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Nonprehensile Manipulation:
a Trajectory-Planning Perspective

Praneel Acharya, Kim-Doang Nguyen, Dikai Liu, I-Ming Chen

Abstract—This paper discusses nonprehensile manipulation
of an asymmetric object using a robotic manipulator from a
motion planning point of view. Four different aspects of the
problem will be analyzed: object stability, motion planning,
manipulator control, and experimental validation. Specifically,
via an analysis of marginal stability of an object resting on a
moving tray, the work establishes the critical accelerations of
the manipulator’s end-effector, below which the object’s stability
is guaranteed. These critical accelerations guide the design of the
end-effector’s motion for successful nonprehensile manipulation
of the object. In particular, we propose two methods to formulate
polynomial asymmetric s-curve trajectories such that the end-
effector completes its motion in minimum time. In one method,
the trajectory is divided into segments whose time intervals
are then computed via a recursive algorithm. In the other
method, we formulate an optimization problem and design the
minimum-time trajectory by balancing the trade-off between the
travel time and actuator effort. A series of experiments with a
robotic arm is designed to validate and compare these motion
planning methods in the context of nonprehensile manipulation.
In addition, the experimental results demonstrate the advantages
of the asymmetric s-curve motion profiles over the traditional
symmetric s-curves.

Index Terms—Nonprehensile manipulation, asymmetric s-
curve motion profiles, minimum-time trajectories, service robots

I. INTRODUCTION

Robots have seen ubiquitous use in a wide range of ap-
plications. As it grows in popularity, it has drawn interest
from different disciplines. Robots are increasingly consid-
ered solutions to existing problems. For instance, continuum
robots are being developed for minimally invasive operations
such as endoscopic surgery [1], mechatronic ankle prostheses
have been designed to enhance functionality for lower limb
amputees [2], and robotic exoskeletons are assisting elderly
individuals with age-related motor performance decay [3].

In this paper, we are particularly interested in robotic
applications involving object manipulation. In general, object
manipulation can be classified into two approaches: prehensile
(grasping) and non-prehensile (without grasping). Grasping is
a complicated process which is highly challenging to replicate
using a robotic device [4]. In particular, a human hand has
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around 27 bones and hundreds of tactile sensors. While build-
ing a robot with such dexterity and sensitivity is technically
difficult, planing the motion of each degree of freedom (DOF)
to reproduce human grasping is not less a challenge [5].
Though recent advances in soft robotics [6], tactile sensors
[7], and learning algorithms [8] have pushed research in
robotic grasping forward, the topic is still essentially a standing
problem that awaits a breakthrough.

Nonprehensile manipulation is a intriguing approach be-
cause it is capable of manipulating multiple objects at a time
as compared to grasping. However, since there is no grasping
involved, objects are under constrained. This makes the system
as a whole underactuated and poses a tremendous challenge for
robotic devices to overcome. Robotics research in nonprehen-
sile manipulation has achieved many major accomplishments.
Recent developments on the topic include balancing a disk
on a disk directly driven by a DC motor [9] or a disk on a
disk driven by a robotic arm [10], a robotic platform capable
of tossing and sliding soft objects [11], ball positioning in a
robotic system that plays pool and snooker games [12]. In
addition, work in [13] demonstrates that via surface deforma-
tion, a soft robotic table can manipulate multiple objects. A
new control design framework, which is based on passivity-
based port-Hamiltonian formulation, for rolling manipulation,
was developed in [14]. The work’s efficacy is illustrated for
a dynamic ball-and-beam set-up and an eccentric disk-on-
disk system. See [15] for an updated extensive survey on
manipulation without grasping.

Though the topic has attracted a lot of attention lately, the
research focus has been on the control aspects of the problem,
especially for nonprehensile balancing tasks. While controls
may guarantee desirable manipulation given that certain sta-
bility conditions are satisfied, controllers require feedback on
the motion of the objects, usually provided by vision systems
or motion sensors attached to the objects.

In this paper, we study nonprehensile balancing manipula-
tion of an object from a trajectory-planning perspective. The
work is motivated by applications where objects are exogenous
entities to the robotic systems and monitoring their motions
is not practical. Examples include a robot carrying a tray of
food/drinks to serve at a table or a tray of medical tools to work
in a human-robot team during a procedure. We are interested
in objects that are not very stable and can tip over due to a
small external force. Such an object is placed on top of a tray,
which is attached to a manipulator’s end-effector as depicted
in Fig. 1. The manipulator produces horizontal motions of its
end-effector such that the object does not tip over.

Four different aspects of this problem will be discussed,
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including object stability, motion planning, manipulator con-
trol, and experimental validation. In particular, we analyze
the stability condition of an object with irregular geometry
on a flat surface (a tray) in section II. The analysis shows
that for a specific object, there is a critical acceleration of
the tray, below which the stability of the object on a tray
is guaranteed. This leads to the selection of a particular
type of motion profiles, namely the s-curve motion, for the
robotic manipulator that allows easy regulation of the peak
accelerations that satisfy the stability condition. Furthermore,
Section III presents two methods to design asymmetric s-curve
motion profiles and demonstrate the advantage of asymmetric
profiles over the traditional symmetric s-curve profiles in
nonprehensile manipulation. Our design of the asymmetric
s-curve motions is based on an optimization algorithm that
guarantees minimum total travel time. The stability and motion
planning framework is implemented and validated with a six-
axis robotic manipulator in Section IV.

The key scientific contributions of this work include:
• The insights into nonprehensile manipulation from the

motion planning point of view as opposed to the tradi-
tional feedback control point of view,

• The analysis and quantification of the stability of an
object sitting on a tray moved by a robotic manipulator,

• A general algorithm that computes an asymmetric s-curve
motion profile with minimum travel time,

• An optimization scheme that also designs minimum-time
asymmetric s-curve motions and takes into account the
trade-off between the travel time and actuator effort.

• Experimental validation using a six-DOF robotic arm.
The experiments also illustrate the advantage of asym-
metric s-curve motions over symmetric s-curves for non-
prehensile object manipulation in minimum time.

II. OBJECT STABILITY

Consider an object sitting on a tray moved along a horizon-
tal direction by a robotic arm as shown in Fig. 1. This setting
can be modeled as an inverted pendulum on a moving cart as
in [16] and [17]. Pendulum-based modeling requires measur-
ing state information of an object throughout the motion to
form a closed-loop control system. However, in most realistic
situations, for example, a robot serving a beverage bottle, it
is not practical to have a motion sensor attached to the object
to acquire the object’s state signal as feedback information.
Therefore, in the absence of feedback on the object’s state,
the object’s natural ability to maintain its pose despite the
acceleration of the tray is analyzed and quantified.

In this section, we use the term “stability” to represent an
object’s ability to maintain its pose throughout the motion.
When an object is stable, a small deviation from the stability
(e.g, a gentle push) is passively corrected back to the stable
pose after the upsetting force stops [18]. As long as the line
of gravity (the vertical line passing through the center of
gravity) lies within the base of support, the object should
remain stable. Work in [19] demonstrated that the line of
gravity moves smoothly into and out of the perimeter of the
supporting base before the lift-off phase of human jumping.

Fig. 1. Nonprehensile manipulation of interest: an object sitting on a tray
moved by the end-effector of a robotic manipulator.

Similar observations were made when a human ascends from
and descends to a seated position.

In our work, we are restricting our attention to objects
that could not generate force themselves in contrast to human
bodies as discussed in [19]. Hence, as long as the line of
gravity lies within its base of support, an object should remain
stable. When an object is not stable, it may tip, slide, or
lift in response to external forces. Tipping may occur before
sliding or vice-versa depending on the friction coefficient
between the contact surfaces. Specifically, if the static friction
is large enough an object tends to tip over before sliding [20].
Therefore, objects that slide before tipping can be made to tip
first instead of sliding by increasing the friction. In our setup,
we assume that an object will tip over before sliding when the
external force is large enough and that no lifting happens.

A. Stability Index

In this section, we present a method to quantify object
stability on a moving tray. In particular, the stability of an
object in any given configuration is represented by the ratio
of the contact area and the projected area of the object onto
the contact surface. Let Ab be the contact area and Ap be the
projected area of an object from top to the contact surface.
Then the stability index k can be defined as

k = tanh(Ab/Ap). (1)

Rigid bodies in any given configuration can have a contact
surface as a point resulting in Ab = 0. The projected area Ap

can be greater than or equal to contact area Ab, but it cannot
be equal to zero for a rigid body. Besides, neither the projected
area nor the contact area can be negative. Thus, the index k
may have a value between 0 and 0.76159 inclusively.

For objects with k ∈ (0 0.76159], the line of gravity can
be displaced by a certain angle θ and the objects will return
to a stable pose when the external force is removed. Thus,
for each of these objects, there exists a stability-margin angle
θ∗ such that if the line of gravity is further displaced, the
object will tip over. In the next section, we discuss a way
to experimentally determine this stability-margin angle for an
arbitrary object without the need to measure its geometry and
center of gravity.
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Fig. 2. The inclined-plane method used to compute the critical angles that
represent the onsets of sliding and tipping. As inclination angle increases, the
object responds differently depending upon which region θ is in.

B. Stability-Margin Angle

For an object with k ∈ (0 0.76159], computing the stability-
margin angle for an object can be done via an inclined plane
experiment. In particular, an object is placed on a plane
inclined at an angle θ relative to the horizontal plane as shown
in Fig 2. We assume that the friction between the object and
the plane is large enough so tipping happens before sliding.
The inclination angle is then raised slowly until the object tips
over. The inclination angle of the plane at the onset of tipping
is the stability-margin angle θ∗. If an external force is applied
to keep the object in place even when the inclination angle is
greater than the stability margin, the object will start to slide
as shown in Fig. 2. When the angle θ is less than the stability
margin, the object is in static stability.

It is relatively straightforward to calculate the critical angle
at which the object starts to slide. Specifically, simple inspec-
tion on the free body diagram in Fig. 2 leads to

tan(θ∗slide) = µ, (2)

where µ is the static friction coefficient. The stability-margin
angle θ∗ at which the object starts to tip over is not as simple.
Given the geometry of an object, careful calculations on the
base of support, location of the center of mass, the projected
area, and so on, may result in a closed-form expression for
θ∗. However, there is no general expression for θ∗ that is
applicable to all objects. Therefore, in our experiments, we
determine θ∗ for an object simply by increasing the inclination
angle as depicted in Fig. 2 until the object tips over.

C. Critical Acceleration

In this section, we show that the stability-margin angle θ∗

at which an object starts to tip is related to the maximum
allowable acceleration of the tray below which the object
remains stable throughout the motion. As mentioned earlier,
for an object with k ∈ (0 0.76159], its geometry plays a critical
role in determining if the object will tip over or not given a
pose or an external force. For example, objects that are thin
and tall tend to tip over in response to even a small external
disturbance. As the applied external force F increases, the net
normal force N moves towards the tipping point P as shown

Fig. 3. An object on a surface under an external force: (a) and (b) illustrate
that the location of the net normal force N moves toward the tipping point P
as external force F increases its magnitude. When the object is about to tip, the
net normal force acts at the tipping point P as shown in (b). During tipping,
the value of θ when the line of gravity passes the tipping point indicates the
stability-margin angle θ∗ as shown in (c).

in Fig. 3a and b. When an object is just about to tip, the normal
force acts at the tipping point. Therefore, taking the moment
about the tipping point P at the onset of tipping, we have

F = mg(b/h), (3)

where F is the applied external force, m is the mass of the
object, g is the gravitational acceleration, b is the distance from
the line of gravity acting on the object to the tipping point, and
h is the distance from the eternal force F to the tipping point.
Equation (3) results in a maximum value that if the external
force is further increased, the object will tip over.

For an object sitting on a moving tray, the external force is
indeed the inertial force due to the tray’s acceleration a, i.e.

F = matray. (4)

The acceleration of the tray can be then related to the inclina-
tion angle described in the experiment in Fig. 2. Specifically,
as depicted in Fig. 3c, object tipping occurs when the line of
gravity is passing the tipping point P . Hence, we obtain

tan(θ∗) = b/h (5)

Taking (3), (4), and (5) into account, we conclude that the
stability condition for an object sitting on a moving tray is

atray ≤ g tan(θ∗). (6)

If one wants to find the condition for the object not to slide,
the same inequality as (6) can be used, but with θ∗ replaced
by θ∗slide obtained in (2).

The stability condition (6) is constructed with several as-
sumptions and can only be used as an approximation for the
tray’s critical acceleration. In particular, as an object acceler-
ates, drag force also comes into play and further decreases the
critical acceleration, i.e. atray ≤ tan(θ∗)g−Fdrag/m. Besides,
induced vibration while motion is carried out is also neglected.
In addition, due to the lack of feedback mechanism, any
mathematical model that uses state information to accurately
predict object tipping behavior is not applicable in our case.
The roughness and unevenness of the contact area between
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the object and the tray are also not a part of (6). Nonetheless,
we will use this stability condition to approximate the critical
acceleration of the tray and will validate the analysis via
experiments with a robotic manipulator. The details of the
experimental validation are coming up in Section IV. In the
next section, we discuss how to design the motion of the tray to
guarantee the stability condition (6) so that an object maintains
a stable pose on the tray throughout the motion.

III. MOTION PLANNING

To this point, we have shown that for nonprehensile ma-
nipulation of an object using a flat tray, there is a stability-
margin acceleration of the tray, below which the balance of
the object on the tray is guaranteed. Hence, when designing
the motion of the robotic arm’s end-effector, its maximum
acceleration throughout the motion is crucial. While the liter-
ature on motion planning of multi-axis manipulators is rich,
s-curve motion planning is a method that provides a motion
designer the full control of the trajectory’s peak velocities,
accelerations, jerks, and so on. Thus, in this project, we
employ this motion planning method for our manipulator and
demonstrate that s-curve profiles may be an excellent trajectory
planning tool for nonprehensile manipulation.

The majority of work on s-curve motions so far focuses on
symmetric s-curves and how to implement them in different
applications. A few papers investigate asymmetric s-curve
motions include [21], which suggests the use of an asymmetric
s-curve to replace the traditional two-step symmetric s-curve.
In [22], four different shapes of asymmetric s-curve based
upon given constraints are formulated. In addition, work in
[23] develops an asymmetric s-curve motion command that is
compatible with most commercial motion controllers.

In general, when one plans machine motion for a task,
minimum travel time is desired because this means the task is
completed within the least amount of time, which is usually
corresponding to optimal productivity. However, the aforemen-
tioned work did not formulate the s-curve motion planning
as time-optimization problems. All time-optimal algorithms to
date have been developed for symmetric s-curve trajectories,
for instance, the motion planners proposed in [24]–[26]. To
fill these gaps, not only are we interested in developing
methods for designing asymmetric motion for nonprehensile
manipulation, but we also want to minimize the travel time.
Furthermore, we will design experiments to show the advan-
tage of asymmetric s-curves over symmetric ones, which has
never been shown before, to the best of our knowledge.

A. Basics of s-curve motion profiles

In this section, we will use a third-order s-curve trajectory to
discuss the basics of an s-curve motion profile. Such a motion
profile is composed of third-order polynomials with seven
segments, each of which is defined within a time interval.
In particular, T01 describes the first time segment [t0, t1], T12
describes the second time segment [t1, t2], T23 describes third
time segment [t2, t3], T34 describes the fourth time segment
[t3, t4], T45 describes the fifth time segment [t4 to t5], T56

describes the sixth time segment [t5, t6], and T67 segment
describes the last segment [t6, t7].

A general third-order s-curve trajectory with seven time
intervals can be divided into two different sections. The first
section refers to the trajectory defined between t0 to t3 , while
the second section refers to the trajectory defined between t4
to t7. In a symmetric s-curve, the jerk profile in the second
section can be obtained by mirroring jerk profile of the first
section. This leads to symmetric s-curves having the same
value for the peak accelerations in both sections. In contrast,
the jerk profile of an asymmetric s-curve in the second section
cannot be obtained by mirroring the first section. Thus, the
peak accelerations in the two sections are different. The peak
acceleration in first section will be represented by A1peak,
while that in the second section will be represented by A2peak.

To fully define all kinematic features of an asymmetric s-
curve, quantities such as Jpeak, A1peak, A2peak, Vpeak, Speak,
T01, T12, T23, T34, T45, T56, and T67 must be known. We
constrain T01 = T23 and T45 = T67. The peak values Jpeak,
A1peak, A2peak, Vpeak, and Speak are inputs from users as they
are task-related. With the known peak values, the time intervals
T01, T12, T34, T45, and T56 are to be computed based upon
certain algorithms. See [27] for an example of such algorithms
for a symmetric s-curve. Our focus is on an asymmetric s-
curve described by equations (7), (8), (9), and (10):

p =



(1/6) ∗ Jpeak ∗ t3 t0 ≤ t ≤ t1
p1 + v1 ∗ t+ 0.5 ∗A1peak ∗ t2 t1 ≤ t ≤ t2
p2 + v2 ∗ t+ 0.5 ∗A1peak ∗ t2 − z t2 ≤ t ≤ t3
p3 + v3 ∗ t t3 ≤ t ≤ t4
p4 + v4 ∗ t− (1/6) ∗ Jpeak ∗ t3 t4 ≤ t ≤ t5
p5 + v5 ∗ t− 0.5 ∗A2peak ∗ t2 t5 ≤ t ≤ t6
p6 + v6 ∗ t− 0.5 ∗A2peak ∗ t2 + z t6 ≤ t ≤ t7.

(10)
z = (1/6) ∗ Jpeak ∗ t3

We will present two different methods with the goal to obtain
minimum-time asymmetric s-curve: one based on a recursive
algorithm and the other based on an optimization algorithm.

In most practical applications, the jerk peaks need to be
restricted below a reasonably low value. Once jerk and ac-
celeration peak values are set, in order to obtain a minimum-
time motion profile, the acceleration needs to be increased as
quickly as possible to the peak value while satisfying the jerk
constraint. Figure 4 illustrates the effect of the peak accel-
erations on the total travel time. The quantity A1 represents
the peak acceleration of the first section and A2 represents
the peak acceleration of the second section. For clarification,
A1peak and A2peak are desired peak accelerations, which are
usually provided by the users depending on the application
specifications. On the other hand, A1 and A2 are the peak
accelerations of the s-curve motion profile. Depending how the
profile is designed, A1 and A2 may or may not reach A1peak
and A2peak, respectively. For a given set of A1 and A2 values,
the total time is computed and displayed by a coloring scheme
in Fig 4. We can see that an increase in the peak accelerations
in both sections leads to a decrease in total time.
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j =



Jpeak
0

−Jpeak
0

−Jpeak
0

Jpeak

(7) a =



Jpeak ∗ t
A1peak
A1peak − Jpeak ∗ t
0

−Jpeak ∗ t
−A2peak
−A2peak + Jpeak ∗ t

(8) v =



0.5 ∗ Jpeak ∗ t2 t0 ≤ t ≤ t1
v1 +A1peak ∗ t t1 ≤ t ≤ t2
v2 +A1peak ∗ t− 0.5 ∗ Jpeak ∗ t2 t2 ≤ t ≤ t3
v3 = Vpeak t3 ≤ t ≤ t4
v4 − 0.5 ∗ Jpeak ∗ t2 t4 ≤ t ≤ t5
v5 −A2peak ∗ t t5 ≤ t ≤ t6
v6 −A2peak ∗ t+ 0.5 ∗ Jpeak ∗ t2 t6 ≤ t ≤ t7

(9)
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Fig. 4. The effect of A1 and A2 on total time: as A1 or A2 or both increase,
the total time decreases while the peak jerk, velocity and position are fixed.

B. Divide and Concur Approach

From the above observations, for given inputs of Jpeak,
A1peak, A2peak, Vpeak, and Speak, a minimum time trajectory
is achieved when A1 = A1peak, A2 = A2peak. This leads to 5
inputs (or 5 constraint equations) and 5 unknowns: T01, T12,
T34, T45, and T56. The unique motion profile obtained from
these specifications results in a minimum-time trajectory.

One approach is to analyze each segment separately to cal-
culate the time intervals. This will be refereed to as the “divide
and concur approach”. In particular, as seen in (7) and (8), the
interval T01 can be found by T01 = A1peak/Jpeak. Similarly,
T45 can be found using relation T45 = A2peak/Jpeak. Then,
it follows from (8) and (9) that∫ T01

0

A1dt+

∫ T12

0

A1dt− Vpeak = 0. (11)

With T01 known, we use (11) to compute T12. Further, also
from (8) and (9), we have

Vpeak −
∫ T45

0

A2dt−
∫ T56

0

A2dt = 0. (12)

By substituting T45 in (12), T56 is computed. Finally, T34 is
calculated by integrating the velocity profile to obtain

Speak −
∫ t7

0

vdt = 0. (13)

with v substituted from (9).
To this point, we have shown step-by-step how to construct

a third-order asymmetric s-curve. Next, we generalize the

algorithm to design an asymmetric s-curve of nth order.

The general algorithm for nth order trajectories:
Since the s-curve of interest is asymmetric, if one looks at the
kth layer, for k = 2, ..., n−1, (e.g. acceleration in a third-order
s-curve, acceleration and jerk in a fourth-order s-curve, etc),
the corresponding peak values of the two sections are different.
Therefore, looking at the kth layer, for k = 2, ..., n − 1, we
denote by Mk

1peak the peak value of the first segment and
Mk

2peak the peak value of the second segment. In addition,
let M0

peak refer to peak position value, M1
peak refer to peak

velocity value, and Mn
peak refer to peak value of the nth layer.

All these peak values are the inputs usually provided to the
algorithm by a user. Refer to the beginning of this section
for an example of inputs for a third-order s-curve. For a fifth
order trajectory, the inputs would be: M0

peak, M1
peak, M2

1peak,
M2

2peak, M3
1peak, M3

2peak, M4
1peak,M

4
2peak, and M5

peak.

In order to generalize the above third-order calculations for
an nth order asymmetric s-curve, the naming scheme is up-
dated as follows: M0

peak refers to peak position value, M1
peak

refers to peak velocity value, M2
peak refers to peak acceleration

value, and so on up to Mn
peak. The sets of equations describing

different segments of nth layer (mn
0,1,m

n
1,2, .....,m

n
2n−2,2n−1)

can be obtained using similar approach as shown in equation
(7). Note here that the first layer (m0

∗) refers to position, the
second layer (m1

∗) refers to velocity, the third layer (m2
∗) refers

to acceleration, and so on. As an example, for a third-order s-
curve, m3

0,1 =Mn
peak, m3

1,2 = 0, m3
2,3 = −Mn

peak, and so on.
Once mn

0,1,m
n
1,2, .....,m

n
2n−2,2n−1 are fully defined, mn−1

0,1 ,
mn−2

0,1 can be obtained as follows

mn−1
0,1 (t) =

∫
mn

0,1(t)dt, t0 ≤ t ≤ t1 (14)

mn−2
0,1 (t) =

∫
mn−1

0,1 (t)dt, t0 ≤ t ≤ t1 (15)

In general,

mn−k
0,1 (t) =

∫
mn−k+1

0,1 (t)dt, t0 ≤ t ≤ t1 (16)

where k = 0, ..., n and mn−k
0,1 describes only first segment of

the (n − k)th layer. For a general segment of the (n − k)th
layer, we use the following recursive formula:

mn−k
b,b+1(t) = mn−k

b−1,b(tb) +

∫
mn−k+1

b,b+1 (t)dt, tb ≤ t ≤ tb+1.

(17)
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Equation (17) is the recursive expression used to establish any
polynomial segments in any layer of a general asymmetric s-
curve. In addition, since every segment is properly defined,
one may calculate the area under the curve of any time period
within the trajectory by simply summing individual areas
within the period, e.g. for the period from tc to tb:∫ tc

tb

mn−s
b,c =

c−1∑
p=b

∫ tp+1

tp

mn−s
p,p+1(t). (18)

Hence, by summing up the area under the curve in a relevant
period, one may obtain the peak value of a layer (e.g. the peak
velocity) and then set up the corresponding constraint equation
as shown in equations (19), (20), and (21) below. Algorithm 1
summarizes the pseudo-codes that enable the computation of a
general nth order s-curve trajectory with minimal travel time.

Algorithm 1:
segments = 2n − 1;
mid = 2n/2;
for i = 1 : (n− 1) do

s = i− 1;
for j = i : mid : segments do

if j < mid then

l =
i−1∑
k=0

2k;

Solve for T2s−1,2s as defined below:∫ tl

t0

mn−s
0,l (t) dt−Mn−i

1peak = 0 (19)

else

l = mid+
i−1∑
k=0

2k;

Solve for Tmid−1+2s,mid+2s as defined
below:∫ tl

tmid

mn−s
mid,l(t) dt+Mn−i

2peak = 0 (20)

Where
∫ tc
tb
mn−s

b,c (t) is computed using equation
(18) and M1

2peak = 0.

Solve for Tmid−1,mid using following equation:∫ tsegments

t0

m1
0,segments(t) dt−M0

peak = 0 (21)

Though this approach is a simple and quick way to plan an
s-curve trajectory, it requires reasonable inputs be provided.
For example, with Jpeak = 100, A1peak = 8, A2peak = 4,
Vpeak = 0.8, Speak = 0.2, the algorithm is able to calculate
minimum time trajectory as seen in Fig. 5. As the method
works by analyzing each segment separately, the influence of
a segment is not seen in the another segment, e.g. T45 and T56
are obtained without considering the effect of T34. As a result,
the algorithm may return a negative time segment and fail to
calculate the trajectory. For instance, consider another set of
inputs: Jpeak = 100, A1peak = 10, A2peak = 15, Vpeak = 0.8,

Speak = 0.2. Solving for these constrains would lead to error
since all given constrains could not be satisfied with positive
values of time intervals.

To overcome this limitation, in the next section, we will
formulate the trajectory planning as an optimization problem.
We will then propose an optimization algorithm that allows for
selecting suitable values for A1 ≤ A1peak and A2 ≤ A2peak
that satisfy all the constraints. We will also demonstrate that
the optimization approach is able to plan a minimum-time
trajectory where the divide and concur approach fails.

C. Optimization Approach

We first set up an optimization problem to plan a minimum-
time third-order s-curve trajectory with inputs: Jpeak, A1peak,
A2peak, Vpeak, Speak. In the previous section, we directly
set A1 = A1peak and A2 = A2peak, then calculate the time
intervals. In contrast, in the optimization approach here, A1

and A2 are variable and parts of what the algorithm solves
for. However, they have to be no greater than the user pro-
vided peak accelerations A1peak and A2peak, respectively. In
summary, for a third-order trajectory, we have seven variables,
five equality constraints and two inequality-constraints:

Jpeak −A1/T01 = 0

Jpeak −A2/T45 = 0

A1 ≤ A1peak
A2 ≤ A2peak
Vpeak − 2 ∗

∫ T01

0
A1dt−

∫ T12

0
A1dt = 0

Vpeak − 2 ∗
∫ T45

0
A1dt−

∫ T56

0
A2dt = 0

Speak − p7 = 0

(22)

To deal with the inequality constraints, slack variables are
used to transform them into equality constraints. Hence, the
optimization includes 9 variables, namely the 2 slack variables,
A1, A2, T01, T12, T34, T45, and T56, and 7 equality constraints
described in (22). The two DOF allow the algorithm to search
for a solution that optimizes the objective function:

min f = |T01|+ |T12|+ |T34|+ |T45|+ |T56|. (23)

Once the objective function and constraints are set up, one
may develop a simple solver or has a choice among many
off-the-shelf solvers to solve the optimization problem. In
our case, we employ the solver ’FMINCON’ available in
the MATLAB optimization toolbox to solve the optimization
problem. The initial condition plays an important role in
whether the optimization algorithm will converge or not. As
discussed earlier, a minimum-time trajectory occurs at the
desired peak accelerations. Hence, the initial conditions are
set to x0 = [A1peak, A2peak, 0.1, 0.1, 0.1, 0.1, 0.1], in which
the first two elements are the desired peak accelerations of
the trajectory, and the other elements are the initial values for
the time intervals. All trajectories tested with the optimization
approach use this initial condition. For every tested trajectory,
above mentioned initial conditions x0 lead to a time minimum
solutions. Besides, it is assumed that the user inputs are given
such that the problem is feasible.
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(c) Position over time

Fig. 5. An asymmetric s-curve trajectory with its velocity and acceleration profiles generated by the divide and concur method.

It is observed from Fig. 4 that it takes 5.004 seconds
to complete the motion while accelerating at 12 m/s2 as
compared to 5.027 seconds while accelerating at 10.55 m/s2.
In other words, the acceleration needs to be increased by 1.45
m/s2 (about 12%) just to shorten the total time by 0.023
seconds (about 0.46%). In most applications, 0.023 second
faster is not worth the extra energy consumed to increase the
acceleration. Therefore, a trade-off between actuator effort and
total time may be desired. To achieve the trade-off, we define
a new objective function as follows:

min f = T 2
01 + T 2

12 + T 2
34 + T 2

45 + T 2
56 + (A2

1 +A2
2)R, (24)

where the quantity R is a weight factor, which determines
the trade-off between the travel time and the actuator effort.
Specifically, lower values of R will result in solutions that
require higher actuator effort and vice-versa.

To demonstrate the trade-off, the same inputs as in Fig. 4
are used, while the objective functions in (23) and (24) are
implemented with different values of R. When R = 0.001,
the objective function in (24) results in an acceleration profile
with a peak value of 10 m/s2 and a travel time of 5.048
seconds as compared to 12 m/s2 in peak acceleration and
5.004 seconds of travel time when the objective function in
(23) is used. The difference in the required peak acceleration
is 20%, while the difference in time is only 0.87%. When
R = 0.005, an acceleration profile with a peak value of 9.4
m/s2 is obtained and the total time to complete the trajectory
is 5.075 seconds. Again, the difference in the required peak
acceleration is 27.66%, while the difference in time is only
1.40%. The dependence of the objective function in (24) on A1

and A2 in these two examples is depicted in Fig. 6. Thus, we
can see that the objective function in (24) generates a trajectory
with similar travel time and significantly less actuator effort
indicated by the required peak acceleration.

This optimization approach is more flexible as compared to
the divide and concur approach in Section III-B. To illustrate
it, we consider the case where the divide and concur approach
fails to yield positive value for all time intervals as discussed
in Section III-B. Particularly, the inputs are Jpeak = 100,
A1peak = 10, A2peak = 15, Vpeak = 0.8, and Speak = 0.2.
The optimization scheme succeeds to plan the motion and the
results obtained using objective function in (24) are shown
in Fig. 7. It is interesting to note that the optimal solution

indicates that A1 < A1peak and A2 < A2peak, which explains
why the divide and concur approach fails.

The algorithm for nth order:
The same naming scheme described earlier in section III-B
is used here. A major task of the optimization approach is
to develop the constraints and objective function. After these
are fully defined, a solver can be employed to solve the
optimization problem given an initial condition. The pseudo-
code discussed in Algorithm 2 describes the scheme to set
up an objective function and constraints for the optimization
problem of a general minimum-time s-curve trajectory.

D. Simulation Results

In this section, we discuss simulation data to validate that
the proposed divide and concur approach in Section III-B and
the optimization in Section III-C both generate minimum-time
trajectories. The methods are implemented for a wide range of
input values (Jpeak, A1 <= A1peak, A2 <= A2peak, Vpeak,
Speak). It is worth noting that the input values are selected
such that the divide and concur approach succeeds. The results
are shown in Table I, in which the first five columns show the
values of the peak jerk, accelerations, velocity, and position,
and the final two columns show the resultant total travel time
obtained using the divide and concur approach (Time-1) and
the optimization approach (Time-2), respectively. We can see
that both methods result in mostly identical total time in all
cases bar numerical errors. Total time obtained from both
methods has been rounded to the third decimal place.

In the next section, we implement the proposed motion-
planning algorithm to demonstrate their efficacy in moving
the end-effector of a robotic manipulator for nonprehensile
manipulation as discussed in Section II.

IV. EXPERIMENTATION AND VALIDATION

We use the experimental set-up shown in Fig. 8 to validate
the use of minimum-time s-curve trajectories for a robot arm’s
end-effector to maintain the stability of an object with an
irregular shape, sitting on a tray mounted to the end-effector.
The robot arm used in the experiments is a Franka Emika’s
Pada manipulator, which has six rotational DOF. The object to
be manipulated is rectangular plywood with properties shown
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(a) Contour plot of objective function with R=0.001
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Fig. 6. The effect of R on acceleration A1 and A2: As value of R increases, values of A1 and A2, computed by the optimization algorithm, decreases.
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(a) Acceleration profile over time
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(c) Position profile over time

Fig. 7. An asymmetric s-curve trajectory with its velocity, acceleration, and jerk profiles obtained from the optimization approach. In this particular case, the
divide and concur approach was unable to produce an acceptable result with positive time intervals.

in table II. A small wooden piece is taped onto the rectan-
gular plywood to make the whole object’s shape irregular
and asymmetric, which adds challenges to the nonprehensile
manipulation task. The object sits on a cardboard tray which
is screwed onto the manipulator’s end-effector.

In the experiments, the algorithms in Sections III-B and
III-C generate s-curve trajectories for the end-effector. Their
velocity profiles are used to compute the joints velocity pro-
files via inverse kinematics calculations. The joint velocities
are passed to the robot program. The manipulator’s prebuilt,
fine-tuned controller then executes the motion. We have tried
other control schemes, such as the resolved motion rate con-
troller [28] and computed torque controller [29]. Nonetheless,
the accuracy obtained from these methods is very similar.
Therefore, we decided to used the prebuilt controller of the
manipulator for convenience. Additionally, since the actuators
used to drive the robot arm are velocity-controlled motors,
passing velocity profiles to the joints is a reasonable choice.

For the plywood object shown in Fig. 8 and described in
Table II, since it is not symmetric, there are two stability
margin angles: 0.057 rad and 0.0874 rad, with the corre-
sponding critical accelerations of 0.8598 m/s2 and 0.5603
m/s2, respectively. These acceleration values are the average
values from 10 inclined plane experiments described by Fig. 2
and equation (6). The results from these experiments are
shown in Table III. These critical accelerations are used to

Fig. 8. Experimental setup with an object to manipulated placed on top of a
tray, which is mounted to the end effector of a robotic manipulator.

guide the selection of the peak accelerations that the motion
planning algorithms use as inputs. The outcomes will be the
desired motions of the end-effector that maintain the stability
of the object. Furthermore, we also designed experiments that
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Algorithm 2:
segments = 2n − 1;
mid = 2n/2;
trade = (A2

1 +A2
2) ∗R;

Objective function:

trade+

n−1∑
k=0

T 2
2k−1,2k +

n−2∑
k=0

T 2
mid+2k−1,mid+2k (25)

Defining inequality constrains cinq:

cinq(a) =

{
A1 ≤M2

1peak a = 1

A2 ≤M2
2peak a = 2

(26)

z = 1;
for i = 1 : (n− 1) do

s = i− 1;
for j = i : mid : segments do

if j < mid then

l =
i−1∑
k=0

2k;

ceq(z) =
∫ tl
t0
mn−s

0,l (t) dt−Mn−i
1peak

z = z + 1;
else

l = mid+
i−1∑
k=0

2k;

ceq(z) =
∫ tl
tmid

mn−s
mid,l(t) dt+Mn−i

2peak

z = z + 1;

The position constraint can be expressed as:

ceq(z) =

∫ tsegments

t0

m1
0,segments(t) dt−M0

peak (27)

TABLE I
TOTAL TIME FROM BOTH METHODS

Jpeak A
1peak A

2peak Vpeak Speak Time-1 Time-2

13.993 29.524 39.512 111.573 931.040 14.113 14.113
17.379 18.734 30.036 51.912 298.339 9.400 9.400
15.612 55.095 73.073 342.028 3384.488 19.445 19.444
14.283 27.565 30.816 66.488 471.026 11.413 11.413
19.827 57.953 70.299 249.257 2524.689 17.287 17.286
18.797 61.521 70.647 265.525 2137.765 15.604 15.604
13.196 28.042 41.902 133.057 1077.500 14.709 14.708
19.687 41.873 53.159 143.541 837.230 11.311 11.310
15.271 27.977 47.733 149.203 1284.563 15.318 15.318
10.680 10.904 14.949 20.925 114.303 8.334 8.332

illustrate the advantage of an asymmetric s-curve trajectory
over a symmetric one. Hence, the next section discusses
the experimental results with symmetric s-curve trajectories
followed by those with asymmetric motions.

A. Symmetric minimum time trajectory

The following inputs Jpeak = 9, Vpeak = 0.3, Speak = 0.4
are used with the optimization algorithm in Section III-C
to generate symmetric s-curves. A wide range of values for

TABLE II
PARAMETERS OF RECTANGULAR BLOCK

Parameters Value Unit

Mass 43 g
Length 1.2 cm
Width 5.1 cm
Height 9.6 cm
Average critical angle when object tilts forward 0.0570 rad
Average critical acceleration when object tilts forward 0.5603 m/s2
Average critical angle when object tilts backward 0.0874 rad
Average critical acceleration when object tilts backward 0.8598 m/s2

TABLE III
EXPERIMENT

Experiment Critical angle [rad] Critical acceleration [m/s2]
back front back front

1 0.0930 0.0596 0.9149 0.5850
2 0.0834 0.0548 0.8204 0.5380
3 0.0858 0.0584 0.8440 0.5732
4 0.0882 0.0596 0.8676 0.5850
5 0.0911 0.0584 0.8960 0.5732
6 0.0906 0.0560 0.8912 0.5498
7 0.0834 0.0524 0.8204 0.5146
8 0.0858 0.0548 0.8440 0.5380
9 0.0870 0.0584 0.8558 0.5732
10 0.0858 0.0584 0.8440 0.5732
Average 0.0874 0.0570 0.8598 0.5603

A1 = A2 = Apeak is employed and the results obtained
are shown in Table IV. From these results, when the peak
acceleration is below 0.42 m/s2, the manipulator is able to
maintain the stability of the object on the cardboard tray. As
the tray’s acceleration is increased, the object starts to wobble
at 0.42 m/s2. Here, wobbling means the object moves back
and forth for some sub-seconds even after motion has come
to an end, and then regains a stable pose. When the peak
acceleration is further increased to 0.46 m/s2 and beyond, the
wobbling amplitude increases and object tips over at the end
of the trajectory. For higher accelerations, i.e. ≥ 0.5 m/s2, no
wobbling occurs and the object tips over during the motion.

In addition, as indicated in Table IV, with the end-effector’s
peak acceleration of 0.4 m/s2, the total time it takes to
complete the trajectory is 2.12778 seconds. The total time to
move the object can be reduced by increasing acceleration up
to 0.46 m/s2 but at the cost of inducing wobbling. If wobbling
is to be avoided, the end-effector can be accelerated with peak
acceleration up to 0.4 m/s2. This total time will be compared
to the total time obtained while executing an asymmetric s-
curve trajectory as discussed in the following section.

B. Asymmetric minimum time trajectory

With an s-curve trajectory of the end-effector in general,
an object tends to tilt backward during the first section of the
trajectory due to being accelerated (the inertial force is acting
backward). Similarly, the object tends to tilt forward during the
second section of the trajectory due to being decelerated (the
inertial force is acting forward). The stability-margin angle
when object tilts backward is larger as compared to when it
tilts forward due to the asymmetric geometry of the object.
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TABLE IV
SYMMETRIC S-CURVE MOTION WITH TOTAL TIME

A1 = A2 T01 T12 T34 Total time Remark

0.3 0.033 0.967 0.3 2.36667 Stable
0.35 0.039 0.818 0.437 2.22937 Stable
0.4 0.044 0.706 0.539 2.12778 Stable
0.42 0.047 0.668 0.572 2.09429 Wobble
0.44 0.049 0.633 0.603 2.06404 Wobble
0.46 0.051 0.601 0.63 2.03662 Tip over
0.48 0.053 0.572 0.655 2.01167 Tip over
0.5 0.056 0.544 0.678 1.98889 Tip over
0.51 0.057 0.532 0.688 1.97824 Tip over
0.52 0.058 0.519 0.699 1.96803 Tip over

To further demonstrate this observation, we implemented
an asymmetric s-curve with A1peak = 0.7 m/s2 and A2peak =

0.46 m/s2. Figure 9 shows a sequence of snapshots of the
object’s pose during the end-effector’s motion. During the first
section of the trajectory, the object tilts backward as shown in
Figure 9a indicated by a positive angular displacement of its
center of gravity. On the other hand, during the second section
of the trajectory, the object tilts forward as shown in Figure 9b,
c, and d indicated by a negative angular displacement of its
center of gravity. The magnitude of the displacement is getting
larger and the object eventually tips over under the action
of the inertial force. This demonstration is consistent with
the results obtained in Table IV with a peak acceleration of
0.46 m/s2. Thus, the experiment clearly indicates two different
critical peak accelerations for an asymmetric object during an
s-curve motion. As a result, we will show that asymmetric s-
curves can be used to leverage this observation to manipulate
an object in less time as compared to a symmetric s-curve.

Since the object can be accelerated with a higher peak value
during the first section as compared to the second section of
an s-curve trajectory while maintaining its stability, an asym-
metric s-curve with a higher peak acceleration during the first
section of the trajectory is generated, i.e. A1peak > A2peak.
We use the same inputs as in the symmetric case in the
last section except for the peak accelerations: Jpeak = 9,
Vpeak = 0.3, Speak = 0.4. To reduce wobbling effect, A2peak
is picked to have the value of 0.4 m/s2 based upon the results
obtained when symmetric s-curves are applied in the last
section. With A2peak value of 0.4 m/s2 fixed, A1peak value
of a wide range is implemented. The optimization approach
described in Section III-C is again employed to generate
minimum-time asymmetric s-curve trajectories. The results
obtained are shown in Table V.

The results indicate that the object starts to wobble while
accelerating with A1peak = 0.72 m/s2. When the peak accel-
eration of the end-effector is A1peak = 0.7 m/s2 and below,
the object stability is maintained throughout the motion. In
particular, when A1peak = 0.7 m/s2, the total time to complete
the trajectory is 1.98373 s. As a reminder of the result from
the last section, the symmetric s-curve results in a total time
of 2.12778 s. Thus, the flexibility in picking different peak
accelerations in the two sections of an asymmetric s-curve
enables the robot to complete the trajectory in a shorter time.

TABLE V
ASYMMETRIC S-CURVE MOTION WITH TOTAL TIME

A1 T01 T12 T34 T45 T56 Total time Remark

0.55 0.061 0.484 0.633 0.044 0.706 2.03384 Stable
0.62 0.069 0.415 0.660 0.044 0.706 2.00694 Stable
0.64 0.071 0.398 0.666 0.044 0.706 2.00049 Stable
0.68 0.076 0.366 0.678 0.044 0.706 1.98892 Stable
0.70 0.078 0.351 0.683 0.044 0.706 1.98373 Stable
0.72 0.080 0.337 0.688 0.044 0.706 1.97889 Wobble
0.74 0.082 0.323 0.692 0.044 0.706 1.97437 Wobble
0.75 0.083 0.317 0.694 0.044 0.706 1.97222 Tip over
0.78 0.087 0.298 0.700 0.044 0.706 1.96620 Tip over
0.80 0.089 0.286 0.704 0.044 0.706 1.96250 Tip over

V. CONCLUSION

This paper illustrates the effectiveness of using s-curve mo-
tions for nonprehensile manipulation. In particular, we analyze
the stability margins of an object sitting on a tray moved by
a robot arm. The stability analysis establishes a method to
determine critical peak accelerations of the manipulator’s end-
effector, below which the object would not tip over. These
critical accelerations lead us to s-curve motion profiles, for
which motion designers may conveniently control the peak
accelerations, among other kinematic specifications. From this
perspective, we improve upon our previous work in [30] and
[27] on this type of motion profiles by developing two general
algorithms for planning an asymmetric s-curve with minimum
travel time. One method is based on dividing the profile into
segments and then computing the time intervals, while the
other method is formulated as an optimization problem and
then solves for a trade-off balance between the optimal time
and the actuator effort. The framework on the object’s stability
margin and the manipulator’s motion planning for nonprehen-
sile manipulation is validated via extensive experiments with a
six-DOF robotic arm. Furthermore, the experiments illustrate
cases in which asymmetric s-curve motions are more effective
than symmetric counterparts: achieving stable nonprehensile
manipulation of irregular objects in shorter time.

Nonprehensile manipulation is challenging to achieve since
objects to be manipulated are under-constrained. This is often
formulated as feedback control problems, which require mea-
suring the motions of the objects throughout the operation.
This is usually impractical if nonprehensile manipulation is
applied in situations such as a mobile manipulator serving
food or beverages in restaurants or carrying medical tools
to work alongside doctors and nurses in hospitals. From a
totally different perspective, this paper is one of very few that
investigate nonprehensile manipulation as a motion planning
problem without the need to continuously measure the state
of the object to be manipulated. The work provides insights
into how a robotic manipulator should move to guarantee the
stability of an object sitting on of a tray driven by its end-
effector. Furthermore, this is the only work so far, to the best
of our knowledge, that illustrates the advantages of asymmetric
s-curve motion profiles over symmetric profiles. In addition,
one of the novel elements of this paper is an optimization
scheme that considers the trade-off between the total time of
a trajectory and the actuator effort.
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(a) θ ≈ 0.064 rad (3.7 deg) (b) θ ≈ −0.047 rad (−2.7 deg) (c) θ ≈ −0.366 rad (−21 deg) (d) θ ≈ −0.575 rad (−33 deg)

Fig. 9. Object response to an asymmetric s-curve motion with A
1peak = 0.7 m/s2 and A

2peak = 0.46 m/s2. Panel (a) showing a snapshot of the object
leaning backward while accelerating. All of other panels show snapshots of the object leaning forward while decelerating.
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