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Abstract—This paper proposes a novel 3D localization method
for wideband mmWave massive MIMO systems. A high di-
mensional linear interpolation (HDLI)-based preprocessing is
first proposed to transform the frequency-associated dynamical
array response vectors into the common counterparts at the
reference frequency. Through this method, the received data
in all frequency bands can be processed jointly, and thus
the high temporal resolution provided by wideband mmWave
systems can be fully exploited for position estimation. To reduce
the computational complexity in the process of the parameter
estimation, we then present a wideband beamspace (WBS)-
based parameter estimation algorithm to estimate the angle
and delay in the low-dimensional beamspace. By exploiting the
quasi-optical propagation at the mmWave frequencies, a novel
positioning scheme is also designed to determine the 3D location
of the target. According to our analysis and simulation results,
the proposed method is capable of achieving significantly reduced
computational complexity, while maintaining high localization
accuracy.

Index Terms—millimeter wave, massive MIMO, NLOS local-
ization, angle and delay estimation

I. INTRODUCTION

Accurate localization of mobile devices is becoming in-
creasingly important for many novel applications [1]. As a
candidate technique for the fifth generation (5G) communica-
tion networks, millimeter-wave (mmWave) massive multiple-
input multiple-output (MIMO) not only provides very high
data rates and spectral efficiency, but also offers the possibility
of precise positioning thanks to its high temporal resolution
and high directivity [2].

Most of the existing positioning methods, e.g., [1], [3],
[4], consider a narrowband channel model, and hence their
algorithms could become ineffective in the practical systems
where resolvable multipath signals in the temporal domain
are present. Extension of these narrowband-based positioning
methods to wideband systems is generally not straightforward,
because channel parameters, e.g., signal subspace and steering
matrices, actually vary with the carrier frequency [5]. Based
on the assumption that the channel parameters remain constant
in each narrowband channel, a widely used wideband treating
method, i.e., incoherent signal-subspace processing (ISSP) [1],
[6], [7], divides the wide frequency band into non-overlapping
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narrowbands. This method runs positioning algorithms in
each narrowband separately, and thus an additional processing
needs be applied to combine all the results from individual
narrowbands, resulting in an increase in computational com-
plexity.

On the other hand, most of the positioning algorithms
proposed for mmWave massive MIMO systems, such as [3],
[4], [8], [9], assume that the line-of-sight (LOS) path exists
between mobile station (MS) and base station (BS), and they
only focused on two-dimension (2D) scenarios. In practice,
the LOS path may not exist, especially in dense urban and
indoor environments. In this case, both angle of arrival (AOA)
and angle of departure (AOD) of each non-LOS (NLOS) path
need be taken into consideration to achieve 3D localization.

In this paper, we propose a novel NLOS-based 3D localiza-
tion method for wideband mmWave massive MIMO systems.
Firstly, we propose a high dimensional linear interpolation
(HDLI) as the preprocessing step to aggregate the information
in all frequency bands. Then, a novel wideband beamspace
(WBS)-based method is presented to estimate signal parame-
ters in the beamspace instead of the original element space.
As a result, the computational complexity can be dramatically
reduced as the dimension of the original element space is very
high. Finally, by exploiting the quasi-optical propagation at the
mmWave frequencies, we propose a positioning strategy that
estimates the 3D coordinates of the target MS. According to
the complexity analysis and simulation results, our proposed
method can achieve more accurate localization with less
computational complexity, compared to the state-of-the-art
technologies.

Notation: a, a and A stand for a scalar, a column vector,
and a matrix, respectively; IK represents a K × K identity
matrix, and 0M×K represents an M × K zero matrix; 1K

denotes a vector of ones with a magnitude of K; [A]i,j
is the entry on the i-th row and j-th column of A; [A]i,:
denotes the i-th row of A; the inverse, transpose and conjugate
transpose of A are represented by A−1, AT and AH ,
respectively; ∥A∥F and vec(A) denote the Frobenius norm
and vectorization of A, respectively; ⊗, ⊕ and ⋄ denote the
Kronecker product, Kronecker sum, and Khatri–Rao product,
respectively; expectation of a random variable is denoted by
E {·}; O(·) denotes the computational complexity.
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Fig. 1. 3D illustration positioning system for NLOS scenarios, where a BS
is at a known position, and an MT needs to be located.

II. SYSTEM AND CHANNEL MODELS

In dense urban and indoor propagation environments, the
LOS propagation paths do not often exist. In this paper, we
mainly study how to use NLOS path to realize 3D localization,
as shown in Fig. 1. The positioning system includes a BS
at a known position as the receiver, and an MS whose
location is unknown and needs to be estimated. We consider
a massive MIMO orthogonal frequency division multiplexing
(OFDM) system with NT transmit and NR receive antennas.
The received signal at subcarrier n, n ∈ [0, N −1] is given by
[10]

y[n] = H[n]x[n] +w[n], (1)

where x[n] ∈ CNT×1 and w[n] ∈ CNR×1 represent the
transmitted signal vector and the Gaussian noise associated
with subcarrier n, respectively. H[n] ∈ CNR×NT is the channel
matrix, which can be expressed as

H[n] =

Np∑
l=1

βlaR,n(ϕR,l, θR,l)a
H
T,n(ϕT,l, θT,l)gn(τl) + n[n].

(2)
In (2), Np represents the number of received NLOS path-
s1; n[n] is the zero-mean additive white Gaussian noise
(AWGN); βl denotes the complex amplitude of the l-th path;
aR,n(ϕR,l, θR,l) and aT,n(ϕT,l, θT,l) are the array response and
steering vectors, respectively, with ϕR,l/θR,l and ϕT,l/θT,l
being the azimuth/elevation of AOAs and AODs of the l-th
path. gn(τl) = e−j2πfnτl , where τl is the time delay of the
l-th incoming path signal and fn is the frequency at the n-th
subcarrier. fn = f0 + n△F, where f0 is the carrier frequency
at the lower end of the band and △F is the subcarrier spacing.
It is noted that when the signal bandwidth is much smaller
than the carrier frequency, then fn ≈ f0 and (2) reverts to a
standard narrowband channel model.

In our positioning system, for the simplicity of description,
we assume that both BS and MS employ a uniform cylindrical
array (UCyA). But the proposed scheme also works if MS
uses a uniform rectangular array (URA). Fig. 1 only shows
the geometric model of the UCyA employed in the BS for
illustration. In the UCyA, there are NRV vertically arranged

1The LOS path can be regarded as a special case of NLOS.

UCAs, each of which consists of NRH antennas horizontally,
and the radius is rR. The vertical distance between any two
adjacent UCAs is hR. The array response vector can be given
by

aR,n(ϕR,l, θR,l) = aRV,n(θR,l)⊗ aRH,n(ϕR,l, θR,l), (3)

where

[aRV,n(θR,l)]nRV,1

=
1√
NRV

exp

(
−j

2π

c
fnhR(nRV − 1) cos(θR,l)

)
and

[aRH,n(ϕR,l, θR,l)]nRH,1

=
1√
NRH

exp

(
j
2π

c
fnrR sin(θR,l) cos(ϕR,l − φnRH)

)
are array response vectors in the vertical and horizontal plane,
respectively. In the above equation, φnRH = 2π(nRH −
1)/NRH is the central angle difference between the nRH-th
antenna and the first antenna of an UCA, as shown in Fig. 1.
The array steering vector, aT,n(ϕT,l, θT,l), can be represented
in a similar way.

III. HIGH DIMENSIONAL LINEAR INTERPOLATION
(HDLI)

In this section, we propose an HDLI method to transform
the dynamical response/steering vectors in (2) associated with
the frequency fn into the common response/steering vectors
at the reference frequency f0. By using this method, the
follow-on steps can process the information in all frequency
bands jointly to fully exploit the high temporal resolution and
the frequency diversity of the wideband OFDM system. We
construct the virtual vertical and horizontal response vectors
as

[ãRV,n(θR,l)]nRV,1

=
1√
NRV

exp

(
−j

2π

c
fnhR[n](nRV − 1) cos(θR,l)

)
= [aRV,0(θR,l)]nRV,1 (4)

and

[ãRH,n(ϕR,l, θR,l)]nRH,1

=
1√
NRH

exp

(
j
2π

c
fnrR[n] sin(θR,l) cos(ϕR,l − φnRH)

)
= [aRH,0(ϕR,l, θR,l)]nRH,1, (5)

where hR[n] and rR[n] are the virtual vertical distance and ra-
dius depending on frequency fn [11]. Therefore, by sampling
with intervals hR[n] and rR[n] at frequency fn, the channel
matrix in (2) will become the same for all frequencies. In
fact, however, a perfect sampling by the Shannon-Whittaker
interpolation [12] cannot be realized, and using rR[n] as the
sampling interval will make the channel matrix complex due
to the nonlinear structure of UCAs. Here we propose an
alternative approximation method to realize signal resampling.



More precisely, applying the multidimensional interpolation to
(2) leads to[

H̃A[n]
]
nR×nT

= [H[n]]nR×nT
+

rR[n]

rR
△HRH

+
hR[n]

hR
△HRV +

rT[n]

rT
△HTH +

hT[n]

hT
△HTV , (6)

where △HRH = [H[n]](nR+1)×nT
− [H[n]]nR×nT

,△HRV =
[H[n]](nR+NRH)×nT

−[H[n]]nR×nT
, nR = NRH(nRV−1)+nRH

and nT = NTH(nTV − 1) + nTH. hT/hT[n] and rT/rT[n] are
the real/virtual vertical distance and radius of the transmit
antenna, respectively. The matrices △HTY and △HTX can be
constructed in a similar way.

IV. POSITIONING ESTIMATION

A. WBS Transformation

In this subsection, we firstly propose a WBS-based method
before positioning estimation to reduce the computational
complexity associated with the large dimension of the an-
tenna array. Here we also use the process of transforming
array response vectors as an example. By defining pR ,
−PR,−PR + 1, . . . , PR, we can construct a beamforming
weight vector, wpR

, as wpR = 1
NRH

[
ejpRφ1 , . . . , ejpRφNRH

]H
.

Then, the array pattern, fpR,nRV(ϕR,l, θR,l), can be written as

fpR,nRV(ϕR,l, θR,l) = wH
pR
aR,0,nRV(ϕR,l, θR,l), (7)

where

aR,0,nRV(ϕR,l, θR,l) = [aRV,0(θR,l)]nRV,1 · aRH,0(ϕR,l, θR,l).

The phase mode and the array pattern of the steering vectors,
i.e., pT and fpT,nTV(ϕT,l, θT,l), can be defined similarly.
In accordance with the property of Kronecker product, i.e.,
(A⊗B) (C⊗D) = AC ⊗ BD, we can transform the
channel matrix into the beamspace as

H̄[n] = (INRV ⊗ FR) H̃A[n] (INTV ⊗ FT)
T

=

Np∑
l=1

βlāR,0(ϕR,l, θR,l)ā
H
T,0(ϕT,l, θT,l)gn(τl) + N̄[n], (8)

where FR =
√
NRH[j

−PRw−PR , . . . , j
PRwPR ]

T and FT =√
NTH[j

−PTw−PT , . . . , j
PTwPT ]

T are the beamforming matri-
ces for the transmitter and receiver, respectively.

B. Delay and Angle Estimation

The transformed channel matrix H̄[n] in (8) can be rewrit-
ten, in a more compact way, as

H̄[n] = ĀRΛ[n]Ā
H
T + N̄[n], (9)

where

ĀR =
[
āR,0(ϕR,1, θR,1), . . . , āR,0(ϕR,Np , θR,Np)

]
∈ CN̄R×Np

and

ĀT =
[
āT,0(ϕT,1, θT,1), . . . , āT,0(ϕT,Np , θT,Np)

]
∈ CN̄T×Np ,

contain the array response vectors for the transmitter and
receiver after WBS preprocessing, with N̄R = NpRNRV and

NpR = 2PR+1, and Λ[n] = diag{β1gn(τ1), . . . , βNpgn(τNp)}.
Collecting channel matrices at all frequencies, we have

H̄ =
[
H̄[1], H̄[2], . . . , H̄[N ]

]
. (10)

Then we vectorize H̄ as

h̄ = vec(H̄) ≈
[
Γ ⋄ ĀT ⋄ ĀR

]
b+ n̄ = Ub+ n̄, (11)

where [Γ]n,l = gn(τl) and b =
[
β1, β2, . . . , βNp

]T . U ∈
CM×Np is the space-time matrix, which is parametrized by
the AOA, AOD and the path delays, and M = NN̄RN̄T. The
covariance matrix of h̄ can be calculated as

Rh̄ = E
{
h̄h̄H

}
= UΛbU

H + σ2
n IM , (12)

where Λb = E{bbH} is a diagonal matrix. The eigenvalue-
decomposition (EVD) of Rh̄ can be obtained by

Rh̄ = [Es,En]

[
Σs 0Np×(M−Np)

0(M−Np)×Np σ2
n IM−Np

]
[Es,En]

H

= EsΣsE
H
s + σ2

nEnE
H
n , (13)

where Es ∈ CM×Np and En ∈ CM×(M−Np) correspond to the
signal subspace and noise subspace, respectively, and Σs ∈
RNp×Np is a diagonal matrix with diagonal elements being the
largest Np eigenvalues of Rh̄. Based on EnE

H
n + EsE

H
s =

INp , (13) is rewritten as

Rh̄ = Es(Σs − σ2
n INp

)EH
s + σ2

n INp . (14)

According to (12), (14), we can obtain

Es = UT, (15)

where T is a full rank matrix.
1) Delay Estimation: In order to obtain the delay-related

submatrix, UD, from the space–time matrix, U, we define
the delay-selection matrix as JD = diag (JD,1, . . . ,JD,N ) ,
where JD,n = 1T

N̄TN̄R
. Then we have UD = JDU. By defining

J̃D,n =
[
01×(n−1), 1,01×(N−n)

]
, the delay-related submatrix

associated with subcarrier n can be calculated as UD,n =
J̃D,nUD. Thus, we can obtain a linear recurrence relation
between the delay-related submatrices of each frequency:

UD,ñ+1 = UD,ñΘD, (16)

where ΘD = diag
(
e−j2π△fτ1 , . . . , e−j2π△fτNp

)
and ñ =

1, 2, . . . N−1. Accoring to (15), the delay-related submatrix of
the signal subspace matrix at frequency, fn, can be calculated
as

ED,n = J̃D,nJDEs = UD,nT. (17)

Substituting (16) into (17), we obtain

ED,ñ+1 = ED,ñT
−1ΘDT = ED,ñΨD. (18)

By using the total least-squares (TLS) criterion, we can
estimate ΨD = T−1ΘDT as Ψ̂D,ñ, each of which has in
total Np sorted eigenvalues, i.e., λD,ñ,Np . Due to the fact that
the eigenvalues of an upper triangular matrix are also the
diagonal elements of this matrix, we can obtain N−1 different



estimates for each ΘD . As a result, the delay, τnp , of the np-th
path can be estimated as

τ̂l =
1

N − 1

N−1∑
ñ

[
j ln(λD,ñ,l)

2π△F

]
. (19)

2) Angle Estimation: The processes of selecting the
AOA/AOD-related submatrices are similar to that of selecting
the delay-related submatrix. We define the AOA selection
matrices as JR = 1T

N̄TN
⊗ IN̄R

. Then the AOA-related
submatrices can be formulated as UR = JRU. The linear
recurrence relation between the beamspace array response
matrices of each pair of UCAs is URV,ñRV+1 = URV,ñRVΘR,
where ΘR is a diagonal matrix, whose element is
[ΘR]l,l = e−j 2π

c f0h cos(θR,l), and ñRV = 1, 2, . . . , NRV − 1.
URV,ñRV = JRV,nRVUR ∈ CNpR×Np is a submatrix of UR,
where JRV,nRV=[0NpR×NpR (nRV−1),INpR

,0NpR×NpR (NRV−1)].
Using the similar method as that used in delay estimation,
the elevation AOA of the l-th path, θ̂R,l, is estimated as

θ̂R,l =
1

NRV − 1

NRV−1∑
ñRV

[
arccos

(
jc ln(λR,ñRV,l)

2πf0h

)]
, (20)

where λR,ñRV,np is the l-th eigenvalue of Ψ̂D,ñ, and Ψ̂D,ñ is
the estimated matrix of ΨR = T−1ΘRT.

As an alternative to multiparameter pair matching algo-
rithms [9] which generally have very high complexity, we use
the estimated values of the elevation AOAs to estimate their
related azimuth AOAs. Similar to (15), we con construct the
signal subspace, EsRV,nRV

, and the noise subspace, EnRV,nRV
, of

the nRV-th UCA, and the azimuth AOA of the l-th path can
be estimated by

ϕ̂R,l = argmax
ΦR

1∥∥∥EH
nRV,nRV

āRV,nRV(ΦR, θ̂R,l)
∥∥∥2

F

, (21)

where

[āRV,nRV(ΦR, θR,l)]pR,1 =
√

NRHj
−pRfpR,nRV(ΦR, θR,l).

ΦR is the azimuth of the AOA, which can be estimated by 1D
search. Then we can use the similar methods to estimate the
azimuth/elevation of AODs.

Due to the present of noise, the estimated channel param-
eters of each path cannot be matched automatically. Thus,
pair matching operation needs to be done here, and we use
a simplified perturbation term-based method [13] to realize
parameter matching. In our localization scheme, the estimated
values of elevation AOA/AOD are used for the estimation of
the azimuth AOA/AOD, so the azimuth and elevation angles
of each path can be matched automatically. As for the pair
matching of delay and angle, we can use the delay of each
path as the benchmark and add perturbation matrices, PR /PT,
to the eigenvalue matrices of elevation AOA/AOD, ΨR/ΨT,
to mute the impact of noise. Using the elevation of AOA as
an example, PR can be calculated by

vec(PR) = [ΨT
D ⊕−ΨD]

†vec(ΨDΨR −ΨRΨD), (22)

where ΨD is the delay eigenvalue matrices defined in (18).
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Fig. 2. The geometrical relationship between BS and MS. (a) Stereo view;
(b) Projection on XOY plane; (c) Projection on XOZ plane.

C. Positioning strategy

After obtaining the delay and the azimuth/elevation of
AOAs and AODs of each path by using the above mentioned
approaches, in this subsection we estimate the MS position
by exploiting the quasi-optical propagation at the mmWave
frequencies. In practice, when the signal operating at mmWave
frequencies propagates and reflects off a surfacs, it fades
much more quickly than those at lower frequencies [14].
Thus, it is a reasonable assumption that almost all of the
NLOS paths we receive at BS are single-bounce reflections.
To illustrate position estimation, in this subsection we use the
l-th NLOS path reflected from the l-th reflection point (RPl)
as an example. The total length of the l-th NLOS path is
dl = c(τ̂l + τof), where τof is the time offset between BS and
MS. We divide this path into two parts, NLOSl,1 and NLOSl,2,
as shown in Fig. 2(a), i.e., dl = dl,1+dl,2, where dl,1 and dl,2,
are the lengths of NLOSl,1 and NLOSl,2. The black dashed
line in Fig. 2(a) is the virtual LOS path between BS and
MS, whose length is d0. We can see BS, RPl and MS form
a triangle, and its projections on the XOY and XOZ planes
are painted yellow and blue, respectively. RPl,XOY, RPl,XOZ,
MSXOY, and MSXOZ are the projections of RPl and MS on
the XOY and XOZ planes, respectively.

According to the geometrical relationship projected on the
XOY plane, as shown in Fig. 2(b), we construct the following
equations{

cos(ϕ̂T,l − ϕ̂R,l) =
d2
0,XOY−d2

l,1,XOY−d2
l,2,XOY

2dl,1,XOYdl,XOY,2
,

d0,XOY cosϕ0 = dl,1,XOY cos ϕ̂R,l − dl,2,XOY cos ϕ̂T,l,
(23)

where d0,XOY = d0 sin θ0, dl,1,XOY = dl,1 sin θ̂R,l, and
dl,2,XOY = dl,2 sin θ̂T,l are the lengths of the projections of
LOS, NLOSl,1, and NLOSl,2 on the XOY plane, and ϕ0 and
θ0 are the azimuth and the elevation of AOA of the LOS path.
Similar to Fig. 2(b), we can also construct the equations based
on the geometrical relationship shown in Fig. 2(c){

cos(θ̂R,l,XOZ + θ̂T,l,XOZ) =
d2
0,XOZ−d2

l,1,XOZ−d2
l,2,XOZ

2dl,1,XOZdl,2,XOZ
,

d0 cos θ0 = dl,1 cos θ̂R,l − dl,2 cos θ̂T,l,
(24)

where d0,XOZ = d0(1 − sin2 ϕ0 sin
2 θ0)

1/2, dl,1,XOZ=dl,1(1
−sin2 ϕ̂R,lsin

2 θ̂R,l)
1/2, and dl,2,XOZ = dl,2(1 − sin2 ϕ̂T,l



sin2 θ̂T,l)
1/2 are the lengths of the projections of LOS,

NLOSl,1, and NLOSl,2 on the XOZ plane, respective-
ly; θ̂R,l,XOZ = arctan(tan θ̂R,l cos ϕ̂R,l) and θ̂T,l,XOZ =
arctan(− tan θ̂T,l cos ϕ̂T,l) are the angles between the positive
z-axis and the projections of AOA and AOD of the l-th path
on the XOZ plane, respectively. By solving (23) and (24), we
can obtain the estimated value of d0, ϕ0 and θ0, i.e., d̂0, ϕ̂0

and θ̂0, and the estimated MS position related to the l-th path
can be calculated as

x̂l = d̂0 sin θ̂0 cos ϕ̂0,

ŷl = d̂0 sin θ̂0 sin ϕ̂0,

ẑl = d̂0 cos θ̂0.

(25)

By using the similar methods to deal with the estimated
parameters of all the received paths, we can obtain in total
Np solutions2. In order to further reduce the estimation error,
we calculate the mean of these solutions to obtian the final
position of MS3.

D. Complexity Analysis

In this subsection, we discuss the computational complexity
of the proposed localization method and compare it with that
of the quadric rotational invariance property-based method
(QRIPM) [16] and the generalized beamspace-based method
(GBM) [1]. We assume that the numbers of antennas deployed
in BS and MS are large enough. Because QRIPM and GBM
use the ISSP method to process wideband signals, in the
process of angle and delay estimation, the computational
complexity of them is O(N3

TN
3
RN

4) and O(N̄3
T N̄

3
RN

2
p N

2),
respectively, while the complexity of the proposed method is
only O(N̄3

T N̄
3
RN

3).
As for the pair matching operation, traditional multiparam-

eter estimation algorithms mainly use the exhaustive search
(ES)-based method to match all possible pairs of angles. This
method will lead to extremely high computational complexity,
if the number of estimated parameters is large. Because
our positioning problem needs to match five parameters for
each path, the computational complexity of traditional pair
matching methods, e.g., the minimum eigenvalue spectrum
parameter matching [16], is O(N2M5N2

p
∑Np

l=1 l
5). Compar-

atively, the computational complexity of our proposed method
is only O(N3

p ).

V. SIMULATION RESULTS

In this section, we present MATLAB simulation results to
demonstrate the performance of the proposed algorithm. We
set f0 = 30 GHz and B = 2 GHz, and assume that there
are in total Np = 10 NLOS paths and N = 20 consecutive
subcarriers. The number of transmitting antennas is set to

2The time offset, τof, is an unknown parameter independent of the trans-
mission path. This parameter can be calculated by assuming that two of the
estimated NLOS paths can be converged at a point.

3It is noted that in practice, diffuse scatterings and higher-order bounces
can also be received by BS but they are much less than the single bounces.
In this case, we can treat all of the received paths as the single-bounce paths
and then use clustering algorithms [15] to eliminate the unexpected results
before computing the mean.

NT = 10. The distance, hR, between adjacent receiving UCAs
and the radius, rR, of UCyA are 0.5λ0 and 2λ0, respectively.
We calculate the root mean square error (RMSE) over all
the trials to evaluate the performance of angle and delay
estimation, and the proposed algorithm is also compared with
QRIPM [16] and GBM [1]. Due to space limitations, this
paper only provides the results for AOA and delay estimation,
and AOD estimation results are similar to AOA’s.

Figs. 3(a)-(c) show the RMSE of the estimated azimuth
and elevation of AOAs and the delays versus the number of
receive antennas under different signal-to-noise ratio (SNR)
conditions. In Fig. 3(a), we can see that the RMSE of the
estimated azimuth of AOAs decreases as the average received
SNR or the number of receive antenna increases. It can also
be observed that when the number of antennas is small,
the RMSE performance of GBM and the proposed method
is worse than that of QRIPM. This is because that in the
beamspace-based methods, the array pattern in (7) contains a
residual term, which is non-integrable and can be neglected
only when the antennas is far more than the phase modes,
i.e., NR≫ NpR [1]. However, when the number of antennas
increases, the RMSE performance of GBM and the proposed
method decreases faster than that of QRIPM, and our method
achieves better performance than the other two methods. The
estimated elevation of AOAs is shown in Fig. 3(b). We can
see that when the number of receive antennas is less than
100, the beamspace-based methods still cannot achieve the
performance as good as QRIPM. However, our proposed
method performs best when the number of antennas is large.
In addition, compared with the results shown in Fig. 3(a),
we can see that the estimates of the elevation of AOAs are
less affected by the beamspace transformation than that of
the azimuth of AOAs. It can be explained that on the vertical
dimension, the response vectors of each UCA in UCyA have
undergone the similar beamspace transformation. On the other
hand, it can be seen in Fig. 3(c) that our method outperforms
the other two in the process of delay estimation. The reason
is that by using the proposed positioning estimation methods,
the high temporal resolution provided by wideband mmWave
systems can be fully exploited. However, Fig. 3(c) also shows
that the delay precision is little influenced by the increased
number of receive antennas, because its precision mainly
depends on the transmission bandwidth.

We also characterize the performance of the algorithms
by plotting the cumulative distribution function (CDF) of
the localization error, as shown in Fig. (4). We observe that
while the performance of the proposed method decreases with
the average received SNR decreasing, the localization error
statistics remain good even for SNR = -5 dB: in this case,
the probability of achieving a sub-meter localization error
can approach to 1. In addition, for high SNR values, such
as 10 dB, even when the number of receive antenna is 150,
the probability of achieving a centimeter-level localization
accuracy is larger than 0.5.
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Fig. 3. Comparison of the RMSE performance vs. the number of BS antennas for the estimation of different parameters by the different estimation methods.
(a) Azimuth of AoA; (b) Elevation of AoA; (c) Path delay.
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Fig. 4. CDF of the localization error for different numbers of receive
antennas under different conditions of received SNR.

VI. CONCLUSIONS

In this paper, a novel NLOS-based localization method has
been proposed for wideband mmWave massive MIMO sys-
tems. To enable joint information processing at all frequencies
for the wideband signal, a preprocessing step based on high
dimensional linear interpolation was designed firstly. Then we
presented a wideband-based positioning algorithm to realize
low-complexity 3D localization. Simulation results show that
when a large number of antennas is deployed, our proposed
method is capable of precisely estimating the angle and delay
even at very low SNR values. Potential applications of this
work include solving the localization problems in 5G vehicle
to vehicle (V2V) networks, joint communication and radar
sensing (JCAS) networks, and so on.
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