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Abstract—Radar sensing can be integrated with communica-
tion in what-we-call future perceptive mobile networks. Due to
complicated signal structure, it is challenging to estimate sensing
parameters such as delay, angle of arrival and Doppler when
joint communication and radar sensing (JCAS) is applied in
perceptive mobile networks. This paper studies radar sensing
with signals compatible with fifth generation (5G) new radio (NR)
standard using one-dimension (1D) to 3D compressive sensing
(CS) techniques under 5G channel conditions. Moreover, we
propose a two-dimensional cluster Kronecker CS algorithm for
significantly improved sensing parameter estimation in JCAS
networks via introducing a prior probability distribution to
effectively exploit the cluster structure in multipath channels.
Simulation results are provided and we focus the respective
advantages and disadvantages of these techniques that validate
the effectiveness of the proposed algorithms.
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I. INTRODUCTION

The recently proposed perceptive mobile network [1], [2],
[3], [4], with a conceptual plot provided in Fig. 1, can provide
joint communication and radar sensing (JCAS, also known
as RadCom) in one system. On a unified sensing platform,
information associated with e.g., human behaviour, moving
objects and environmental changes can be extracted from
communication signals via sensing parameters. The perceptive
mobile network is different from the existing JCAS systems
and technologies that combine radar and mobile communica-
tions. In the perceptive mobile network, no spectrum needs to
be separately allocated for communication and sensing, and
the spectrum efficiency will be doubled. This is significantly
different to existing spectrum sharing concepts [5] such as in
cognitive radio, co-existence of wireless communication and
radar system where the two systems are physically separated
[6], [7], integrated JCAS system using separately transmitted
signals [8], [9] and JCAS system where communication is
achieved within an original radar system [10], [11]. Perceptive
mobile networks belong to the type of JCAS/RadCom system
class, where communication is already very well realized
and the main challenge is how to achieve radar sensing
functionality within the cellular network by its own radio
signal without sacrificing the performance of communications.

Estimation of sensing parameters, such as the delay, angle
of arrival (AoA), angle of departure (AoD) and Doppler
frequency of multipath signals, is a critical task in perceptive
mobile networks. Moreover, there is very limited work on
JCAS for large-scale cellular networks. The sensing solutions
presented here mainly obtained by handling the significant
challenges caused in JCAS by highly complicated mobile
signals in clustered multipath propagation channels.

The first challenge for sensing parameter extraction in
perceptive mobile networks is due to the sophisticated signal
structure. Although existing studies demonstrate the feasibility
and potential of JCAS, most of them consider general signal
formats, such as simple single carrier and multicarrier modula-
tion [12], and is limited to point-to-point links such as millime-
ter wave radio for vehicular networks [13]. In [14], preliminary
work on using orthogonal frequency-division multiplexing
(OFDM) signal for sensing was reported. In [15], sparse array
optimization was studied for multiple-input multiple-output
(MIMO) JCAS systems. In [16], the multiple access perfor-
mance bound is derived for a multiple antenna JCAS system.
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Fig. 1: Proposed perceptive mobile network with 5G CRAN

In [17], mutual information for an OFDM JCAS system is
studied, and power allocation for subcarriers is investigated
based on maximizing the weighted sum of the mutual informa-
tion for radar and communications. However, there is only very
limited work directly using modern mobile communication
signals and networks in JCAS systems, involving orthogo-
nal frequency division multiple access (OFDMA) and multi-
user MIMO (aka spatial frequency division multiple access,
SDMA). Such signals structure makes most existing sensing
parameter estimation techniques not directly applicable. For
example, active radar sensing technologies mainly deal with
linear FM (LFM) chirp transmitted signals [18]; most passive
sensing techniques consider simple single carrier and OFDM
signals [19], [20]. In addition, conventional spectrum analysis
techniques such as MUSIC [12] and ESPRIT [14] require
continuous observations, which are not always available here.
In turn, how JCAS can actually be realized at a system level
in the mobile network, specifically, how radar sensing can be
done based on communication signals using multiuser-MIMO
and OFDMA technologies, is a fundamental and challenging
problem. In this paper, we deal with compressive sensing (CS)
as an excellent candidate technology to solve this problem by
developing suitable signal formulation for sensing parameter
estimation.

We provide solutions for estimating sensing parameters
from 5G NR standard signals in perceptive mobile networks
by applying one-dimension (1D) to 3D CS algorithms. These
CS algorithms are developed from existing ones to make them
capable of estimating all the sensing parameters. We consider
both downlink and uplink sensing, to be consistent with down-
link and uplink communications. The communication signals
used for sensing are the OFDM-type demodulation reference
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signals (DMRS) in the 5G specification [21]. We use both
5G-compatible channels recommended by 3GPP and our own
generated cluster channel model which has better control for
radio propagation for sensing purposes. We compare these CS
algorithms, and demonstrate their respective advantages and
disadvantages, under various channel conditions and system
setup.

The second fact is that practical multipath always arrives
in clusters. The multipath signals from one cluster have
similar sensing parameters values for delay, AoA and Doppler
frequency, and are typically from the same scatter(s). Com-
plexity arises when the clusters originated in a propagation
scene may have correlations among other clusters of the
same user and across different users due to the same channel
condition. Eventually, these create accuracy problems when
getting sensing parameters from delay or angle domain without
acknowledging channel cluster structure knowledge. More-
over, there are common multipath remains among clusters.
There exist research outputs on reconstructing cluster sparse
signals in general, for example, through periodic compressive
support [22], model based compressive sensing (CS) [23],
variational Bayes approach [24], and block Bayesian method
[25]. In [26] a millimetre-Wave joint radar and communication
system for indoor scenarios is developed, using estimated
radar channel coefficients. However, there is only very limited
work on how cluster sparsity structure can be exploited in
JCAS systems such as perceptive mobile networks that involve
OFDMA and multi-user MIMO. Therefore, cluster sparse
signal reconstruction for more accurate sensing in perceptive
mobile networks, employing OFDMA and multi-user MIMO
is our interest.

In this case, we exploit the cluster property in multipath
channels through creating a prior probability distribution and
propose a novel two-dimensional (2D) CS algorithm for sens-
ing parameter estimation in perceptive mobile networks. In
particular, a cluster prior probability density function is intro-
duced in the proposed 2D cluster Kronecker CS algorithm, and
shown to efficiently detect the coarse locations of the clusters,
leading to more accurate sparse reconstruction performance
when Kronecker CS algorithms are applied.

Our major contributions in this paper are as follows:

• We propose an integrated solution built on a unified
platform that enables estimating sensing parameters from
5G NR standard signals in perceptive mobile networks
by applying one-dimension (1D) to 3D CS algorithms.

• We propose a cluster based Kronecker OMP algorithm
that exploits the cluster structure in multipath channels for
more accurate sensing parameter estimation in perceptive
mobile networks.

This rest of the paper is divided into four parts. The first part
provides 5G usable signal and channel description. The second
part describes various sensing parameter estimation algorithms
including 1D, 2D, and 3D in detail. In the third part, we
illustrate our proposed 2D cluster Kronecker CS algorithm.
Finally, in the fourth part, we discuss simulation results and
outline a comparative study from these results obtained from
5G reference signals.

II. SIGNAL AND CHANNEL MODELS

We consider 5G-compatible signals with OFDMA and
SDMA (or multi-user MIMO) modulations. In a typical setup,
there are 4 SDMA users, each with a single antenna, and a BS
with a 16 antenna uniform linear array. The signal bandwidth
is assumed to be 100 MHz.

DMRS is used as a primary signal for sensing. Propagation
channels are generated based on clustered channel models
of two forms. The first one is developed by us and named
as Cluster-Chl [2], and the second one is the QuaDRiGa
channel model [27], recommended by 3GPP for modelling
communication channels in LTE and 5G systems.

A. DMRS Signal Generation
DMRS signal is generated according to the Gold sequence

as defined in [21] of 3GPP TS 38.211, both for Physi-
cal Downlink Shared Channel-PDSCH and Physical Uplink
Shared Channel-PUSCH. The generated physical resource-
block (PRB) indicates DMRS to a 3-D grid comprising a
14-symbol slot for the full carriers across the DMRS layers
or ports. The values and indices of DMRS signals are both
known to the BS, and are used as prior when doing sensing
from received signals. Here, interleaved DMRS subcarriers of
PDSCH are used in downlink sensing, while groups of non-
interleaved DMRS subcarriers of PUSCH are used in uplink
sensing.

B. Channel Modelling
For radio sensing, the system needs to interpret detailed

channel structure and estimate the sensing parameters. Our
used propagation channels are generated based on clustered
channel models following the 3GPP channel models for LTE
and 5G systems [21]. Random and continuous values are
used for delay, Doppler shift, angle-of-arrivals (AoAs) and
angle-of-departures (AoDs) as actual sensing parameters to
be estimated. The multipaths of the channels are generated
in clusters, indicating reflections coming from scattering ob-
stacles. That is, each cluster of paths, which come from
a single or multiple closely located scatter obstacles, have
close values of sensing parameters. We generate approximate
scatters for simulating sensing by using both the Cluster-Chl
and QuaDRiGa model.

Let N denote the number of total subcarriers and B the
total bandwidth. Then the subcarrier interval is f0 = B/N
and OFDM symbol period is Ts = N/B+Tp where Tp is the
period of cyclic prefix.

Consider a narrowband antenna array model . The array
response vector of a size-M array with θ of either AoD or
AoA is,

a(M, θ) = [1, ejπ sin(θ), · · · , ejπ(M−1) sin(θ)]H , (1)

For M1 transmitting and M2 receiving antennas, the M2 ×
M1 time-domain baseband channel impulse response (CIR)
matrix at time t′ can be represented as

H̃(t′) =

L∑
`=1

b`δ(t
′ − τ`)ej2πfD,`t

′
a(M2, φ`)a

T (M1, θ`),

(2)
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where for the `-th out of a total of L multipath signals, θ`
and φ` denote the AoD and AoA, respectively, b`, τ` and fD,`
are the amplitude, propagation delay, and Doppler frequency,
respectively.

1) Cluster-Chl Channel Model: In Cluster-Chl, we have a
flexible control on all the channel parameters. The multipath
channels of Cluster-Chl are randomly generated in clusters
following a complex Gaussian distribution to generate sensing
parameters for moving objects around the mobile network
node, which mimics the ray tracing model and are extensions
of the Saleh-Valenzuela (S-V) model [28].

In Cluster-Chl, we generate 3 clusters with delay centered
at 29, 39 and 49 µs, corresponding to a distance of 87,
117 and 147 meters, with AoA center randomly generated
between -120 to 120 degrees, and moving speed randomly
generated between 0 to 40 m/s. In each cluster, as like
we did in [3], [4], multipath signals for each RRU/MS are
generated randomly by mimicking reflected/scattered signals
from objects. In each cluster, the multipath is generated
following a uniform distribution of [5, 10] for the total number,
[0, 28] degrees for direction span, [0, 0.05] µs for delay
(corresponding to [0, 15] m for distance). We use a pathloss
model with pathloss factor 40 for downlink and 20 for uplink
sensing. The transmission power of the RRU and MS is 30
dBm and 25 dBm respectively. The total thermal noise in the
receiver is −174 + 10 log(108) = −94 dBm.

2) QuaDRiGa Channel Simulator: QuaDRiGa is a spatial
geometry based 3D MIMO channel generator [27], originated
from the WINNER series models and supports rich cluster
multipath scenarios specified by the 3GPP-3D cluster-based
models mentioned in TR 36.873 and TR36.901 [27]. We
generate QuaDRiGa channels equivalent to moving scatters by
simulating moving transmitters and receivers from open source
simulator for sensing demonstration. Non-line of sight chan-
nels are simulated. One problem with the QuaDRiGa model
is that scatters can not be accurately placed and configured.
The other problem is that the Doppler frequencies for each
multipath is not explicitly provided and hence we cannot verify
the accuracy of estimates.

C. Received Signal Model for Sensing

The received radar signal data is based on 3D observation
samples, comprising of those from multiple receiving anten-
nas, multiple DMRS subcarriers and multiple DMRS signals
over time. The modulated data symbols can be removed from
the received DMRS signals by applying equalization, which
will be a simple one-tap multiplication if no two users are
sharing the same subcarrier. In this paper, we consider the
case that only each subcarrier is used by only one user in
DMRS signals. In this case, the signals for different users are
orthogonal in the frequency domain and hence no multi-user
interference (MUI) exists. After the equalization, the processed
received signal at the n-th subcarrier and the t-th DMRS signal

can be represented as

Yn,t =

L∑
`=1

b`e
−j2πnτ`f0ej2πtfD,`Ts ·

a(M2, φ`)a
T (M1, θ`) + zn,t, (3)

=ArxCnDtA
T
tx + zn,t, (4)

where the `-th column in Arx and AT
tx are a(M2, φ`) and

aT (M1, θ`), respectively; if there is no two multipath having
the same delay values, Dt and Cn are diagonal matrices with
the `-th diagonal element being b`ej2πtfD,`Ts and e−j2πnτ`f0 ,
respectively, otherwise there will be non-zero values in other
entries; and Zn,t is the noise matrix. When each user only
has one transmitting antenna, AT

tx becomes a all-one col-
umn vector, and Yn,t and Zn,t become column vectors too.
The task for sensing parameter estimation is to estimate
{τ`, fD,`, φ`, θ`, b`}, ` ∈ [1, L] from the received signals.

III. CS-BASED SENSING PARAMETER ESTIMATION

Our developed and tested 1D, 2D and 3D CS algorithms
for sensing parameters estimation are extended from the 1D-
CS algorithms [29], 2D Kronecker CS [30], and 3D N-way
Tensor tool [31], respectively. The extensions formulation
and processing are realized here through extracting sensing
parameters from 5G received signals. We test these algorithms
utilizing Cluster-Chl in downlink sensing and the QuaDRiGa
model in uplink sensing. We also compare our 1D to 3D results
with the cases when the occupied PRB is small in uplink and
with the results from 2D discrete Fourier transform (DFT).

Since the signals are relatively independent in the three
domains of delay, AoA and Doppler, they can be formulated
in a high-dimension (3D here) vector Kronecker product form.
Therefore, we can apply 1D to 3D CS techniques to estimate
these sensing parameters. In a typical system, we can get a
sufficient number of observations for the delay (linked to the
number of subcarriers), intermediate AoA observations (linked
to the number of antennas) and a limited number of samples in
the Doppler domain (linked to DMRS signals over a portion of
channel coherent period). The Doppler frequency is typically
very small in a perceptive mobile network and the accumulated
phase shift usable is also small due to the limited period of
channel coherent time. This makes it inaccurate for estimating
Doppler using CS algorithms. Next, we briefly review each of
the three sensing algorithms based on the received signal in
(4).

A. 1D Compressive Sensing

We assume that there is only one multipath signal within
each quantized delay bin for each cluster in the 1D CS based
algorithm. By stacking the signals in (4) from all available
subcarriers to one matrix, we can get

Yt =W DtA
T
rx︸ ︷︷ ︸

Gt

+Zt, (5)

where the `-th column of W is {e−j2πnτ`f0}. We can then
treat (5) as an on-grid multi-measurement vector (MMV) CS
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problem and use algorithms such as 1D sparse Bayesian CS
to get the estimate for Gt. The dictionary Ψ1 is a partial DFT
delay matrix, approximating W. Once the delays and Gt are
estimated, we can get the AoA estimates through calculating
the cross-correlation between columns from Gt on the indexes
obtained from given threshold as below,

φ̂` ≈
1

π
∠

(
M−1∑
p=1

((Gt)·,p)
∗(Gt)·,p+1

)
, (6)

where (Gt)·,p denote the p-th column Gt. The Doppler
frequency fD,` can be estimated across multiple DMRS sig-
nals, based on the cross-correlation of (Gt)`,·, where (Gt)`,·
denotes the `-th row of Gt. Assume the interval between every
two estimates of Gt and Gt+1 is uniform and be Ts for any
t, which can be relaxed easily. Let Nd be the total OFDM
blocks used for estimating the Doppler frequency. Then,

f̂D,` ≈
1

2πTs
∠

(
Nd−1∑
t=1

((Gt)`,·)((Gt+1)`,·)
∗

)
. (7)

The main advantage of the 1D algorithm is that it can
accurately estimate all the parameters when each multipath
is well separated in delay. Its complexity is also relatively
low. It is mostly suitable for systems with a large number of
subcarriers, but small number of antennas for AoA estimation
and packets for Doppler estimation.

B. 2D Kronecker Compressive Sensing
2D Kronecker CS can obtain direct estimation for any two

parameters out of delay, AoA and Doppler. Since we can have
sufficient measurements in the delay and AoA domain, the
2D CS algorithm can provide good estimates for both delay
and AoA directly from Yt of (5) using each DMRS signal
of 2D observations. We construct two dictionaries for delay
and AoA, Ψ1 and Ψ2, being two partial overcomplete DFT
matrices, approximating W and Arx, respectively. Let N1 and
N2 be the number of codes, i.e., the number of columns,
in Ψ1 and Ψ2. Interpolated overcomplete dictionaries are
used to improve resolution at an increased computational
complexity, given that the signal to noise power ratio (SNR)
is sufficiently large. We can then obtain estimates D̂t of size
N1 ×N2 for the expanded matrix for Dt that corresponds to
the two overcomplete dictionaries, using any 2D Kronecker
CS algorithm, such as the 2D-OMP algorithm [30].

Note that the 2D CS algorithm here can identify any pair
of {delay, AoA} with at least one different value. So D̂t will
not be a diagonal matrix anymore if one variable in the pair
has two identical quantized values. After getting the estimate
D̂t, we use a threshold to filter out very small estimates
which are likely caused by noise. We can then get the delay
and AoA estimates according to the indexes of the non-zero
values in D̂t, corresponding to respective columns in the two
dictionaries Ψ1 and Ψ2.

The Doppler shift is estimated via calculating the angle of
the cross-correlation values between the non-zero values of
D̂t obtained over two DMRS signals. This represented as

f̂D,` ≈
1

2πTs
∠
(
D̂tD̂

∗
t+1

)
`,`
. (8)

Averaging can be taken over the correlation obtained from
multiple DMRSs before computing the angle, to improve the
accuracy of the estimates.

2D CS algorithm can achieve improved estimation accuracy
when there are multipath with repeated values in any one
domain, at the cost of increased complexity.

C. 3D Tensor Compressive Sensing

The Tensor-OMP CS algorithm directly estimates parame-
ters in a 3D domain, combining measurements Yt over mul-
tiple DMRS signals. Three dictionaries, Ψ1, Ψ2, and Doppler
dictionary matrix, Ψ3, are utilized. Since the accumulated
Doppler shift is small over the coherent time period, we have
to use a portion of highly overcomplete DFT matrix as Ψ3.

Absolute values of the estimated sparse coefficients provide
the amplitude values of multipaths. After applying a threshold,
each of indexes in the three dimensions corresponding to non-
zero estimates provides estimated values for τ`, φ`, and fD,`.

Generally, high-order CS formulation using Tensor tools
such as 3D Tensor CS provides the strongest estimation perfor-
mance in resolving multipath with repeated parameter values.
However, it involves much higher computational complexity
than 2D and 1D, using three dictionaries Ψ1, Ψ2, and Ψ3,
in direct estimation of parameters in 3D domain from Yt. In
addition, as the Doppler shift value is small, 3D will not work
as well as 1D and 2D.

IV. CLUSTER-BASED SENSING PARAMETER ESTIMATION

In our earlier proposed JCAS solutions, for example, in [3],
in [4] and in Section III we cast the radio sensing problem
as a block sparse/sparse reconstruction problem. However, in
practice, multipath signals always arrive in clusters [28], and
paths from one cluster typically come from the same scatter(s)
and have close parameter values.

Referring to the 5G NR standard signals and channel
described in section II, we use the OFDM-type DMRS 5G
usable signals and Cluster-Chl channel [2] for sensing us-
ing the proposed algorithm based on 2D Kronecker (kron)
orthogonal matching pursuit (OMP) techniques. We consider
both downlink and uplink sensing, where downlink and uplink
communication signals are used for sensing, respectively.

A. 2D Cluster Kron-OMP Algorithm

Since the signals are relatively independent in the three
domains of delay, AoA and Doppler, they can be formulated
as a 3D cluster sparse signal. Then, we can apply cluster
based greedy method equipped with cluster prior probability to
estimate these sensing parameters. In a typical system, we can
get a sufficient number of observations for the delay (linked
to the number of subcarriers), AoA (linked to the number of
antennas) and a limited number of samples in the Doppler
domain (linked to DMRS signals over a portion of channel
coherent period).

We assume that there is only one multipath signal within
each quantized delay bin. Let Mr and MT denote the num-
ber of antennas for receiving in BS and in each user for
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transmitting, respectively. Let Ss denote the set of available
subcarriers for sensing and let Ns denote its size. Referring
to (4), after stacking signals Yn,t, n ∈ S from all available
subcarriers to a matrix and we obtain

Yt =W DtAtx︸ ︷︷ ︸
Gt

AT
rx + Zt, (9)

where W is a Ns × L matrix with its `-th column being
{e−j2πnτ`f0}. Note that Ns is typically smaller than N and
the indexes of subcarriers are often dis-continuous.

We construct two dictionaries for AoA and delay, Ψ1 and
Ψ2, being two partial overcomplete DFT matrices, approx-
imating Arx and W, respectively. Let NA and ND be the
number of codes, i.e., the number of columns, in Ψ1 and Ψ2.
In practical applications, the non-zero entries of the sparse
signals appear in clusters over each column of the matrix
Gt in Yt. We can then treat (9) as an on-grid 2D cluster
sparse CS problem with a Mr × Ns observation matrix Yt,
two dictionaries Ψ1 and Ψ2, and block sparse signals Gt of
k- sparsity that appears in clusters. Such a problem can be
solved by using, e.g., the 2D block sparse Bayesian CS in
and 2D kron-OMP in . However, no prior information on the
cluster structure is properly applied in these CS solutions.

Our proposed novel 2D cluster kron-OMP algorithm incor-
porates a cluster prior ∆ to the sparse probability of each
entry in the support set, ξ. Such an incorporation exploits both
cluster structure and sparsity in the solution than conventional
2D kron-OMP algorithms.

For producing the cluster prior ∆, at each iteration, inspired
from the neighborhood model [32], we can compute the cluster
pattern through measuring the changes in the values of ξ. We
first compute the absolute sum of the differences in the support
set ξ via

∆(ξ) =

k∑
i=1

| ξi − ξi−1| . (10)

The cluster prior for the support learning vector ξ is dependent
on the term e−α(∆(ξ)) for α > 0. Since the entries of the
sensing parameters and noise component are drawn from
Gaussian distribution, we need to employ a distribution which
is conjugate to the Gaussian distribution, for example, a
Gamma distribution, to promote the cluster pattern with the
sparse prior [33], [34]. Hence, we model the behavior of the
function e−α(∆(ξ)) via the Gamma distribution as,

(∆|β, α) ∼ Γ(β, α), (11)

where β and α are the shape and rate parameters of the Gamma
distribution, respectively. We also assume that β = 1 and as a
result,

(∆|β, α) ∝ e−α∆. (12)

The conditional joint probability density function of Yt and
∆ can be written as

P (Yt,∆|α,Ψ1,Ψ2,Gt, ξ) ∼
P (Yt|Ψ1,Ψ2,Gt, ξ, α,∆)P (∆|β, α). (13)

Algorithm 1: 2D Cluster Kron-OMP Algorithm
Require: Estimation of Gt.

Input: Observation matrix Yt ∈ RMr×Ns , combined
dictionary Ψ = (Ψ1 ∈ RMr×NA ,Ψ2 ∈ RNs×ND ),
iteration control threshold ρ, sparsity k, initial cluster
sparse estimate Ĝt = ∅, initial index J0 = ∅
Output: Reconstructed signal Ĝt after k iteration,
non-zero positions J , residual R(k)

1: Initialization R(0) = Yt

2: while i ≤ k do
3: Compute Ξ = Ψ ∗R(i)

4: Compute index J so that max
∣∣Ξi
∣∣

{finding the atom and indexes J in cases where
Ψ is with maximum correlation with residual}

5: Compute ∆
6: Update ξ with extracted J now at with probability

proportional to max
∣∣∣e((c2/2(σ)2∗Ξi)−α∆)

∣∣∣
and update the support ξ as ξi = ξi−1 ∪ J

7: Update α from Γ(η, θ + ∆)
8: Compute Ω = pinv(Ψ2

∗⊗Ψ1)Yt

9: Update R(i) = Yt −Ψ1diag(Ω)Ψ2
′

10: If R(i) < ρ, i = i+ 1
11: Compute Ĝt = sptensor(Ji,Ω,Mr)
12: end while

With the constructed prior probabilities, we can then extend
conventional 2D kron-OMP algorithms to incorporate such
prior information. The proposed 2D cluster kron-OMP algo-
rithm is detailed in Algorithm 1.

Initially at iteration i = 0, the residual value R(0) is set as
Yt and the initial non-zero index locations are set as J0 = ∅.
As the iteration progresses, we find the updated indexes J
at step 4 by max

∣∣Ξi
∣∣, corresponding to the case where the

dictionary Ψ has maximum correlation with the residual R(i).
After computing ∆ in step 5, the support set ξ is updated at
step 6 with the extracted index locations J by utilizing the
joint probability density function in (13). The prior on the
parameter α in (11) is assumed to have Gamma distribution,
α|η, θ ∼ Γ(η, θ), and we experimentally set η = ε and θ = 1,
where ε denotes the length of the support learning vector ξ.
With the progression of measurements, at step 7, the posterior
density on α is updated. This posterior distribution can be
described as,

P (α|η, θ,∆) ∼ Γ(η, θ + ∆), (14)

where P (α|η, θ,∆) denotes the conditional posterior density
on α given the related parameters. We estimate this via
E[α|η, θ,∆] = η/(θ + ∆). Then, we compute Ω as the mul-
tiplication product of Yt and Moore-Penrose pseudoinverse
of kronecker product of Ψ1 and Ψ2 in step 8. Finally the
estimate Ĝt is computed as a sparse matrix of size NA×ND
derived from open MATLAB sparse tensor (sptensor) toolbox
[35] with Ji and Ω for Mr. The algorithm usually stops when
the iteration i reaches the desire sparsity level of k for Ĝt.
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B. Estimation of Sensing Parameters

The proposed 2D cluster kron-OMP algorithm can obtain
direct estimation for any two parameters out of delay, AoA
and Doppler. Since we can have sufficient measurements in
the delay and AoA domain, the algorithm can provide good
estimates for both delay and AoA directly from Yt of (5)
using each DMRS signal of 2D observations. Note, in step 6
of Algorithm 1, c = 1/(1+σ2), where σ2 is the thermal noise
variance. We can obtain efficient estimates Ĝt and non-zero
indexes J for the expanded matrix of Gt that corresponds to
Ψ, using the prior cluster structure knowledge.

Note that the proposed algorithm can identify any pair of
{delay, AoA} with at least one different value. So Ĝt will not
be a diagonal matrix anymore if one variable in the pair has
two identical quantized values.

After getting the estimate Ĝt, we can then get the delay
and AoA estimates according to the J indexes of the non-
zero values in Ĝt, corresponding to respective columns in the
two dictionaries.

The Doppler shift is estimated via calculating the angle of
the cross-correlation values between the non-zero values of
Ĝt obtained at J indexes over two DMRS signals. Assume
the interval between every two estimates of Gt and Gt+1 is
uniform and be Ts for any t, which can be relaxed easily. This
can be represented as

f̂D,` ≈
1

2πTs
∠
(
ĜtĜ

∗
t+1

)
`,`
. (15)

Averaging can be taken over the correlation obtained from
multiple DMRSs before computing the angle, to improve the
accuracy of the estimates.

V. SIMULATION RESULTS

A. 1D-3D Sensing Results

Next, we present simulation results for 1D to 3D CS using
channels with continuous-value (off-grid) sensing parameters.
We also show the results obtained by directly applying 2D-
DFT over delay-AoA and delay-Doppler domains for compar-
ison, when all subcarriers are used. Of course, most of the
time, not all subcarriers are available for sensing. Estimated
values (typically shown in blue star) are placed with actual
ones (shown in red circle) to verify the accuracy of estimation.
Fig. 2 shows an exemplified CIR for QuaDRiGa channels
consisting of rich multipaths with 4 to 5 clusters where
“Equivalent AOA” equals to π sin(φ).

1) Downlink Sensing : In downlink sensing, we use DMRS
subcarrier configuration type-1 slot wise, with every alter-
nating subcarrier as an interleaved selection from a total of
252 subcarriers. Sub-interval is 2 for type-1, so, in total
126 subcarrier indices (e.g. of layer 4) are used as DMRS
subcarriers.

The simulation results for downlink sensing with Cluster-
Chl model are presented in Fig. 3 for 1D to 3D. For 1-D
CS, AoA-Distance and Speed-Distance result indicates that
the estimated points are well matched with three clusters with
few extra points due to residual in threshold setting. Off-grid
estimation causes some missed detection. In 2D CS, AoA-
Distance and Speed-Distance results give few mismatched

Fig. 2: CIR for QuaGRiGa channel

points for both AoA and speed. In 2D, there is an important
observation that interleaved subcarriers in this case actually
cause ambiguity in estimation. 3D estimation results are not
as good as 1D and 2D CS algorithms as in 3D estimation the
interleaved subcarriers cause near-singular matrix.

The ambiguity is caused by non-consecutive, but regularly
spaced samples, for example, usage of comb or interleaved
subcarriers [36]. In this case, the actual value can be one of the
multiple integral times of a basic estimate. The simplest way
is to break such regularly spaced samples, for example, we can
randomly select samples from the total available ones such that
the indexes of these samples are not regular. This, of course,
reduces the samples used for estimation and may degrade
the estimation performance particularly when the number of
samples is small. Therefore, while using DMRS, alternative
methods can be based on exploiting other information to assist
the selection of the right estimate, for example, the magnitude,
or an integration of coarse and fine estimation methods. This
is, in fact, one of our future work on how to solve ambiguity
that may be present in all domains, but particularly for the
delay.

2) Uplink Sensing : In uplink sensing, only partial DMRS
subcarriers are used. The details of obtained results from
the non-line-of-sight (NLOS) QuaDRiGa channel model are
given here. We use DMRS subcarrier configuration type-2
non-slot wise, which indicates several groups of subcarriers
are selected from a total of 252 subcarriers. Sub-interval is 3
for type-2, so, in total 84 subcarrier indices (of layer 4) are
used as DMRS subcarriers. We use QuaDRiGa model where
clusters are generated with continuous delay and AoA values
for multipaths. Since the QuaDRiGa model unable to provide
actual Doppler shifts, the estimates given here in all uplink
sensing for speed are relative only.

3) Uplink Sensing with QuaDRiGa NLOS: Fig. 4 provides
simulation results for uplink sensing with QuaDRiGa NLOS
for 1D to 3D. In 1-D CS, AoA-distance results for the
estimated points fairly match with several clusters with few
extra points due to residual in threshold setting and off-grid
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Fig. 3: Observations in Cluster-Chl for downlink sensing

error.
2D CS AOA-distance results indicate that estimated values

are in closer vicinity with actual clustered multipath values
(AoA) in comparison with 1D. Indeed, a higher dimensional
sensing algorithm like the 2D kron CS eventually provides
better performance when there are enough measurements
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Fig. 4: Observations in uplink sensing: QuaDRiGa NLOS

because it can directly identify two parameters only if one
is different between any multipath channels. In both figures
for 3D Tensor OMP, only estimated multipath channels with
power within -15 dB of the maximum are shown. In 3D,
estimated values for AoA are coarser, but remain within the
close neighbouring of actual values.
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Fig. 5: 2-D DFT for uplink sensing

4) 2D DFT results for uplink Sensing: 2D-DFT simulation
results are presented in Fig. 5 for QuaDRiGa channels. It can
be observed that 2D-DFT provides reliable coarse estimates for
uplink sensing, but the resolution is very low in comparison
with all results of 1D to 3D in Fig. 4. It is noted that here the
results are obtained by using all subcarriers. Such a 2D-DFT
method only works when either all or interleaved subcarriers
are available.

5) Sensing Using Limited Number of PRBs: Mainly in the
uplink direction, allocated PRB could be limited by config-
uration [21]. Therefore, we can only get small amount of
observations for the delay estimation, which could be even
less than the number of multipath. We test sensing with such
a limited number of resources for QuaDRiGa NLOS channel
here. Assume that only 28 DMRS subcarriers (7 PRB) are
used in simulations for uplink sensing. Fig. 6 presents uplink
sensing for 7 PRBs with QuaDRiGa NLOS for 1D to 3D. In
1D CS, the resolution ambiguity problem remains in the delay
domain. However, the shape still well maintained. Reasonable
estimation accuracy is found in AoA by 2D. Coarse estimation
in both AoA and speed is obtained by 3D. Further approaches
to increasing this accuracy in radio sensing from limited obser-
vations, especially in the clustered multipath environment will
be studied in our future research, for example, by designing
better dictionaries and using filtering techniques.

B. 2D Cluster Kron CS Results

In this section, we present simulation results for direct
estimation over delay-AoA and delay-Doppler domains using
quantized and continuous-value sensing parameters. Estimated
values (typically shown in blue star) are placed with actual
ones (shown in red circle) to verify the accuracy of estimation.

Fig. 7 shows an exemplified CIR for 3-cluster Cluster-Chl
channel consisting of rich multipaths. Propagation paths in
each cluster have close parameter values particularly in the dis-
tance (delay) domain, and different clusters are distinguished
by different colors.
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Fig. 6: Uplink sensing with 7 PRBs in QuaDRiGa NLOS

1) Downlink Sensing: In downlink sensing, we use DMRS
subcarrier configuration type-1 slot-wise, with every alternat-
ing subcarrier selected from a total of N = 252 subcarriers.
So, in total Ns = 126 DMRS subcarriers are used. Total 8
OFDM samples or packets used for estimating the Doppler
frequency.
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Fig. 7: CIR for cluster channel

The simulation results are presented in Fig. 8 for the case
when the proposed 2D cluster kron-OMP algorithm is applied
to delay-AoA and delay-Doppler domains, respectively. For
quantized on-grid parameters, as shown in the top two sub-
figures, we can obtain a nearly perfect estimation of delay,
AoA and Doppler. For continuous off-grid parameters, as
shown in the bottom two sub-figures, performance degradation
can be observed with reduced accuracy and missed estimates.
However, the estimates preserve the cluster structure and
convey correct information for determining the location and
moving speed of the scatters.

2) Uplink sensing : For uplink sensing, the allocated PRB
(subcarriers) is limited by configuration and we have fewer
subcarriers available. The results, in this case, can particularly
show the usefulness of the proposed algorithm. In the simula-
tion, channel clusters are generated with continuous delay and
AoA values. For DMRS subcarriers, we take the configuration
of type-2 with non-slot-wise subcarrier, where only Ns = 28
DMRS subcarriers (7 PRB) of layer 4 are used.

Fig. 9 provides the simulation results for the proposed algo-
rithm. Both AoA-distance and Speed-Distance results for the
estimated points are well matched with all clusters. However,
there are a few missed estimates for speed.

For comparison, we present the simulation results in Fig.
10 for the conventional 2D kron-OMP method [30] that does
not consider cluster prior so that we can directly compare
the actual accuracy of estimates obtained in Fig. 9. There
are some major problems with this method, compared to the
proposed one. Firstly, we note that there exists the estimation
accuracy problem and hence missed estimation occurs in
cluster channels, which is overcome by the cluster prior in
the proposed algorithm. Secondly, we have to use a threshold
of Th = −15 dB to pick up “effective” estimates with
significant power. Comparatively, in the proposed algorithm,
the indexes are generated automatically without using any
explicit threshold. Thirdly, even when we relax the accuracy
requirement of the estimates and observe the zoomed box
section of estimates, we can see that the estimates are hardly
following the cluster pattern of the actual ones in Fig. 10.
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Fig. 8: Two random realizations of downlink sensing using the
proposed 2D cluster kron-OMP algorithm for quantized (top sub-
figures) and non-quantized (bottom sub-figures) channel parameters

Moreover, we do Monte-Carlo trials for both our proposed
2D cluster kron-OMP and conventional 2D kron-OMP for
same non-quantized channel parameters with Ns = 28 DMRS
subcarriers. Uplink sensing simulated for Niter trails each time
and we compute the Root-mean-square error (RMSE) for AoA
estimates at each Niter as,

RMSEAoA =

√√√√ 1

(NiterL)

Niter∑
j=1

L∑
`=1

∣∣∣φ̂`,j − φ`,j∣∣∣2. (16)

AoA estimation performance is evaluated versus all Niter
iterations considered in the top figure and versus the number
of clusters in channels with Niter = 100 in the bottom
figure of Fig. 11 respectively. The proposed 2D cluster kron-
OMP algorithm achieves the best performance for all iterations
in comparison with its cluster-less peer 2D kron-OMP. In
addition, as we increase the number of clusters in Cluster-
Chl, we can also observe relatively better estimation in the
proposed algorithm.
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Fig. 9: A random realization of uplink sensing using the proposed 2D
cluster kron-OMP algorithm for non-quantized channel parameters
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Fig. 10: Uplink sensing using conventional 2D kron-OMP for non-
quantized channel parameters with Ns = 28 DMRS subcarriers.
Black zoomed in boxes are for showing certain missed estimates
incapability of preserving cluster pattern

C. Comparative Study on Simulation Results

Existing algorithms have respective shortcomings for sens-
ing parameter estimation in perceptive mobile networks, as
compared with the proposed methods and the comparative
study obtained from the simulation results is given in Table
I. Generally, the classical 2D DFT method is simple and less
complex but this provides low resolution and requires a full
set of measurements in time or frequency domain. Again, in
ESPRIT and MUSIC, the reasonable resolution requires at
least a large segment of consecutive samples and this is not
always available in uplink sensing. In contrast, off-grid type
compressive methods do not require consecutive samples but
implementation for real time operation imposes high complex-
ity. Moreover, off-grid CS contain respective constraints on the
parameter estimation range and the minimum separation of the
parameter values [1]. We rather establish the received signals
to an arrangement such that from it any of the methods in 1D-
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Fig. 11: RMSE of the AoA estimates obtained by both methods with
Ns = 28 for non-quantized channel parameters

3D CS algorithms can be functional to acquire the estimates
for the sensing parameters from the linked sparse reconstructed
estimates corresponding to the utilized dictionaries.

Normally, higher-dimensional CS algorithms achieve better
estimation performance with the price of much higher com-
putational complexity. The sensing problem becomes more
critical when the number of measurements is limited because
of the short channel coherent time and a small number of
antennas in the perceptive mobile network. In the case of using
on-grid CS methods, the number of available observations in
the selected dimension plays an important role in dominating
the estimation accuracy and resolution. The lack of sufficient
measurements in each dimension could likely create large
quantization errors even using high-dimensional on-grid CS
algorithms such as the Tensor tool and Kronecker CS in the
domains of Doppler frequency, AoD and AoA. Fortunately,
the cellular signals usually have hundreds to thousands of
subcarriers, which provide numerous measurements for the
delay. Therefore, quantizing the only delay can hypotheti-
cally lead to reduced errors. In particular in the 2D cluster
kron-OMP, the cluster prior probability density function that
introduced with the CS reconstruction algorithm, efficiently
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detect the coarse locations of the clusters, leading to more
accurate sparse reconstruction performance when 2D Kron CS
algorithms are applied.

VI. CONCLUSION

In this paper, we focus on JCAS techniques that are related
and tailored to cellular/mobile networks, which is also the
main differentiator of this paper to other existing ones. We
presented three preliminary sensing algorithms using 1D,
2D and 3D compressive sensing algorithms, and provided
simulation results, using channels generated from both our
cluster model and 5G QuaDRiGa channel model. These results
indicate that reasonable sensing performance can be achieved,
and demonstrate the respective advantages and disadvantages
of these algorithms. We also compare our 1D to 3D results
with the cases when the occupied subcarrier is less in uplink
and with the results from 2D discrete Fourier transform. Our
work also disclosed some interesting research problems to
work on as future works, such as the ambiguity problem due
to interleaved subcarriers and reduced resolution in 3D CS
algorithms. We have proposed a 2D cluster Kronecker OMP al-
gorithm for sensing parameter estimation in perceptive mobile
networks, which can exploit the cluster structure in multipath
channels. By introducing a cluster prior, our algorithm can
efficiently detect the coarse locations of the clusters, leading
to more accurate sparse reconstruction performance when
block CS algorithms are applied. The estimation accuracy of
the 2D cluster Kronecker OMP algorithm in terms of mean
squared error is also shown in comparison with the one without
cluster prior. We further explain the distinctions between the
proposed algorithms to give a comparison between this work
and other sensing schemes. Simulation results demonstrate that
our proposed algorithm can achieve better parameter estima-
tion accuracy, for both on-grid and off-grid channel models,
compared to the scheme without using prior knowledge.
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