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Abstract—Physical layer security is vital to millimeter-wave
communications enabled by large-scale arrays, particularly the
energy-efficient lens antenna arrays (LAAs). However, the broad
application of LAAs can be hindered by the lack of a proper
understanding of the secrecy performance. This letter derives an
asymptotic closed-form expression for the secrecy rate of LAA,
despite the critical challenges including the coupling of unknown
lens beam responses. With the new secrecy rate analysis, the
optimal power assignment for the legitimate transmission is
achieved, leading to the maximization of LAA secrecy. This
power assignment is unprecedentedly studied in LAA due to
the previous absence of an analytical secrecy rate. Simulations
validate the accuracy of the analysis over wide ranges of system
parameters.

Index Terms—Physical layer security, lens antenna array
(LAA), secrecy rate, power assignment.

I. INTRODUCTION

Physical layer security, as an effective supplement to
upper-layer security techniques, has attracted increasing at-
tention in millimeter-wave (mmWave) communications. [1]–
[5]. MmWave large-scale antenna arrays can provide rich
spatial degrees-of-freedom (DoFs) to interfere the potential
eavesdroppers, greatly increasing difficulties for eavesdropping
[5]. Due to the high energy efficiency, lens antenna array
(LAA) has attracted huge interest in mmWave applications,
including mobile communication, tracking and localization,
and wireless power transfer [6]–[10]. However, there is very
limited work on physical layer security for LAAs. In a
pioneering work [4], a Rotman Fourier LAA-enabled secure
transmission scheme (LAA-STS) was developed, where a
single lens beam is selected for legitimate transmission, and
the remaining beams are for artificial noise injection. Extensive
simulations and prototype experiments were conducted in [4],
while the analytical secrecy performance of LAA-STS has not
been studied yet.

In a different yet relevant context, secrecy analysis has
been well established for discrete antenna arrays (DAAs)
which inject artificial noises towards potential eavesdroppers
[1]–[3]. By weighting the transmitted signals with constant-
modulus antenna weights, the central limit theorem (CLT)
was invoked in [1]–[3] to approximate the artificial noises as
Gaussian-distributed random variables (GRV). By evaluating
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the variance and mean of the GRV, the power of the artificial
noise and information leakage (and hence the secrecy rate)
was readily achieved; and was found to be independent of the
angle-of-departure (AoD) of an eavesdropper.

The secrecy analysis can be more challenging for LAAs
than for DAAs. Unlike for DAAs employing the uniform
constant-modulus antenna weights, CLT cannot be applied in
LAAs which weight the transmitted signals by non-uniform
spatial responses of different beams [11]. As a consequence,
the distribution of the LAA-injected artificial noises is hard to
predict. With no prior known distribution of the artificial noise
and the AoD of an eavesdropper, the power of the information
leakage and the eavesdropped signal needs to be averaged over
an AoD region. Moreover, the coupling of the unknown lens
beam responses makes the averaging over AoDs (and further
the secrecy analysis) in LAAs very challenging.

This letter provides a secrecy analysis for LAA-STS by
addressing the above critical challenges. (In contrast, the
state-of-the-art benchmark [4] only used simulation/prototype
validation.) A key contribution of the letter is a new asymptotic
closed-form expression for the secrecy rate, which is derived
by exploiting the properties of the discrete Fourier transform
(DFT), such as symmetry and Parseval’s Theorem [12]. An-
other contribution of the letter is the newly unveiled impact of
the allocation of legitimate transmission power on the secrecy
rate of LAAs. The impact has not been captured by the previ-
ous LAA-related works due to lack of analytical expressions
for the secrecy rate. As a result, an asymptotically optimal
power assignment is derived to maximize the secrecy rate.
Simulations validate the accuracy of our analysis. In particular,
the gap between the simulated and analytical secrecy rates is
less than 0.5% at the low signal-to-noise ratio (SNR) of −10
dB when the LAA dimension is larger than 16.

The rest of the letter is arranged as follows. Section II
presents the system architecture of LAA-STS and the signal
models for both the legitimate user and eavesdropper. Section
III derives the secrecy rate and the optimal power assignment.
Simulation results are provided in Section IV, followed by
conclusions in Section V.

II. SYSTEM ARCHITECTURE AND SIGNAL MODEL

A. LAA-Enabled Secure Transmission Scheme

Fig. 1 illustrates the LAA-STS [4] consisting of a transmit-
ter (Alice), a legitimate receiver (Bob) and an eavesdropper
(Eave). Alice is equipped with a LAA that transmits the
signal s(k) to Bob via the n?-th DFT beam at symbol k,
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Fig. 1. The schematic diagram of the LAA-STS, where the n?-th beam is
selected at Alice to send s(k) to Bob, the remaining beams send x(k) to the
sidelobe region of the n?-th beam.

and transmits simultaneously an artificial noise x(k) via the
remaining DFT beams. The radio frequency (RF) chain used
for transmitting x(k) is referred to as “noise RF chain”; see
Fig. 1. As assumed in existing studies [1]–[3], we consider
that (i) a two-ray channel exists between Alice and Bob,
and between Alice and Eave; (ii) the uniform linear arrays
(ULAs) with M and M̃ antennas are installed at Bob and
Eave, respectively, both performing the spatial matched filter
beamforming towards their line-of-sight (LoS) paths; and (iii)
Alice knows the AoD of Bob (denoted by u) but does not
know the AoD of Eave (denoted by ũ), and Bob and Eave
know the angles-of-arrival (AoAs) of the LoS paths (denoted
by v and w, respectively). Here, u, ũ, v and w are in the
beamspace domain. Taking u in Fig. 1 for an illustration, we
have u = 2πd sin θ

λ , where θ is the spatial-domain AoD, λ is
the wavelength and d is the antenna spacing.

B. Signal Model

Let E{|s(k)|2} = 1 and E{|x(k)|2} = 1, and PT = P +
P̃ denote the total transmission power at Alice, where P is
the power of s(k), and P̃ is the power of x(k). The Rotman
Fourier LAA can be represented by an N × N DFT matrix
[4], denoted by U. Thus, the precoder of Bob is Ub, where b
denotes the N×1 Boolean beam selection vector with [b]n? =
1 and [b]n = 0,∀n 6= n?. Similarly, the precoder of Eave is
Ub̃, where b̃ = 1N−b√

N−1
, 1N is the all-one vector, and 1√

N−1
is due to the power splitting at the noise RF chain; see Fig. 1.

The signal received by Bob is given by y(k) =√
PwHHUbs(k) +

√
P̃wHHUb̃x(k) + z(k), where H ∈

CM×N is the channel matrix between Alice and Bob, w ∈
CM×1 is the spatial matched filter at Bob, and z(k) denotes an
additive white Gaussian noise (AWGN). The two-ray channel
model is given by H = βa(v)aH(u) where β =

√
10

βPL
10 ×

1√
2

(
1− ej 2π

λ

2HTHR
D

)
is the path gain [3], [13]; a(v) ∈ CM×1

is the array response vector at Bob; and a(u) ∈ CN×1 is the
steering vector at Alice. βPL = α+10n log10D (dB) accounts
for the path loss, α accounts for system losses, n is path loss
exponent, and D is the distance between a transmitter-receiver

pair; and HT and HR are the transmitter and receiver heights,
respectively [3].

The spatial matched filter at Bob leads to w = 1√
M
a(v),

and further wHH = β√
M
aH(v)a(v)aH(u) = β

√
MaH(u).

Substituting wHH into y(k) leads to (1), where g(n, u) =∑N−1
n′=0

e−jn
′(u− 2πn

N
)

√
N

is the spatial response of the n-th DFT
beam at u, as given by (2). g(n?, u) is obtained by plugging
n = n? in (2). f(n?, u) =

∑N−1
n=0,n6=n?

g(n,u)√
N−1

provides the
sum of the spatial responses of the remaining (N − 1) DFT
beams at u.

y(k) = β
√
PMg(n?, u)s(k)︸ ︷︷ ︸

ys(k)

+β
√
P̃Mf(n?, u)x(k)︸ ︷︷ ︸

yx(k)

+z(k)

(1)

g(n, u) = e−j
N−1

2 (u− 2πn
N ) sin

[
N
2 (u− 2πn

N )
]

√
N sin

[
1
2 (u− 2πn

N )
] (2)

With reference to (1), the received signal at Eave, denoted
by ỹ(k), is given by ỹ(k) = ỹs(k)+ỹx(k)+z̃(k), where ỹs(k)
and ỹx(k) are obtained by replacing β, M and u in ys(k)
and yx(k) with β̃, M̃ and ũ, respectively. Like β, we have

β̃ =

√
10

α
10

+D̃n

2

(
1− ej

2π
λ

2HTH̃R
D̃

)
, where D̃ is the Alice-

Eave distance and H̃R is the receiver height of Eave.

III. SECRECY ANALYSIS

In this section, the secrecy analysis of LAA-STS [4] is per-
formed by first deriving the secrecy rate and then optimizing
the power assignment between P and P̃ . The secrecy rate is
defined asR = max{log2(1+γ)−log2(1+γ̃), 0} [2], where γ
and γ̃ are the signal-to-interference-plus-noise ratios (SINRs)
at Bob and Eave, respectively. To obtain R, we need to derive
γ and γ̃ from y(k) and ỹ(k), respectively. In the following,
Lemma 1 derives γ; and Lemmas 2 and 3 derive the power of
ỹs(k) and ỹx(k), respectively. For analytical tractability, the
asymptotic condition N → ∞ is considered in the following
derivations. This is practical, because N is typically large in
mmWave communications, e.g., tens to hundreds [6], [14].

Lemma 1: The SINR at Bob is γ = PMNγ0, where γ0 =
E{|β|2}
σ2 is referred to as the channel quality at Bob, and σ2 is

the power of z(k) in (1).
Proof: Based on (1), we can obtain

γ =
E{|βs(k)g(n?, u)|2PM}

E{|z(k)|2}+ E{|β
√
P̃Mf(n?, u)x(k)|2}

, (3)

where E{|s(k)|2} = E{|x(k)|2} = 1 and E{|z(k)|2} =
σ2. As considered in the original LAA-STS work [4],
u = 2π(n?−1)

N is taken for Bob, leading to the follow-

ing spatial orthogonality:
∣∣∣g (n?, 2π(n?−1)

N

)∣∣∣2 = N and∣∣∣f (n?, 2π(n?−1)
N

)∣∣∣2 =

∣∣∣∣∑N−1
n=0
n 6=n?

g
(
n,

2π(n?−1)
N

)
√
N−1

∣∣∣∣2 = 0. This is

readily verified by substituting u = 2π(n?−1)
N into (2). By

plugging the two results in (3), γ = PMNγ0 is obtained.
We see from ỹ(k) that, to obtain γ̃, the power of ỹs(k)

and ỹx(k) have to be evaluated first. As discussed in Section
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I, CLT, a commonly applied technique, cannot be employed
here due to the non-uniform weights of s(k) and x(k), i.e.,
g(n, ũ), n ∈ [0, N − 1]. Moreover, given the uniformly
distributed ũ in the sidelobe regions of g(n, ũ), the analytical
probability density function (PDF) of |g(n, ũ)|2 is mathemat-
ically intractable, since the one-to-one inverse mapping from
|g(n, ũ)|2 to ũ is unavailable. Here, we propose to calculate the
average power of ỹs(k) and ỹx(k) over u using the methods
presented in Lemmas 2 and 3.

Lemma 2: Suppose that ũ is randomly and uniformly
distributed in the sidelobe region of the n? DFT beam, the av-
erage power of ỹs(k) is P̃s = E{|ỹs(k)|2} = KPM̃σ̃2

β , where
σ̃2
β = E{|β̃|2}, K u 1− 2

πSi(2π), and Si(a) =
∫ a

0
sin t
t dt.

Proof: We see from ỹs(k), a key step of calculating
P̃s is the calculation of Eũ{g(n?, ũ)}, where Eũ{·} denotes
the expectation w.r.t. ũ. By exploiting the properties of DFT
beams (symmetry, Parseval’s theorem, rotational invariance,
etc. [12]), the calculation of Eũ{g(n?, ũ)} can be much
simplified; see Appendix A for details.

Lemma 3: The average power of ỹx(k) can be approxi-
mated by P̃x = E{|ỹx(k)|2} u P̃ M̃ σ̃2

β .
Proof: See Appendix B.

Despite the inapplicability of the common analysis tech-
nique, e.g., CLT, we have achieved estimation of the average
power of the information leakage and eavesdropper signal
in Lemmas 2 and 3, respectively. Although we consider the
uniformly distributed ũ in the whole sidelobe region of the
n?-th DFT beam for legitimate transmission, the derivation
techniques developed in Appendices A and B can be readily
applied to any region of ũ by altering the integral bounds in
(7). Next, the above lemmas are used to derive the secrecy
rate of LAA-STS.

Theorem 1: Given a large N , the secrecy rate of LAA-STS
is given by

R u max

{
log2

1 + PMNγ0

1 + KP
P̃︸ ︷︷ ︸

R̄

, 0

}
. (4)

Proof: Based on Lemmas 2 and 3, the SINR at Eave
can be given by γ̃ = P̃s

P̃x+σ̃2
u KPM̃σ̃2

β

P̃ M̃σ̃2
β+σ̃2

u KP
P̃

, where σ̃2

is the power of the AWGN z̃(k) at Eave; and the second
approximation is obtained due to σ̃2

M̃σ̃2
β

≈ 0 given a large M̃ .
Plugging Lemma 1 and γ̃ into R leads to (4).

The secrecy rate of LAA-STS is analyzed under the assump-
tion of large N , yet the result also applies to a moderate N , as
will be validated in Section IV. Also, Theorem 1 indicates that
R̄ monotonically increases with respect to (w.r.t.) N , M and
γ0; however, the three parameters cannot be directly adjusted
in practice. N and M are fixed once hardware is manufactured,
and γ0 relies on a specific communication scenario. On the
other hand, Theorem 1 implies a strong dependence between
the secrecy rate and the power assignment between Bob and
Eave, which leads to Theorem 2.

Theorem 2: If γ0 >
K

MNPT
, R̄(P ) is a concave function

of P , and its maximum can be achieved at P ?, as given in
(5), where R̄(P ) shows the explicit dependence of the secrecy
rate w.r.t. P given the fixed N , M and PT.

P ? =
2PT − 2

√
PTK(1−K)
MNγ0

+KP 2
T

2(1−K)

MNγ0→∞
u

1−
√
K

1−K
PT (5)

Proof: Instead of directly examining the signs of the first
and second derivatives of R̄(P ) (which can be mathematically
intractable due to the nested functions of P in R̄(P )), we
divide R̄(P ) into two sub-functions and evaluate their mono-
tonicity. See Appendix C for details.

We note that γ0 >
K

MNPT
is generally satisfied in practice,

because K
MNPT

is very small in mmWave communications.
Taking the settings of [2] for example, M = 16, N = 32,
PT = 37 dBm, and hence K

MNPT
is about −44.225 dB.

Our analysis can be extended to the scenarios with multiple
eavesdroppers. The SINR at Bob, i.e., γ derived in Lemma 1,
is unaffected by the number of eavesdroppers due to the spatial
orthogonality of DFT beams [4]. Provided that the AoDs of
the eavesdroppers are independently and uniformly distributed
in the sidelobes of the n?-th DFT beam (selected for Bob),
the derivations in Lemmas 2 and 3 are applicable to derive
the power of the signal and artificial noise overheard at each
eavesdropper. The SINR at any eavesdropper l, denoted by γ̃l,
is equal to γ̃, since the approximation σ̃2

l

M̃lσ̃2
β,l

≈ 0 holds ∀l,
where l ∈ [1, L] denotes the index for the eavesdropper. L is
the number of eavesdroppers, and the subscript (·)l denotes
the corresponding variables for the l-th eavesdropper. With
reference to (4), the secrecy rate in the L-eavesdropper case
is RL u max{R̄L, 0}, where R̄L = log2

1+PMNγ0

(1+KP
P̃

)
L .

The secrecy outage probability (SOP) is another interesting
secrecy performance measure, particularly when Alice has
no information of Eave [15]. For LAA-STS, SOP can be
readily evaluated based on the results in Lemmas 1-3. With
reference to [15, eq. 14], the SOP of LAA-STS, denoted
by P , can be calculated via P = P{R̄(ũ) < RT}, where
P{·} stands for probability, R̄(ũ) is the instantaneous se-
crecy rate given ũ (c.f., the averaged R̄ in (4)), and RT

is the target secrecy rate. Based on Lemmas 1-3, we have
R(ũ) = log2

1+γ

1+
P̃s(ũ)

P̃x+σ̃2

= log2
1+γ

1+
PM̃σ̃2

β
|g(n?,ũ)|2

P̃x+σ̃2

, where γ is

provided in Lemma 1, P̃s(ũ) = PM̃σ̃2
β |g(n?, ũ)|2 is obtained

based on Lemma 2 without taking the average over ũ, and P̃x
is proved in Lemma 3 to be spatially identical. Substituting
R(ũ) into P and collecting terms, we obtain

P = P

{
|g(n?, ũ)|2 >

(
1+γ
2RT
− 1
)

(P̃x + σ̃2)

PM̃σ̃2
β

}
. (6)

Since the one-to-one mapping from |g(n?, ũ)|2 to ũ is un-
available, deriving the analytical expression for P becomes
mathematically intractable. Nevertheless, in Section IV, we
evaluate P numerically to validate its accuracy in depicting
the SOP of LAA-STS under practical parameter settings.

IV. SIMULATION RESULTS

In this section, simulations are performed to validate the
above analysis. The simulation parameters are set based on the
mmWave vehicular communication scenario in [2]. In specific,
N = 32, M = 16, M̃ = 100, fc = 60 GHz, B = 50 MHz,
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Fig. 4. SOP vs γ0, where the analytical P is obtained by numerically
evaluating (6) and the simulated SOP is obtained by the scheme [4].

PT = 37 dBm, HT = HR = 1.5 m, D = 50 ∼ 500 m,
D̃ = 10 m, u = 2π(N−1)

N = 6.0868 rad, ũ ∈ U
[0,

2π(N−2)
N ]

, and

β̃ ∼ CN (0, 1)1; unless otherwise specified.
Fig. 2 plots the simulated and analytical secrecy rate of

LAA-STS [4], as N increases. We see that the analytical
secrecy rate is able to accurately depict the performance of
LAA-STS [4]. Although the analytical secrecy rate is derived
under the large N assumption, we see that it also suits a
moderate N , e.g., 16. As expected, we also see that the
approximation error under a small N can be slightly larger
due to the approximation errors in Theorem 1. Nevertheless,
with a small γ0 of −10 dB, the relative approximation error
between the analytical and simulated secrecy rates is smaller
than 0.5% for N > 16.

Fig. 3 plots the normalized secrecy rate against the power
assigned for Bob, i.e., P . Given the simulation parameters, we
can obtain K

MNPT
< −30, and according to Theorem 2 the

secrecy rate should be a concave function of P . We see that
Fig. 3 validates Theorem 2 via the first increasing and then

1The two-ray channel model adopted in this paper can be adapted for different
mmWave frequencies by altering the parameters, α and n in (1), [2], [3].

decreasing secrecy rate, as P increases from 0.1PT to 0.9PT.
This can be seen more clearly in the zoomed-in sub-figure,
where denser power values are taken around the maximum to
validate the concavity of the secrecy rate against P . Moreover,
the optimal power assignment maximizing the secrecy rate is
also marked in sub-figure. We see that the maximum secrecy
rate is achieved at P = 0.76PT when γ0 ≥ −20 dB. This
is consistent with the result of Theorem 2, i.e., (5). In the
case of γ0 = −30 dB, we see that the optimal power moves
away from (5) slightly. This is because a very low SNR value
can invalidate the asymptotic condition for (5). Figs. 2 and 3
validate the applicability and accuracy of Theorems 1 and 2
over wide ranges of N and γ0.

Fig. 4 plots SOP against γ0, where 107 independent trials
are performed for both the numerical analysis of (6) and the
simulation of SOP using the scheme developed in [4]. We
see that the analytical SOP in (6) can accurately depict the
simulated SOP of LAA-STS. We also see that SOP increases
with RT, but decreases as γ0 increases, which is consistent
with (6). Given its accuracy, the SOP (6) can be used to predict
the secrecy performance of LAA-STS systems in practice.

Given their accuracy (as confirmed by Figs. 2-4), the new
expressions for the asymptotic secrecy rate (4) and SOP (6),
and the optimal power assignment (5) can be used to design
parameters of LAA-STS to ensure the secrecy performance.
For example, to achieve a secrecy rate of 14 bps/Hz under
PT = 37 dBm and M = 16, we can use (4) and (5) to design
the number of antennas at Alice to be N ≥ 40; see Fig. 2.
Likewise, to achieve an SOP of less than 0.1 under N = 32,
M = 16 and RT = 10 bps/Hz, we can apply (5) and (6) to
design the overall transmission power of Alice to be PT ≥ 37
dBm; see Fig. 4.

V. CONCLUSIONS

This letter discloses the analytical secrecy performance
for LAA-STS. This is achieved by deriving an analytical
secrecy rate in an asymptotic closed-form expression. Is is also
accomplished by unprecedentedly optimizing the power as-
signment between legitimate and artificial noise transmissions,
hence maximizing the LAA secrecy. Simulations validate the
accuracy of our analysis, e.g., less than 5% relative error
between simulated and analytical secrecy rates, across wide
ranges of LAA dimensions and SNRs.

In our future work, the analytical secrecy rate will be ex-
ploited to help with mmWave transceiver designs. In particular,
when multiple LAAs form a larger hybrid array [16], we
will study how to holistically design the array parameters to
optimize the secrecy performance. We will also exploit our
secrecy rate analysis to perform a comparison between LAAs
and DAAs with the power consumption taken into account.

APPENDIX

A. Proof of Lemma 2

The average power leakage at Eave is given by
E{|ỹs(k)|2} = E{|β̃

√
PM̃s(k)g(n?, ũ)|2} = PM̃σ̃2

β ·
Eũ{|g(n?, ũ)|2}, where E{|s(k)|2} = 1 is used, and the
subscript of Eũ indicates that the expectation is taken w.r.t.
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ũ. Provided the uniformly distributed ũ in the sidelobe region
of the n?-th DFT beam, Eũ{|g(n?, ũ)|2} is identical ∀n? due
to the rotational invariance of DFT beams [12]. Without loss
of generality, we can take n? = 0 and simplify the calculation
of Eũ{|g(n?, ũ)|2} as

Eũ{|g(n?, ũ)|2} =
N

2π(N − 2)

∫ 2π

0

|g(0, u)|2du︸ ︷︷ ︸
E1

− N

2π(N − 2)
· 2×

∫ 2π
N

0

|g(0, u)|2du︸ ︷︷ ︸
E2

N
→∞
u 1− 2

π
Si(2π) (7)

where E1
N→∞
u 1 can be derived based on the Parseval’s

Theorem [17, Appendix D]; and E2 can be calculated as

E2
N
→∞
u

1

π

∫ 2π
N

0

sin2 Nu
2

N sin2 u
2

du u
1

π

∫ 2π
N

0

sin2 Nu
2

N(u2 )2
du

=
2

π

∫ 2π
N

u=0

sin2 Nu
2

(Nu2 )2
d
Nu

2

t:=Nu
2==

2

π

∫ π

0

sin2 t

t2
dt =

2

π
Si(2π),

(8)

where the last equality is due to
∫ x

0
( sin t

t )2dt = Si(2x)− sin2 x
x

[18] and sinπ = 0. This concludes the proof.

B. Proof of Lemma 3

The average power of ỹx(k) is E{|ỹx(k)|2} =

E
{∣∣∣β̃√P̃ M̃f(n?, ũ)x(k)

∣∣∣2} = P̃ M̃×σ̃2
β×Eũ{|f(n?, ũ)|2}.

Based on (2), we have lim
N→∞

Eũ{|f(n?, ũ)|2} =

lim
N→∞

|g(ñ?,ũ)|2
N−1 = lim

N→∞
N
N−1 = 1, since

lim
N→∞

|g(ñ?, ũ)|2 = N and lim
N→∞
n 6=ñ?

g(n, ũ) = 0 given

lim
N→∞

ũ = 2πñ?

N (∀ñ? ∈ [0, N − 1], ñ? 6= n?). This leads to

P̃x in Lemma 3, and concludes the proof.

C. Proof of Theorem 2

The proof can be established by analyzing the monotonicity
of R̄(P ) w.r.t. P . From (4), R̄(P ) = R1(P )−R2(P ), where
R1(P ) = log2 (1 + PMNγ0) and R2(P ) = log2 (1 + KP

P̃
).

The first derivatives of R1(P ) and R2(P ) w.r.t. P can be
given by

R′1(P ) =
dR1(P )

dP
=

MNγ0

(1 + PMNγ0) ln 2
; (9a)

R′2(P ) =
dR2(P )

dP
=

KPT

(PT − P +KP )(PT − P ) ln 2
. (9b)

From (9), we obtain (10) and (11), where “↑” and “↓” denote
“monotonically increasing” and “monotonically decreasing”,
respectively.

P ↑ =⇒ R′1(P ) ↓ and R′2(P ) ↑ =⇒ R̄′(P ) ↓ (10)

R′2(P )→∞ as P → PT (11)

From (10), the second derivative of R̄(P ) w.r.t. P , denoted
by R̄′′(P ), satisfies R̄′′(P ) < 0. By applying the second
order condition of concave functions, we confirm that R̄(P )
is a concave function of P . The maximum of R̄(P ) can be
achieved in two different cases.
(i) In the case of R′1(0) ≤ R′2(0), R̄(P ) decreases, as P
becomes larger. This is because R̄′(P ) < R′1(0)−R′2(0) ≤ 0,
according to (10). By substituting P = 0 into (9), R′1(0) ≤
R′2(0) and then γ0 ≤ K

MNPT
.

(ii) In the case of R′1(0) > R′2(0), i.e., γ0 > K
MNPT

, we
have R̄′(0) = R′1(0)−R′2(0) > 0; and R̄′(PT) = R′1(PT)−
R′2(PT) < 0, since R′1(PT) is a limited value based on (9a)
whereas R′2(PT) → ∞; see (10). Combining with (10), we
know that there exists such a P ? that R̄′(P ?) = 0. Based on
(9), P ? can be solved, leading to (5). The proof is concluded.
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