon plane. The
beamforming weight coefficients can be configured according
to the beamforming response, Pmf(θ̄mb), as given by

Pmf(θ̄mb) = bHdb,mf,mb
BH

ababs,mf,mb(θ̄mb , φ), (8)

where

bdb,mf,mb = [bdb,1,mf,mb , . . . , bdb,Mbsr,mf,mb ]
T (9)

is the normalized digital beamforming vector, i.e.,
bHdb,mf,mb

bdb,mf,mb = 1, and θ̄mb is the mb-th beamforming
sweeping direction. Assume that the vertical angular sweeping
interval is π

Mb
. The elevation angle of the mb-th angular

sample ranges from π
Mb

(mb − 1) to π
Mb
mb.

We also decouple the digital beamforming matrix Bdb,mf,mb

in (7) between the vertical and horizontal planes, i.e.,
Bdb,mf,mb = Bvdb,mf,mb ⊗ Bhdb,mf,mb , where Bvdb,mf,mb ∈
CMvd×Mvd and Bhdb,mf,mb ∈ CMhd×Mhd are diagonal matrices
with elements bvdb,mvd,mf,mb and bhdb,mhd,mf,mb , respectively.
Thus, after hybrid beamforming, the array steering vectors
abs,mf,mb(θkmb

, φkmb
) can be written as:

ahd,mf,mb(θkmb
, φkmb

) = BH
mf,mb

abs,mf,mb(θkmb
, φkmb

)

= ((Bvab ⊗Bhab) (Bvdb,mf,mb ⊗Bhdb,mf,mb))
H

× abs,mf,mb(θkmb
, φkmb

)

(a)
= ((BvabBvdb,mf,mb)⊗ (BhabBhdb,mf,mb))

H

× abs,mf,mb(θkmb
, φkmb

)

(b)
=
(

(BvabBvdb,mf,mb)
H ⊗ (BhabBhdb,mf,mb)

H
)

×
(
av,mf,mb(θkmb

)⊗ ah,mf,mb(θkmb
, φkmb

)
)

= avhb,mf,mb(θkmb
)⊗ ahhb,mf,mb(θkmb

, φkmb
), (10)

where avhb,mf,mb(θkmb
) ∈ CMvd , ahhb,mf,mb(θkmb

, φkmb
) ∈

CMhd , Mvd = Mvr = Mv, and Mhd = Mhr = 2P + 1. In
(10), (a) and (b) are based on two important properties of the
Kronecker product, i.e., (A⊗B)(C⊗D) = AC⊗BD and
(A⊗B)H = AH ⊗BH [27]. We have

avhb,mf,mb(θkmb
) = BH

vdb,mf,mb
av,mf,mb(θkmb

). (11)

According to Theorem 1, the mhd-th element of
ahhb,mf,mb(θkmb

, φkmb
) is given by:

ahhb,mhd,mf,mb(θkmb
, φkmb

) ≈
√
Mhj

mhdbhdb,mhd,mf,mb

× Jmhd

(
γmf(θkmb

)
)

exp
(
−jmhdφkmb

)
. (12)

Given our hybrid beamforming design, we can present
the beamspace signals of the mmWave UCyA in a tensor
form. Considering the observations at all sweeping intervals,
subcarriers and time frames, the beamspace signals can be
modeled as:

xmvd,mhd,mf,mt,mb =

Kmb∑
kmb =1

(
smt,kmb

avhb,mvd,mf,mb(θkmb
)

×ahhb,mhd,mf,mb(θkmb
, φkmb

)afbs,mf,mb(τkmb
)
)

+ nmvd,mhd,mf,mt,mb , (13)

where nmvd,mhd,mf,mt,mb is the additive noise.



We consider the samples from the mb-th vertical sweeping
beam, and (13) can be rewritten in the following tensor form
[7]

X:,:,:,:,mb = Amb ×4 Smb +Nmb ∈ CMvd×Mhd×M f×Mt , (14)

where all the angle and delay parameters at the mb-th sweep-
ing beam are collected in the space-time response tensor
Amb ∈ CMvd×Mhd×M f×Kmb ; Smb ∈ CMt×Kmb collects the
received symbols smt,kmb

; and Nmb ∈ CMvd×Mhd×M f×Mt

collects the noise samples.

IV. LOW-COMPLEXITY COHERENT PREPROCESSING FOR
WIDEBAND SIGNALS

As the second step in Fig. 1, a new low-complexity UCAMI
is developed in this section to suppress the beam squinting
effect and enable coherent combining of measurement signals
across wideband. The conventional UCAMI [16] needs to
solve a computationally expensive multi-dimensional opti-
mization problem whose dimension is equal to the number
of estimation parameters. Different from the conventional
UCAMI, there are only 1-D problems in our proposed ap-
proach.

As shown in (11) and (12), the array steering vectors depend
on the frequency and so do the beamspace signals. As a
consequence, the signals can suffer from the beam squinting
effect, due to the wide bandwidth of mmWave signals. It is
critical to preprocess the beamspace signals in order to sup-
press the frequency dependence of the array steering vectors.
The suppression of frequency dependence is performed by de-
signing the so-called focusing matrix, which focuses the array
steering vectors at each frequency to a reference frequency,
denoted by f0 [11], [15]. From (12), we see that after being
processed by the RF network, the subcarrier frequency fmf in
(5) is transformed into the Bessel function, Jmhd

(
γmf(θkmb

)
)

,
which only depends on fmf and θkmb

, and is independent of
φkmb

. We only need to optimize the focusing matrices in the
elevation angular domain, since fmf is decoupled from the
azimuth angle φkmb

in (12). Moreover, by taking the vertical
array steering vector in (11) into consideration, we find that
both Jmhd

(
γmf(θkmb

)
)

and avhb,mf,mb(θkmb
) depend only on

the elevation angle θkmb
.

We first design the optimization problem for the horizon-
tal array steering vectors in (12). Because the measurement
samples in (14) are collected from the Mb vertical sweeping
beams, the optimization can be conducted in each vertical
angular sweeping interval separately. Define

gmf
(θ) = [J−P (γmf(θ)) , J−P+1 (γmf(θ)) , . . . , JP (γmf(θ))]

T
,

(15)
which collects all the Bessel functions in (12) at the mf-
th subcarrier. We discretize each sweeping interval into Nb
elevation angular values. Then, the horizontal factor matrices
associated with the subcarrier frequency, fmf , for the mb-th
sweeping interval can be written as:

Gh,mf,mb =
[
gmf

(θmb,1), . . . , gmf
(θmb,Nb)

]
, (16)

where θmb,nb = π
Mb

(mb−1)+ π
MbNb

(nb−1) is the discretized
elevation angle.

We directly use avhb,mf,mb(θkmb
) to optimize the vertical

array steering vectors by constructing

Gv,mf,mb = [avhb,mf(θmb,1), . . . ,avhb,mf(θmb,Nb)] . (17)

We then obtain the focusing matrices on the vertical and
horizontal planes, denoted by Tv,mf,mb and Th,mf,mb , by
formulating the following optimization problems:

Tv,mf,mb = arg min
Tv,mf,mb

‖Tv,mf,mbGv,mf,mb −Gv,mf0,mb‖
2
F ,

s.t. TH
v,mf,mb

Tv,mf,mb = IMv ; (18)

Th,mf,mb = arg min
Th,mf,mb

‖Th,mf,mbGh,mf,mb −Gh,mf0,mb‖
2
F ,

s.t. TH
h,mf,mb

Th,mf,mb = I2P+1, (19)

where mf0 is the index to the subcarriers at the reference
frequency f0, and the constraints prevent focusing losses [16].

The solutions to Problems (18) and (19) are given by [11]

Tv,mf,mb = Vv,mf,mbU
H
v,mf,mb

;

Th,mf,mb = Vh,mf,mbU
H
h,mf,mb

, (20)

where the columns of Uv,mf,mb (or Uh,mf,mb) and Vv,mf,mb

(or Vh,mf,mb) are the left and right singular vectors of
Gv,mf,mbG

H
v,mf0,mb

(or Gh,mf,mbG
H
h,mf0,mb

), respectively.
We construct b̃f,mb = b−1

f,mb
, B̃v,mf,mb = B−1

vdb,mf,mb
, and

B̃h,mf,mb = B−1
hdb,mf,mb

to offset the impact of beam sweeping
on the received signals. The focusing matrices (20) suppress
the frequency dependence of the array steering vectors. After
this coherent wideband processing, in the mb-th sweeping
beam, the received signal at the mf-th subcarrier in (14) can
be calculated as

X̃:,:,mf,:,mb = X:,:,mf,:,mb b̃f,mb ×1

(
Tv,mf,mbB̃v,mf,mb

)
×2

(
Th,mf,mbB̃h,mf,mb

)
. (21)

The elements of X̃:,:,mf,:,mb can be expressed as

x̃mvd,mhd,mf,mt,mb =

Kmb∑
kmb =1

smt,kmb
ãhhb,mhd,mb(θkmb

, φkmb
)

× ãvhb,mvd,mb(θkmb
)af,mf(τkmb

) + ñmvd,mhd,mf,mt,mb , (22)

where ãvhb,mvd,mb(θkmb
) and ãhhb,mhd,mb(θkmb

, φkmb
) are the

resultant array manifolds in (13). ñmvd,mhd,mf,mt,mb is the
transformed noise sample, which still yields the zero-mean
Gaussian distribution due to the constraints on the beamform-
ing weights and focusing matrices.

We note that there are two-dimensional variables, φkmb

and θkmb
, in the frequency-dependent array steering vectors

av,mf,mb(θkmb
) and ah,mf,mb(θkmb

, φkmb
). UCAMI [16] would

have to optimize the focusing matrices on the elevation and
azimuth angular domains simultaneously, resulting in a two-
dimensional problem with a high complexity. In contrast, our



proposed method only needs a one-dimensional optimization
problem, i.e., (18) and (19), reducing the complexity signifi-
cantly.

V. TENSOR-BASED PARAMETER ESTIMATION

With the received signals preprocessed (in Sections III
and IV), the resultant array steering vectors are frequency-
independent in (22). Only the delay-dependent factor,
af,mf(τkmb

), depends on the carrier frequency. In this section,
we propose a new tensor-based joint delay-angle estimation
algorithm which is the last step in Fig. 1, and a new spa-
tial smoothing method which is the second-to-last (optional)
step in the figure. Despite the use of the existing truncated
HOSVD, the proposed joint delay-angle estimation algorithm
involves new estimation processes. Specifically, the matrix
TLS problem formulation is generalized to the tensor case.
The azimuth angles are estimated by substituting the estimated
elevation angles, which avoids potential mismatches between
the estimated results of the elevation and azimuth AOAs.
By revealing and exploiting the recurrence relations between
the UCAs at different layers of the UCyA, the proposed
spatial smoothing method is developed to decorrelate the
coherent signals to correctly decompose the signal and noise
subspaces in all dimensions. The computational complexity of
the proposed algorithm is analyzed at the end.

A. Truncated HOSVD Model of Measurement Samples

With no a-priori knowledge of the number of signals in each
sweeping beam, Kmb , we collect all the sweeping results in
(22) to jointly process the signals from the K signal sources.
The element of the received signal tensor model is given by

ymv,mp,mf,mt =

Mb∑
mb=1

x̃mvd,mhd,mf,mt,mb

=

Mb∑
mb=1

 Kmb∑
kmb =1

ãvhb,mvd,mb(θkmb
)ãhhb,mhd,mb(θkmb

, φkmb
)

×af,mf(τkmb
)smt,kmb

+ ñmv,mp,mf,mb,mt

 =

K∑
k=1

ãvhb,mvd(θk)

× ãhhb,mhd(θk, φk)af,mf(τk)smt,k + ṅmv,mp,mf,mt , (23)

which can be expressed concisely as:

Y =

Mb∑
mb=1

X̃:,:,:,:,mb = Ã×4S+Ṅ ∈ CMvd×Mhd×M f×Mt , (24)

where S = [S1,S2, . . . ,SMb ] ∈ CMt×K collects all the
symbols and Ṅ =

∑Mb
mb=1Nmb collects all noise samples. An

illustration of the received signal tensor model is shown in Fig.
2(b). In (24), Ã ∈ CMvd×Mhd×M f×K is known as the space-
time response tensor [28], and obtained by concatenating the
K response tensors, Ãk ∈ CMvd×Mhd×M f , as given by:

Ã =
[
Ã1 t4 Ã2 t4 . . . t4 ÃK

]
. (25)

Because the array steering vectors are frequency-independent
after the coherent wideband preprocessing (as described in
Section IV), the space-time response tensor of the k-th signal
source, Ãk, is given by

Ãk = ãvhb(θk) ◦ ãhhb(θk, φk) ◦ af(τk), (26)

where [ãvhb(θk)]mvd,1
= ãvdb,mvd(θk), [ãhhb(θk, φk)]mhd,1

=
ãhhb,mhd(θk, φk), and [af(τk)]mf,1

= af,mf(τk).
By substituting (25) and (26) into (24), we obtain

Y =

K∑
k=1

ãvhb(θk) ◦ ãhhb(θk, φk) ◦ af(τk) ◦ sk + Ṅ , (27)

where sk = [S]:,k. (27) indicates that, in a noiseless case, Y
can be regarded as the sum of K rank-one tensors. Therefore,
(27) is the CP decomposition of Y (see Property 3 in Appendix
I). Rank(Y) = K2. According to Property 3 in Appendix I,
(27) can be written as

Y =
r
Zs; Ãvhb, Ãhhb,Af,S

z
+ Ṅ (28)

where
[
Ãvhb

]
:,k

= ãvhb(θk),
[
Ãhhb

]
:,k

= ãhhb(θk, φk),

[Af]:,k = af(τk), and Zs ∈ CK×K×K×K is an identity
superdiagonal tensor.

Given the typically sparse multipath propagation of
mmWave, the number of received paths is much smaller than
the numbers of antennas, subcarriers, and time frames, i.e.,
K < min(Mvd,Mhd, Mf,Mt). Thus, the ranks of Ãvhb, Ãhhb,
Af and S are all K. According to the CP model (28), in
the presence of non-negligible noises, Ãvhb, Ãhhb, Af and S
correspond to the factor matrix of the measurement tensor Y
in each mode. The ranks of the mode-n unfoldings of tensor
Y , i.e., the n-ranks of Y (n = 1, 2, 3, 4), are all K.

As a high-dimensional generalization of matrix SVD, the
HOSVD (see Property 2 in Appendix I) conducts the SVD
of the unfolding of Y in each mode separately. This can
suppress the received noise in each mode. The HOSVD of
the measurement tensor Y is given by

Y = L×1Uv×2Uh×3Uf×4Ut = JL; Uv,Uh,Uf,UtK , (29)

where the unitary matrices, Uv ∈ CMvd×Mvd , Uh ∈ CMhd×Mhd ,
Uf ∈ CMf×Mf , and Ut ∈ CMt×Mt , are the left singular
matrices of the mode-n unfoldings of tensor Y, and the core
tensor L ∈ CMvd×Mhd×M f×Mt is obtained by moving the
singular matrices to the left-hand side of (29):

L = Y ×1 UH
v ×2 UH

h ×3 UH
f ×4 UH

t . (30)

Because the n-ranks of tensor Y are K, the SVD of the
mode-1 unfolding Y(1) ∈ CMvd×(M/Mvd) can be written as

Y(1) = UvΣvV
H
v =

[Uv,s Uv,n]

[
Σv,s 0K×( M

Mvd
−Kvd)

0(Mvd−Kvd)×Kvd Σv,n

]
[Vv,s Vv,n]

H
,

(31)

2According to (27), we have Rank(Y) ≤ K. Rank(Y) < K only occurs
when the locations of two coherent sources are the same, which rarely
happens.



where Kvd = min(K,Mvd) and M = MvdMhdM fMt. The
signal subspace Uv,s ∈ CMvd×Kvd and the noise subspace
Uv,n ∈ CMvd×(Mvd−Kvd) of the mode-1 unfolding Y(1) cor-
respond to the Kvd largest and the (Mvd − Kvd) smallest
elements of the diagonal matrix Σv = diag(σv,1, σv,2, . . . ,
σv,Mvd), respectively. σv,1, σv,2, . . . , σv,Mvd are the non-zero
singular values of the mode-1 unfolding Y(1), and calculated
by σv,mvd = ‖Lmvd,:,:,:,:‖. The signal subspace matrices of
the mode-2,3,4 unfoldings of Y , i.e., Uh,s ∈ CMhd×Khd ,
Uf,s ∈ CMf×Kf , and Ut,s ∈ CMt×K can be obtained in the
same way, where Khd = min(K,Mhd) and Kf = min(K,Mf)
.

By removing the noise subspace in each mode of Y , we
construct a low-rank truncated HOSVD model of the noise-
free measurement tensor Ys [18], as given by

Ys = Ls ×1 Uv,s ×2 Uh,s ×3 Uf,s ×4 Ut,s ∈ CMvd×Mhd×M f×Mt ,
(32)

where Ls ∈ CKvd×Khd×Kf×K is obtained by discarding the
insignificant singular values of the mode-n unfoldings of Y .

B. Joint Angle-Delay Estimation

We propose a tensor-based joint delay-angle estimation
algorithm by exploiting the shift-invariance relations between
the elements in each mode of the measurement tensor. By
comparing (24) with (28), we first obtain

Ã = Zs ×1 Ãvhb ×2 Ãhhb ×3 Af. (33)

According to the truncated HOSVD model (32), we define the
signal subspace tensor:

Us = Ls ×1 Uv,s ×2 Uh,s ×3 Uf,s ∈ CMvd×Mhd×M f×K . (34)

By comparing (24), (32), (33) and (34), we have Us×4 Ut,s =
Ã ×4 S. Because Ut,s ∈ CMt×K and S ∈ CMt×K are full
column rank matrices, we obtain

Ã = Us ×4 D, (35)

where D ∈ CK×K is a full rank matrix. Based on (35), we
generalize the matrix-based subspace algorithm to the tensor,
and estimate the delay and angles of each signal path.

1) Estimation of Elevation Angle: We first propose a tensor-
based total-least-squares ESPRIT (TLS-ESPRIT) algorithm
to estimate the elevation angle and delay. To estimate the
elevation angle of each signal path, we first reveal and then
exploit the shift-invariance relations underlying the vertical
array steering matrix Ãv, according to (4) and (23).

To select the elevation angle-related subtensors, we define
two selection matrices:

Jv1 = [IMvd−1,0(Mvd−1)×1] ∈ R(Mvd−1)×Mvd ;

Jv2 = [0(Mvd−1)×1, IMvd−1] ∈ R(Mvd−1)×Mvd , (36)

which are two auxiliary matrices. We reveal the following
shift-invariance relation among the selected subtensors:

Ã ×1 Jv2 = Ã ×1 Jv1 ×4 Θv, (37)

where Θv = diag
(
e−j

2π
c f0h cos(θ1), . . . , e−j

2π
c f0h cos(θK)

)
∈

CK×K . The shift-invariance relation is the key to our design
of the following tensor-based TLS-ESPRIT algorithm3. The
algorithm estimates the elevation angle of each signal in the
tensor form.

By substituting (35) into (37), we have

Usv2 ×4 D = Usv1 ×4 (ΘvD) , (38)

where Usv1 = Us ×1 Jv1 ∈ C(Mvd−1)×Mhd×M f×K and Usv2 =
Us ×1 Jv2 ∈ C(Mvd−1)×Mhd×M f×K are the selected subtensors
of the signal subspace tensor Us. Since D is a full rank matrix,
we can left-multiply its inverse to both sides of (38) and obtain

Usv2 = Usv1 ×4 Ψv, (39)

where Ψv = D−1ΘvD ∈ CK×K .
To obtain the estimate of Ψv in (39), we define Υv =

[Υv1 Υv2] ∈ CK×2K . According to the standard TLS [27],
the estimate of Ψv is Ψ̂v = −Υ̂v1Υ̂

−1
v2 , where the K

eigenvalues of Ψ̂v, i.e., λv,k, k = 1, 2, . . . ,K, are sorted in
descending order. We now generalize the matrix TLS problem
formulation [27] to the tensor case, as given by:

Υ̂v = arg min
Υv
‖Usv1 ×4 Υv1 + Usv2 ×4 Υv2‖ ,

s.t. ΥvΥ
H
v = IK , (40)

which finds a unitary matrix Υv whose submatrices are
orthogonal to Usv1 and Usv2 in mode-4.

According to (63), the mode-4 unfoldings of Usv1 is given
by

Usv1(4) = Us(4) (Jv1 ⊗ IMhd ⊗ IMf)
T
, (41)

where Us(4) ∈ CK×MvdMhdM f is the mode-4 unfolding of
Us. The mode-4 unfoldings of Usv1 can be formulated in the
same way. Since ‖A‖ =

∥∥A(n)

∥∥
F (n = 1, 2, . . . , N) [18], we

rewrite the tensor TLS problem (40) in a matrix format as:

Υ̂v = arg min
Υv

∥∥∥Υv1Us(4) (Jv1 ⊗ IMhd ⊗ IMf)
T

+Υv2Us(4) (Jv2 ⊗ IMhd ⊗ IMf)
T
∥∥∥

F

= arg min
Υv

∥∥WvΥ
T
v

∥∥
F , (42)

where

Wv =
[
(Jv1 ⊗ IMhd ⊗ IMf) Us

T
(4) (Jv2 ⊗ IMhd ⊗ IMf) Us

T
(4)

]
∈ C(Mvd−1)MhdM f×2K . (43)

The SVD of WH
v Wv is written as WH

v Wv = U̇vΛ̇vV̇v,
where U̇v ∈ C2K×2K and V̇v ∈ C2K×2K are the left and right
singular matrices, respectively; and Λ̇v ∈ C2K×2K contains
singular values. We partition U̇v into four blocks:

U̇v =

[
U̇v11 U̇v12

U̇v21 U̇v22

]
∈ C2K×2K . (44)

3The least-squares (LS) procedure can also be used for solving the
invariance equation (39), but has slightly lower accuracy than TLS. Section
VI will provide the results of performance comparison between the proposed
algorithm (T-CTLS), which applies TLS-ESPRIT for parameter estimation,
with its variation (T-CLS), which uses LS-ESPRIT.



Let Υ̂v1 = U̇T
v12 ∈ CK×K and Υ̂v2 = U̇T

v22 ∈ CK×K .
According to the array steering expression in (4), the

elevation angle of the k-th path can be finally estimated as

θ̂k = arccos

(
jc ln(λv,k)

2πf0h

)
. (45)

2) Estimation of Delay: We can estimate the delays by ex-
ploiting the shift-invariance relation between the delay-related
subtensors. We express the delay-dependent shift-invariance
relation, as follows.

Ã ×3 Jf2 = Ã ×3 Jf1 ×4 Θf, (46)

where Θf = diag
(
e−j2π∆Fτ1 , . . . , e−j2π∆FτK

)
with ∆F being

the subcarrier spacing. Jf1 and Jf2 are two selection matrices
to select the delay-related subtensors. Jf1 and Jf2 can be
constructed in the same way as in (36). By using TLS-ESPRIT
(40), the delay of the k-th path, τk, can be estimated as

τ̂k =
j ln(λf,k)

2π∆F
, (47)

where λf,k is an eigenvalue of the delay-related matrix Ψf =
DΘfD

−1. In the presence of non-negligible noises, the esti-
mates of the elevation angle and delay of each source may
be paired incorrectly. After obtaining the estimates of Ψ̂v and
Ψ̂f with (40), joint SVD methods [29] can be used to obtain
the joint eigenvalues of Ψ̂v and Ψ̂f, and then the correctly
matched pairs of estimated parameters can be obtained.

3) Estimation of Azimuth Angle: We design the tensor-
MUSIC algorithm [23] to estimate the azimuth angle of each
path. From (12), there are nonlinear Bessel functions in the
expression for the horizontal array steering matrix Ãh, and
therefore there is no shift-invariance relation for the azimuth
angle estimation, as opposed to (37).

According to (32), we discard the largest K singular values
of the mode-n unfoldings of the measurement tensor Y , i.e.,
setting the corresponding parts of L to zero. Then we obtain
the noise subspace tensor as4:

Yn = Ln ×1 Uv,n ×2 Uh,n ×3 Uf,n ×4 Ut,n, (48)

where Uv,n ∈ CMvd×(Mvd−K) is constructed by the last (Mvd−
K) columns of Uv; Uh,n ∈ CMhd×(Mhd−K) is the last (Mhd −
K) columns of Uh; Uf,n ∈ CMf×(Mf−K) is the last (Mf−K)
columns of Uf; and Ut,n ∈ CMt×(Mt−K) is the last (Mt−K)
columns of Ut. The core Ln can be evaluated by

Ln = Yn ×1 UH
v,n ×2 UH

h,n ×3 UH
f,n ×4 UH

t,n. (49)

Based on the subspace estimation of Y (34), we generalize the
matrix-based MUSIC, and the tensor MUSIC spectrum of the
azimuth angle is defined as

SPMUSIC(Φ) =
∥∥∥Ã ×2 UH

h,n

∥∥∥−2

, (50)

where Φ = [φ1, φ2, . . . , φK ].

4It is well known that this solution for estimating the noise subspace is not
optimal in the least squares sense. However, it is a good approximation in
most cases [6], [20] and it is easy to implement.

According to (63), the mode-2 matricization of Ã in (33)
can be expressed as

Ã(2) = ÃhhbZs(2)

(
Af ⊗ IMt ⊗ Ãvhb

)T
. (51)

We substitute (51) into (50) and obtain the mode-2 matri-
cization of (50), as given by

SPMUSIC(Φ) =

∥∥∥∥UH
h,nÃhhbZs(2)

(
Af ⊗ IMt ⊗ Ãvhb

)T∥∥∥∥−2

F
.

(52)
By substituting the estimated elevation angle of each path,
i.e., (45), into (52), the corresponding azimuth angle φk can
be estimated by searching the prominent peaks of the tensor
MUSIC spectrum (52).

Remark 1. When applying the tensor-based TLS-ESPRIT
and MUSIC algorithms to estimate the parameters, we first
apply the HOSVD evaluates the SVD of the unfoldings of
Y in all modes, and then suppress the noise components
by discarding the singular vectors and slices of the core
tensor that correspond to insignificant singular values of
the matricized tensor in each mode. The uniqueness and
identifiability of the proposed algorithm inherits from that of
the matrix-based counterpart of the algorithm, due to the fact
that the proposed algorithm can be regarded as the high-
dimensional generalization of the matrix-based counterpart
[18]. In particular, to achieve the unique parameter estimates
of the K sources would need to construct the signal subspace
tensor Us with a smaller number of sources K than time
frames Mt. Our method is suitable for multi-dimensional
parameter estimation problems in mmWave systems, where
K � min(Mvd,Mhd,M f,Mt) due to the sparsity of mmWave5.

When applying the matrix-based alternative, the noise is
only suppressed in one of the dimensions (or modes) of the
measurement tensor, hence degrading the estimation accuracy.
This is because the noise is multi-dimensional with the same
dimensions as the received signal. It is important to take all
dimensions of the received signal into consideration, and sup-
press the noises in all the dimensions. Thus, the use of tensors
can better suppress the noises than matrices, hence improving
the estimation accuracy of the elevation and azimuth angles
and the delay, i.e., θ̂k, φ̂k, and τ̂k.

C. Tensor-based Spatial Smoothing for UCyA

The parameter estimation presented in Sections V-A and V-
B is actually the last step in Fig. 1. In this subsection, we
propose the necessary optional second-to-last step. The de-
composition of the signal and noise subspaces in (31) is under
the assumption that all the received signals are incoherent, as
typically required in the subpace-based parameter estimation
algorithms, such as MUSIC [8] and ESPRIT [9]. The rank of
the signal subspace is assumed to be the number of received

5In rich multipath environments, i.e., K ≥ max(Mvd,Mhd,M f), no
singular values and core slices of the mode-n unfoldings can be discarded,
because all these belong to the signal subspace. Thus, in this case, the tensor-
based subspace estimation is equivalent to the matrix-based counterpart [30].
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Fig. 3. An illustration of the proposed spatial smoothing for a five-layer UCyA, where we need to construct three “subarrays” on the horizontal plane, the
second and third UCAs are seen as the translations of the first UCA at the same layer. After the spatial smoothing, the original first, second, and third UCAs
are at the first layer of the “new” UCyA, the second layer accommodates the original second, third and fourth UCAs, and the third layer of the “new” UCyA
accommodates the original third, fourth and fifth UCAs.

signals K. In practice, coherent signals are often received.
The rank of the signal subspace decreases, leading to incorrect
decomposition of the subspaces. An effective method to restore
the rank is a spatial smoothing technique [27] which divides an
antenna array into several subarrays and exploits the inherent
linear recurrence relations (i.e., shift invariances) among the
subarrays to decorrelate the coherent signals. Unfortunately,
the spatial smoothing technique is only applicable to systems
with uniformly and linearly spaced antenna elements [27].

We extend the spatial smoothing technique to our hybrid
UCyA to decorrelate coherent signals. This is not trivial, as
the array manifolds of the UCyA in the horizontal space
domain (i.e., the second mode of Y) are UCAs, not linear
arrays. It is difficult to split subarrays and obtain the required
recurrence relations, as existing spatial smoothing techniques
would require. We propose to utilize the recurrence relations
between the UCAs at different layers of the UCyA to create
the required recurrence-relation subarrays in the horizontal
space domain. In other words, we regard each UCA as a
subarray, and use these vertically arranged and coaxially
aligned subarrays to construct the “virtual” subarrays in the
horizontal space domain. The nh-th subarray in the horizontal
space domain can be constructed as

Y(nh)
ss = Y ×1 Jssh,nh , (53)

where Jssh,nh = [0Mhd×(nh−1), IMhd ,0Mhd×(Nh−nh)].

Then, we can generate the required linear recurrence relation
between two adjacent subarrays: Y(nh+1)

ss = Y(nh)
ss ×4 Θh,

where Θh = diag
(
e−j

2π
c f0h cos(θ1), . . . , e−j

2π
c f0h cos(θK)

)
.

The numbers of subarrays and elements per subarray are
determined in the following theorem:

Theorem 2. If both the numbers of subarrays and elements
per subarray are larger than the number of signals, i.e., Nh ≥
K and Mhd ≥ K, the rank of the signal subspace in the mode-

2 of the concatenated tensor Yssh =

[
t4

nh=1,...,Nh

Y(nh)
ss

]
is K.

Proof: The proof can be developed in the same way as
in [7], and hence omitted.

According to Theorem 2, we need to construct subarrays in
all domains for the correct decomposition of the subspaces,
and apply the HOSVD in all modes of Y . Because some
of the vertically arranged UCAs are used to construct the
“virtual” subarrays in the horizontal space domain, the number
of subarrays in the vertical space domain decreases. Take the
five-layer UCyA in Fig. 3(a) for an example. The original
five-layer UCyA shown in Fig. 3(a) becomes a three-layer
virtual array, which constructs the subarrays in the vertical
space domain, as shown in Fig. 3(b).

We propose to meticulously arrange the virtual subarrays.
Nv subarrays are constructed in the vertical space with M̃v
elements per subarray, and Nh subarrays are constructed in
the horizontal space with Mhd elements per subarray. Because
there are linear recurrence relations among subcarrier frequen-
cies, the standard spatial smoothing technique can be used in
the frequency domain (i.e., the mode-3 of Y). We decouple
the mode-3 of Y into Nf subarrays with M̃f elements each.
As a result, the spatially smoothed tensor is given by

Yss =

[
t4

nv=1,...,Nv

t4
nh=1,...,Nh

t4
nf=1,...,Nf

Y(nv,nh,nf)
ss

]
∈ CM̃v×Mhd×M̃f×(MtNvNhNf), (54)

which is obtained by concatenating the subarrays in mode-4:

Y(nv,nh,nf)
ss = Y ×1 Jssvh,nvh ×3 Jssf,nf , (55)

where nvh = nv +nh−1. Jssvh,nvh and Jssf,nf are two subtensor
selection matrices, as given respectively by

Jssvh,nvh = [0M̃v×(nvh−1), IM̃v
,0M̃v×(Nvd−nvh)

];

Jssf,nf = [0M̃f×(nf−1), IM̃f
,0M̃f×(Nf−nf)

]. (56)

The number of subarray elements in the mode-1 and mode-3
can be computed by M̃v = Mvd − Nv − Nh + 2 and M̃f =
Mf −Nf + 1, respectively. To decorrelate coherent signals in
each domain, we use Yss to replace Y in (24). The parameter
estimation of coherent signals follows the rest of the steps
recorded in the earlier part of Section V, which is the last step
in Fig. 1.



Algorithm 1 Tensor-based subspace estimation algorithm
• Input: The received signals, xmf,mt,mb (mb =

1, . . . ,Mb, mt = 1, . . . ,Mt,mf = 1, . . . ,Mf), the num-
ber of sources, K, and geometrical parameters of the
UCyA.

• Output: The estimated delay, elevation and azimuth
angles, τ̂k, θ̂k, and φ̂k, k = 1, 2, . . . ,K.

• Design the analog and digital beamforming matrices,
Bab and Bdb,mf,mb , and model the beamspace signals
according to (14).

• Calculate the focusing matrices, Tv,mf,mb and Th,mf,mb ,
by solving (18) and (19), and formulate the signals
according to (21).

• Collect all the sweeping results in (22) and formulate
them as Y .

• Construct the spatially smoothed tensor Yss by using (54).
• Take HOSVD of Yss and get Us according to (32) and

(34).
• Use TLS-ESPRIT (38)-(44), and estimate θ̂k and τk by

using (45) and (47), respectively.
• Calculate the noise subspace tensor Yn in (48) and

estimate φ̂k by searching the prominent peaks of (52).

Note that the proposed smoothing method is needed to
guarantee that the rank used for parameter estimation is the
actual rank. If we conduct the HOSVD based on a smaller rank
(due to coherent signals) than the actual rank, the estimation
performance of the azimuth and elevation angles, and delays
would degrade. This is because when the smaller rank is used,
signal components can be incorrectly decomposed into the
noise subspace, reducing the dimensions of the constructed
truncated HOSVD model of Ys in all modes. As a result,
we would not be able to correctly estimate the azimuth and
elevation angles, and delays.

Also note that by using the proposed method, the antenna
apertures in the first and third modes are reduced, as the
elements in the two modes of the original measurement tensor
Y are used to construct a sufficient number of subarrays
according to Theorem 3. The loss of the antenna aperture in
the first mode is nearly one third. The antenna aperture in the
second mode does not change, because the subarrays in the
mode are constructed by the the spatial shift of UCAs at the
other layers. Algorithm 1 summarizes the procedure of the
proposed tensor-based subspace estimation algorithm.

D. Complexity Analysis

The hardware and software complexity of the proposed
tensor-based parameter estimation algorithm is analyzed. The
proposed hybrid beamformers reduces the hardware complex-
ity to O(Mbsr) = O(PMv), while fully digital beamformers
using the same number of antennas have hardware complexity
O(Mbs).

As for signal processing complexity, we compare the com-
putational complexity of the proposed tensor-based algorithm

with its matrix-based counterpart and the state-of-the-art CP-
based orthogonal matching pursuit (CP-OMP) algorithm. For
matrix-based algorithms, the computational complexity of
performing SVD on the measurement sample matrix and
truncating its rank to K is O(PMvMfMtK). The complex-
ities of estimating the delay, elevation angle, and azimuth
angle are O(K3 + PMvMf), O(K3 + PMv), and O(PK2 +
P 2KD), respectively. D is the size of search dimension.
Thus, the overall complexity of the matrix-based estimation is
O(PMvMfMtK+PMvMf+K

3+PMv+PK2+P 2KD). For
the proposed tensor-based algorithm, the truncated HOSVD of
the measurement tensor evaluates the SVD of its matricized
form in each mode and discards insignificant singular vectors.
The complexity is O(4PMvMfMtK) = O(PMvMfMtK).
The complexity of computing the core Ln and the tensor
signal subspace Us in (34) is O(PMvMfMtK +PMvMfK

2).
The complexities of estimating delay, elevation and az-
imuth angles are O(PMvMf + K3), O(PMvMf + K3) and
O(PMvMfMtK + P 2KD), respectively. The tensor-based
algorithm needs slightly more computations, but its complexity
is still in the same order with that of its matrix-based counter-
part. The CP-OMP algorithm [23] applies CP decomposition
to decompose the received signal tensor model, and then
uses OMP to estimate the parameters. The complexities are
O(PMvMfMtK+PMvMfK

2+K4) and O(PMvMfMt(N1+
N2 + N3 + N4)), respectively, where N1 � K, N2 � K,
N3 � K and N4 � K are the dimensions of the OMP grid.
The CP-OMP algorithm has a much higher complexity than
that of our algorithm. A comparison study of computational
complexity between the three algorithms is provided in Table
1, which also shows the computer runtime obtained by running
MATLAB simulations on a ThinkPad X1 Carbon with an i5
processor and 8 GB memory (where P = 12, Mv = 20,
Mt = 20, Mf = 20, K = 5, D = 50 and Ni = 50 for
i = 1, 2, 3, 4).

VI. SIMULATION RESULTS

In this section, simulation results are provided to to demon-
strate the performance of the proposed algorithm. We sim-
ulate a system with 2 GHz bandwidth and a total of 2,000
subcarriers. Out of the total 2,000 subcarriers, Mf = 20
evenly spaced subcarriers are selected for the proposed channel
parameter estimation. Each of the subcarriers undergoes flat
fading. The reference frequency f0 = 28 GHz, and the number
of time frames is Mt= 20. To evaluate the performance of
the proposed algorithm in typical mmWave channels, all the
channel parameters are set according to 3GPP TR 38.901
[31]. An Urban Micro (UMi) scenario is considered in our
simulation, and thus, the UMi pathloss model presented in
[31] is applied. The number of time frames is set to Mt=
20. We assume that there are K = 5 signals, two of which
are coherent. The actual azimuth angles, elevation angles, and
delays of the signals are set up randomly each time. The
distance between vertically adjacent UCAs is h = 0.5λ0 and
the radius of the UCyA is r = 2λ0, where λ0 = c/f0.



Table I
COMPUTATIONAL COMPLEXITY AND CPU RUNNING TIME OF THREE ALGORITHMS.

Proposed tensor-based algorithm Matrix-based counterpart CP-OMP algorithm
Channel

decomposition
O(PMvMfMtK) (385.79 ms) O(PMvMfMtK) (102.58 ms) O(PMvMfMtK +

K4+PMvMfK
2) (1284.82 ms)

Parameter
estimation

O(PMvMfK
2 + PMvMfMtK +

K3 + P 2KD) (189.74 ms)
O(PMvMf +K3 + PMv +
PK2 + P 2KD) (75.09 ms)

O(PMvMfMt(N1 +N2 +N3 +
N4)) (1740.59 ms)

Total O(PMvMf+K3+PMvMfMtK+
PMvMfK

2 + P 2KD) (575.52
ms)

O(PMvMfMtK + PMvMf +
K3 + PMv + PK2 + P 2KD)

(177.68 ms)

O(PMvMfMtK + PMvMfK
2 +

K4 + PMvMfMt(N1 +N2 +
N3 +N4)) (3025.41 ms)

We compare the proposed tensor-based coherent TLS (T-
CTLS) algorithm with its variation (T-CLS) which applies
the LS procedure for solving the invariance equation (39);
its variation without using smoothing (T-CTLS w/o S); its
reduced version in the matrix form (M-CTLS); the state-of-
the-art matrix-based incoherent generalized beamspace MU-
SIC (M-IGBM) [13]; the tensor-based incoherent MUSIC (T-
IM) [20]; and the state-of-the-art CP-OMP [23]. The CRLB
is derived according to [32], [33]. Note that both CP-OMP
and our proposed parameter estimation algorithms are only
applicable for additive Gaussian noises, where the noises are
independent between different antennas and the noise power
is identical at the antennas. This is because the algorithms
which exploit the second-order statistics of the received signals
cannot correctly decompose the signal and (non-Gaussian)
noise subspaces.

Fig. 4 plots the root mean square errors (RMSEs) for the
estimates of azimuth angles, elevation angles, and delays of
the signals versus the average received SNR, where the BS
has 400 receive antennas. Fig. 4 shows that our proposed
T-CTLS algorithm outperforms the other algorithms, and its
RMSE approaches the CRLB. In Figs. 4(a) and (b), we see that
the tensor-based algorithms provide higher accuracy than their
matrix-based counterparts, especially in low SNR regimes.
The matrix-based algorithms are less robust to noises than the
proposed tensor-based algorithms. We also see that CP-OMP
has slightly better performance than our proposed algorithm,
due to the fact that CP decomposition can be regarded as
a maximum likelihood method under the additive Gaussian
noise. However, its performance improvement is limited since
OMP can only generate discrete estimates. In addition, CP-
OMP also has a much higher complexity than our algorithm,
as analyzed in Section V-D. Fig. 4(c) shows that the methods
applying coherent wideband signal preprocessing outperform
those employing incoherent wideband preprocessing, in terms
of delay estimation, because the former fully exploits the high
temporal resolution offered by wideband mmWave systems.

Fig. 5 shows the RMSEs versus the number of receive
antennas under -5 dB SNR. It is seen that the RMSE of the
estimated parameters approaches the CRLB, as the number of
antennas increases. However, when the number of antennas is
not very large, e.g. less than 100, the algorithms, including T-
CTLS, T-CTL, and M-CTLS, cannot achieve accurate azimuth
angle estimation, as shown in Fig. 5(a). The reason is that
the conditions of Theorem 1 may not be met, and thus the

approximation in (6) becomes inaccurate. Nevertheless, when
the number of antennas is large, the RMSEs of these three
algorithms decrease fast, and T-CTLS rapidly outperforms
the others. By comparing Figs. 4 and 5, we also see that if
the proposed spatial smoothing technique is not applied, the
estimation accuracy of the proposed algorithm decreases no-
ticeably. This is because two coherent signals are decorrelated,
the signal and noise subspaces can be incorrectly decoupled
without spatial smoothing, and the parameters of the coherent
signals cannot be precisely estimated.

In order to validate Theorem 1, Fig. 6 plots the RMSE of
the parameter estimation versus the highest order, P , with
different numbers of horizontal array steering vectors. The
SNR is -5 dB. We see that when P is less than 10 or
the number of the horizontal array steering vectors in (5) is
20, the algorithms applying Theorem 1 to design the hybrid
beamformers (i.e., T-CTLS and M-CTLS), cannot achieve
satisfactory estimation, because the number of the transformed
beamspace vectors (6) is not sufficient to represent the array
response vectors. When P ≥ 12, regardless of the number of
array response vectors, increasing the beamspace vectors has
little impact on the estimation. By exploiting this property, we
can reduce the number of required RF chains and, in turn, the
hardware cost.

Fig. 7 shows the RMSE of the estimated azimuth angles,
elevation angles, and delays, with an increasing number of
received paths. T-CTLS and M-CTLS are tested. We set SNR
to -5 dB and Mf = 8. We observe that the performance
gap between the matrix and tensor forms of the proposed
algorithm, i.e., M-CTLS and T-CTLS, decreases with the
increasing number of received paths. This is because the noise
components which can be suppressed by using the tensor-
based algorithms in the first, second, and third modes of Y ,
depend on the difference between the number of paths and
the tensor dimension in each mode of Y . As the number
of received paths increases, the gain of the tensor-based
algorithm, T-CTLS, diminishes. The performance gap remains
consistent in Fig. 7(a) though. This is because, despite the
number of paths increases, the dimension in the first mode of
Y , i.e., Mvd = 2P + 1, is still much larger than the number of
paths. Moreover, we estimate the azimuth angles with tensor-
MUSIC in (50). The method involves peak search, and is
hardly affected by the number of paths. In conclusion, the
new tensor-based algorithm, T-CTLS, can achieve much bet-
ter performance than its matrix-based counterpart, especially
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Fig. 4. RMSE vs. the average received SNR for the estimation of different parameters. (a) Azimuth angle; (b) Elevation angle; (c) Delay (f0 = 28 GHz;
B = 2 GHz; Mt= 20; Mf = 20; K = 5; and Mbs = 400).
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Fig. 5. RMSE vs. the number of BS antennas for the estimation of different parameters. (a) Azimuth angle; (b) Elevation angle; (c) Delay (f0 = 28 GHz;
B = 2 GHz; Mt= 20; Mf = 20; K = 5; and SNR=-5 dB).

under B5G settings where the number of received paths is
small due to the sparsity of mmWave propagation.

VII. CONCLUSION

We presented a new tensor-based multi-dimensional chan-
nel parameter estimation algorithm for 5G/B5G wideband
mmWave large-scale hybrid antenna arrays. By exploiting
the multidimensional structure of the received signals, the
algorithm can suppress the noises across all domains of the
received signals, improving estimation accuracy. Specifically,
we designed the hybrid beamformers to maintain the angular
resolution and suppress beam squinting. We developed the new
HOSVD model to suppress the noise, and revealed the shift-
invariance relations in the tensor form. Given the relations,
we designed the new tensor-based TLS-ESPRIT algorithm for
parameter estimation. We also rearranged the measurement
tensor to estimate coherent signals. By applying the channel
parameters presented by 3GPP TR 38.901 [31], simulations
show that the proposed tensor-based algorithm can accurately
estimate the multi-dimensional parameters in typically used
mmWave channels, even under low SNRs.

APPENDIX I

PROPERTIES OF TENSOR OPERATION

The important properties of tensor operations used in this
paper are provided below.

Property 1. The n-mode product satisfies the following prop-
erties:

A×n B×n C = A×n (CB) ; (57)

A×n B×m D = A×m D×n B, (58)

where A ∈ CI1×I2×···×IN , B ∈ CJn×In , C ∈ CKn×Jn , and
D ∈ CJm×Im (n,m = 1, 2, . . . , N and n 6= m).

Property 2. The Tucker decomposition decomposes a ten-
sor A ∈ CI1×I2×···×IN into a core tensor G ∈
CR1×R2×···×RN multiplied by a factor matrix C(n) =[
c

(n)
rn=1, c

(n)
rn=2, . . . , c

(n)
rn=Rn

]
∈ CIn×Rn (c(n)

rn ∈ CIn×1 and
n = 1, 2, . . . , N ) in each mode, i.e.,

A =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑
rN=1

gr1r2···rN

(
c(1)
r1 ◦ c(2)

r2 ◦ · · · c
(N)
rN

)
=

r
G; C(1),C(2), . . . ,C(N)

z
. (59)

The HOSVD is a special case of the Tucker decomposition,
where the core tensor is all-orthogonal [18], and the factor
matrices are the unitary left singular matrices of the mode-n
unfolding of A.

Property 3. The CANDECOMP/PARAFAC (CP) decomposi-
tion decomposes a tensor A ∈ CI1×I2×···×IN into a sum of
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Fig. 6. RMSE vs. the highest beamspace dimension. (a) Azimuth angle; (b) Elevation angle; (c) Delay (f0 = 28 GHz; B = 2 GHz; Mt= 20; Mf = 20;
K = 5; and SNR=-5 dB).
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Fig. 7. RMSE vs. the number of received paths. (a) Azimuth angle; (b) Elevation angle; (c) Delay (f0 = 28 GHz; B = 2 GHz; Mt= 20; Mf = 8; and
SNR=-5 dB).

rank-one component tensors b
(n)
r ∈ CIn , as given by

A =

R∑
r=1

λrb
(1)
r ◦ b(2)

r ◦ · · ·b(N)
r , (60)

where R = Rank(A) is the rank of A6. Following [18], CP
can be viewed as the special case of the Tucker decomposition,
where the core tensor is superdiagonal. Thus, the CP model
in (60) can be rewritten as a multilinear product:

A = D ×1 B(1) ×2 B(2) · · · ×N B(N)

=
r
D; B(1),B(2), . . . ,B(N)

z
, (61)

where B(n) =
[
b

(n)
1 ,b

(n)
2 , . . . ,b

(n)
R

]
∈ CJn×R is the factor

matrix of b
(n)
r , and D ∈ CR×R×···×R is a superdiagonal

tensor7 with dr,r,··· ,r = λr.

Property 4. The multilinear product of a tensor A ∈
CI1×I2×···×IN with matrices B(n) ∈ CJn×In , n =
1, 2, . . . , N , is a sequence of contractions, each being an n-
mode product, i.e.,

C = A×1 B(1)×2 B(2) · · ·×N B(N) ∈ CJ1×J2×···×JN . (62)

6The rank of a tensor, A, denoted Rank(A), is defined as the smallest
number of rank-one tensors that yield A in a linear combination [18].

7A tensor A ∈ CI1×I2×···×IN is diagonal if ai1i2···iN 6= 0 only if i1 =
i2 = · · · = iN . When I1 = I2 = · · · = IN , A is called as superdiagonal.

Its mode-n unfolding is given by

C(n) = B(n)A(n)(B
(n+1) ⊗B(n+2)⊗

· · · ⊗B(N) ⊗B(1) ⊗B(2) ⊗ · · · ⊗B(n−1))T . (63)

APPENDIX II

PROOF OF THEOREM 1

Let γmf(θkmb
) = 2π

c fmfr sin(θkmb
). The Q-DFT of

ah,mf,mb(θkmb
, φkmb

) can be expressed as

aQDFT,p,mf,mb(θkmb
, φkmb

)

(a)
=

Mh∑
mh=1

(
1√
Mh

∞∑
q=−∞

jqJq(γmf(θkmb
))ejq(φkmb

−ϕmh )

)

× e−j
2π(mh−1)

Mh
p

(b)
=

1√
Mh

∞∑
Q=−∞

Mhj
(QMh−p)J(QMh−p)(γmf(θkmb

))

× ej(QMh−p)φkmb

(c)
=
√
Mh[jpJp(γmf(θkmb

))e−jpφkmb

+

∞∑
Q=−∞,Q 6=0

εp,Q(γmf(θkmb
), φkmb

)] (64)



where

εp,Q(γmf(θkmb
), φkmb

)

= j(QMh−p)J(QMh−p)(γmf(θkmb
))ej(QMh−p)φkmb . (65)

In (64), (a) and (c) follow the important properties of the
Bessel function, i.e., ejx cos y =

∑∞
v=−∞ jvJv(x)ejvy and

J−v(x) = (−1)vJv(x), respectively; (b) is obtained by letting
p+ q = QMh; and (c) stems from the property of the Bessel
function J−v(x) = (−1)vJv(x) [34].

Consider that the number of antennas per UCA, Mh, is
large, i.e, Mh � P . Let Mh = αP and γmf(θkmb

) = βP,
where α � 1 and 0 < β < 1. According to [34], we
have Jv(vρ) < Jv(v) and Jv1(v1ρ) < Jv2(v2ρ), where
v1 > v2 and ρ ∈ (0, 1). Since P ≥ b2πfmfr/cc, we
have J(QMh−p)(γmf(θkmb

)) < J(α−1)P (βP ) and JP (βP ) ≤
Jp(γmf(θkmb

)). Set α = 3 and β = 0.5 for an example. In
general, P > 3. Hence,Jp(γmf(θkmb

)) ≥ J3 (1.5) ≈ 0.06 and

J(Q2Mh−p)(γmf(θkmb
)) < J(Q1Mh−p)(γmf(θkmb

))

< J(Mh−p)(γmf(θkmb
)) < J6 (1.5) ≈ 0.0002, (66)

where Q2 > Q1 > 1. Compared with Jp(γmf(θkmb
)), the

amplitude of J(QMh−p)(γmf(θkmb
)) is so small and can be

omitted. We suppress εp,Q(γmf(θkmb
), φkmb

) and approximate
(64) as

aQDFT,p,mf,mb(θkmb
, φkmb

)

≈
√
Mhj

pJp(γmf(θkmb
)) exp(−jpφkmb

). (67)

This concludes the proof of Theorem 1.
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