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Squircular-CPP: A Smooth Coverage Path Planning Algorithm based
on Squircular Fitting and Spiral Path

Mahdi Hassan1, Dikai Liu1, and Xiang Chen2

Abstract— Coverage path planning (CPP) is essential for
applications such as robotic floor cleaning and high-pressure
cleaning of surfaces. Smooth CPP algorithms have several bene-
fits including smoother motion of the robot and the reduction of
aggressive accelerations and decelerations resulting from sharp
turns. In this paper, a novel smooth CPP algorithm is presented
which is named Squircular-CPP. This algorithm proposes a
squircular shape, which is an intermediate shape between the
circle and the square, to fit a target area. Squircular-CPP can
also fit a shape between the ellipse and the rectangle. The
shape fitting is simple, fast, and analytical and doesn’t require a
preselection of the shape (i.e. square, circle, ellipse or rectangle).
It enables and complements the creation of a smooth spiral path
within the fitted shape. Several case studies are presented to
demonstrate the effectiveness of the algorithm and to compare
it against the popular boustrophedon-based coverage approach
and the Deformable Spiral CPP (DSCPP) algorithm.

I. INTRODUCTION

Many robotic applications, such as robotic floor cleaning
and grit-blasting for surface preparation [1], require a cover-
age path planning (CPP) algorithm [2], [3] to plan a path over
the target area. One important objective for many robotic
coverage problems is the smoothness of the coverage path
[3]–[6]. A sample of benefits that a smooth path might deliver
include: (i) avoiding frequent or aggressive accelerations or
decelerations of robot motion [4] (e.g. for energy efficiency
[4] or to prevent long-term damage to certain robots [3]),
and (ii) avoiding damage on the surfaces of structures (e.g.
fatigue cracks from high-pressure blasting) due to operation
below a velocity threshold resulting from sharp turns [7].

Suppose that a robot is tasked with covering the areas
shown in Fig. 1(Left). For some coverage applications it
may be desirable to cover such areas using smooth paths
even if generating smooth paths may cause slight coverage
outside the boundary of the target area. In other words,
for some applications it is not a strict requirement for the
robot to stay within the area for coverage; and therefore
this flexibility can be exploited for the sake of generating
smoother paths. An application here can be an Unmanned
Aerial Vehicle (UAV) surveying an agricultural land where
the UAV can go outside of the coverage area (since there
may be no obstacles in the air) in favor of a smoother
path. Note that this slight coverage outside of the boundary
does not necessary create a longer or less efficient path,
e.g. as shown in Fig. 2. Another sample application can
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Fig. 1: (Left) Showing certain areas of a surface, colored in green, that
are to be covered by a robot. (Right) Covering the target areas using the
proposed smooth coverage path planning algorithm (Squircular-CPP) where
first, a squircle (or a scaled squircle) fits the area of interest and then a
spiral path is appropriately deformed to fit within the squircle.

be an intervention autonomous underwater vehicle (I-AUV),
such as SPIR [7], [8], that is tasked with removing marine
growth from surfaces of underwater structures using high-
pressure blasting. Slightly covering outside of the target area
is acceptable for this application as a trade-off to generating
smoother path. Such a robot is required to generate smooth
coverage paths so as to prevent damage to the structure [7].
As shown in Fig. 1(Right), spiral-like paths are appropriate;
however, the creation of a smooth spiral path requires the
target area to be approximated using a proper shape.

Therefore, the problem that this paper aims to address is as
follows: given a target area, how can a robot automatically
determine an appropriate shape that approximates the area
with the goal of enabling a smooth spiral path to be deformed
to fit within the shape in a simple and computationally-
efficient manner. The deformation of the spiral path is to
consider the maximum gap between spiral paths’ laps and
that the length of the spiral is not excessively long.

A novel algorithm is developed to address the above
problem. The algorithm, named Squircular-CPP, uses the
idea of fitting a squircle (an intermediate shape between
the square and the circle) to the target area such that the
fitted squircle is bounded by a Minimum Bounding Rectangle
(MBR). The algorithm can also fit an intermediate shape
between the ellipse and the rectangle.

The previous work [7] presented a Deformable Spiral
CPP (DSCPP) algorithm that deforms a spiral path within
a rectangle. However, using the proposed shape fitting algo-
rithm, a shorter and smoother path can be generated. More
specifically, the contributions of this paper are:
• This squircular shape fitting is done analytically and

automatically without any prior selection of the shape
(i.e. without preselection of square, circle, ellipse, or
rectangle). To the best of authors’ knowledge, this is
the first squircular shape fitting algorithm. It is based on
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Fig. 2: (Left) An example coverage path to cover the target area while
aiming to generate a smooth spiral-like path that is constrained within the
area. (Right) Target area is approximated using a squircle as per the proposed
Squircular-CPP algorithm to enable generating a smoother spiral path.

Fernandez-Guasti squircle and mapping, the shrunken
squircle, fitting an MBR, and obtaining the closest point
to the center of the MBR.

• The squircular shape fitting enables and complements
the creation of a smoother and shorter spiral path not
only because the squircle can better fit the target area but
also because the spiral path can be made to gradually
morph into a smoother shape.

• A measure is designed for quantifying smoothness
which uses the curvature of path segments, similar to
the work in [9]. Extensive comparison and analysis are
carried out to quantify smoothness with respect to many
squareness values (explained later) and MBR aspect
ratios. Comparisons in terms of path length are also
carried out. The resulting paths are compared to the
simple boustrophedon path (also known as back-and-
forth path and lawn-mover path) and the path generated
through the DSCPP algorithm [7].

II. RELATED WORKS

Spiral paths are used for path smoothing and even though
smooth spiral paths can be longer than square spiral paths
or scan lines (boustrophedon paths), they are more energy-
efficient since they don’t contain sharp turns [4]. Spiral paths
have been used for unmanned aircraft systems (UAS) [10],
agricultural vehicles [11], autonomous underwater vehicles
(AUV) [7], and others.

The work in [12] utilizes a backtracking spiral algorithm.
The algorithm generates spiral paths for simple regions
which are then linked together using a backtracking mech-
anism that ensures completeness. In a later work [13],
procedures such as wall-following and return path by a
virtual pipe were introduced to the original algorithm.

In [6], the aim is to reduce the number of turns to improve
the completion time. The work guarantees completeness
through linking simple spiral paths together. This linking is
conducted using a Constrained Inverse Distance Transform
(CIDT). An improved version of this algorithm is presented
in [9] where a high-resolution grid-map is used to eliminate
constraints on mobility, and a cardinal spline curve-model is
used to generate spiral paths that are continuous and smooth.

In [5], in addition to spiral paths, two other behaviors,
namely wall-following and virtual wall path tracking, are
considered. A Coarse-to-Fine Constrained Inverse Distance

Transform (CFCIDT) is used to link paths together. Particle
swarm optimization is utilized for smoothing the path.

The major difference between existing work, such as those
mentioned above, and the work in this paper is that existing
work consider the coverage path to be constrained within
the target area for coverage whereas this paper considers
flexibility in allowing slight coverage outside of the boundary
for the sake of smoother paths. This flexibility can be an
acceptable trade-off to a smoother path for many coverage
applications. As shown in Fig. 2, this can lead to a smoother
path being generated which in turn may result in various
other benefits. However, the challenge is to approximate the
target area with an appropriate shape to enable generation
of a smoother path; and the main contribution of this paper
lies in addressing this challenge. To this end, an analytical
method of fitting a squircle to the target area is proposed to
enable the creation of a smoother path. Unlike above algo-
rithms, the Squircular-CPP doesn’t require large computation
time, wall-following, grid representation of the target area,
and iterative optimization for smoothing or joining paths.

III. PROBLEM DEFINITION
Let X ⊂R2 represent a target area that is given to a robot

for coverage using a smooth path. In this work, the coverage
problem is made flexible in terms of allowing the robot to
cover a larger area Ω ⊂R2, X ⊆Ω . However, this flexibility
comes with an expectation of generating a path within Ω that
is smooth while ensuring that the path is not excessively long.

The above flexibility in allowing the robot to cover outside
of the boundary, although not acceptable for some robotic
coverage applications, is acceptable for other applications.
Example applications include but not limited to unmanned
aerial vehicles (UAVs) performing aerial surveying, au-
tonomous underwater vehicles (AUVs) surveying the seabed
or an intervention AUV (I-AUV) removing marine growth
from surfaces of underwater structures, and floor cleaning
robots performing targeted cleaning of dirty areas. For such
robots and applications, there is no harm for the robot to
slightly and temporarily exit the area for coverage. Thus, the
goal is to create an algorithm that exploits this flexibility as
a way to generate smoother paths.

Given X which represents a target area on a surface, the
problem is to find an Ω , X ⊆ Ω , that approximates X and
enables a smooth path to be generated within Ω .

For the area Ω , let P be a generated smooth path that
is discretized into points, p1,p2, . . . ,pN , with infinitesimal
distance between any adjacent points along the path. Suppose
that the end-effector tool of the robot covers an effective
circular area of radius r, ∀pi i = 1,2, . . . ,N; and let Vi denote
the coverage region by the end-effector tool at point pi. Thus,
it is necessary to obtain (

⋃N
i Vi)∩X =X to prevent missing

areas of coverage. In addition, aiming to shorten the length
of the smooth path should be taken into account.

IV. THE SQUIRCULAR-CPP ALGORITHM
A flowchart of the overall procedure for generating a

smooth coverage path is shown in Fig. 3. The proposed
Squircular-CPP forms the second module of the flowchart.
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Fig. 3: A simplified flowchart of the overall procedure for generating a
smooth coverage path is shown.

A. Convex Decomposition

Prior to the implementation of the Squircular-CPP algo-
rithm, convex decomposition of the target area may need
to be carried out, as shown in Module 1 of the flowchart
(Fig. 3). That is, the target area, which may be non-convex
or contain obstacles and holes, will be decomposed into a
number of obstacle-free and convex (or near-convex) subar-
eas. There exists many algorithms for convex or near-convex
decomposition; e.g. trapezoidal and slice decomposition [14]
for polygonal and/or rectilinear environments with obsta-
cles, determining minimum number of near-convex parts
in a shape [15], and weak convex decomposition through
lines-of-sight [16]. Investigating the limitation of various
convex decomposition methods for different environments
(e.g. rectilinear, polygonal, with/without obstacles, etc.) is
left for future work. As the first paper to present the
novel Squircular-CPP algorithm, the focus is on validating
Squircular-CPP given convex subareas as inputs. Thus, the
rest of the paper focuses on Module 2 of the flowchart in Fig.
3, and especially on the Steps C and D highlighted within
Module 2. Note that the sub-area (input to the Squircular-
CPP) can be approximately convex (e.g. have convexity ranks
[16] above a threshold), or can be formed by combining
multiple nearby and small convex subareas together.

B. Fitting an MBR

Let an area A⊆X be the input to Squircular-CPP for cov-
erage and represented as a set of points X = {x1,x2, . . . ,xη}
(e.g. from point cloud or centers of a uniform grid). For
Squircular-CPP it is sufficient for the points in X to represent
only the boundary of A. Squircular-CPP starts with fitting a
Minimum Bounding Rectangle (MBR) [17] to the points in
X . This is shown in Step A of Module 2 in the flowchart (Fig.
3). Henceforth, the shortened notation M2:StepX is used to
refer to step X of Module 2 in the flowchart (Fig. 3).

The MBR imposes an upper bound on the size of the
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Fig. 4: (Left) FG-squircular mapping. (Right) Mapping of a spiral path.

squircle (or the scaled squircle). Another benefit of using
MBRs is that if the area to be covered is large, then several
MBRs can be stacked around each other to cover the area
without overlap or gap between them. Additionally, the
MBR helps with generating the deformed spiral within the
bounding squircle. It defines the centroid of the squircle.
Without the MBR, finding the centroid of the squircle is
not trivial since the centroid of the bounding squircle is not
necessarily the centroid of the target area for coverage. The
spiral path may be allowed to exit the MBR to obtain a
smoother path, e.g. if there is a constraint on the smoothness
of the deformed spiral due to the type of robot.

C. Transforming and Scaling of the MBR and the Points

For convenience, the MBR is transformed such that it is
axis-aligned and centered at the origin (M2:StepB).

Let S-space (square) be defined as S = {(x,y) ∈R2
∣∣ |x| ≤

1, |y| ≤ 1} where x and y are coordinates in S. The MBR
is scaled along both axes to occupy the entire S-space
(M2:StepB). Let the scaled MBR and the scaled points within
this MBR be termed as MBR↑ and X↑, respectively. The
relevance of this scaling procedure will become clear in the
following subsections.

D. Fitting a Squircle

The scaling of the MBR helps with finding a bounding
squircle within the MBR↑ (M2:StepC). A squircle is an
intermediate shape between the square and the circle, as
shown in Fig. 5. A squircle (based on Fernandez-Guasti
squircle or FG-squircle in short) is defined as [18]:

x2 + y2− s2

k2 x2y2 = k2 (1)

where s∈ [0,1] is the squareness parameter, and k, analogous
to the radius of a circle, is the length from the centroid to
the point on the boundary that intersects the x or y axis
(considering axis-aligned squircle, centered at origin). As
shown in Fig. 5, s defines how close a squircle is to a square
or a circle. However, this closeness is not linear with respect
to the increase in the s value (as shown in Fig. 5).

s = 0.1 s = 0.5 s = 0.8 s = 1

Fig. 5: Squircles at varying values of s (for a constant value of k), and a
spiral path within each squircle.



The main contribution of the proposed algorithm is the
squircular shape fitting which enables generating a smoother
and shorter spiral path than the path generated through the
DSCPP algorithm presented previously in [7]. The spiral path
in Fig. 6(Left) is generated using the proposed Squircular-
CPP algorithm whereas the spiral in Fig. 6(Right) is gen-
erated using the DSCPP algorithm [7]. The spiral generated
using Squircular-CPP is clearly shorter and smoother for two
reasons: (i) the squircle is a more accurate representation of
the target area as opposed to an MBR (hence a shorter path is
needed); and (ii) as shown in Fig. 5, the closer the bounding
squircle is to a circle (i.e. the smaller the s value), then the
smoother and shorter is the generated spiral path since the
arithmetic spiral would need a lesser deformation to morph
into the shape of the squircle. More examples of spiral paths
generated through Squircular-CPP were shown in Fig. 1.

Given a set of points X↑ within the MBR↑, Squircular-CPP
can analytically fit an FG-squircle with minimum s value that
is axis-aligned with respect to MBR↑’s axes and that is upper
bounded in size by the MBR↑.

Rearranging Eq. (1) to make s the subject gives:

s =

√
(x2 + y2− k2)k2

x2y2 . (2)

For a given value of k, the squareness value s of the squircle
can be calculated by substituting the x and y coordinates of
a point b on the boundary of the squircle. In Squircular-CPP,
b is the farthest point, x f ∈ X↑, from the centroid.

The goal is to find the axis-aligned squircle with minimum
s value such that the farthest point, x f , from the centroid is
still within the squircle (i.e. the squircle is large enough to
cover the farthest point, but not larger). The point x f = x↑l∗ ∈
X↑ where l∗ is simply

l∗ = argmax
l∈{1,2,...,η}

‖x↑l − c‖ (3)

where c is the centroid of the S-space which is at the origin.
By definition, the MBR↑ would have a side length of 2

since it occupies the entire S-space. The bounding squircle
(henceforth referred to as BS↑), that fits the points X↑ in
MBR↑ shares boundary with the MBR↑ and would always
have a k value of 1 (half of MBR↑ side length). Thus, given
k = 1, the s value of BS↑ can be calculated from Eq. (2)
by substituting the x and y coordinates of x f . Once BS↑

is defined, a spiral path is generated within this BS↑ and
later scaled and transformed to the original size and pose
of the MBR (M2:StepE). If instead of complete coverage,
an above-threshold coverage (user-defined) is acceptable for
an application, then the path can be made smoother by

Squircular-SCPP DSCPP

Fig. 6: Comparing Squircular-CPP to DSCPP [7]

incrementally reducing the s value of the bounding squircle
while coverage is still above the user-defined threshold. Note
that reducing the s value does not reduce the size of the
bounding squircle significantly (since k is constant); however,
it can improve path smoothness considerably.

E. Deforming a Spiral Path into a Squircle

1) Determining the Appropriate Circle Size in O-Space:
The S-space (square) was previously defined as S = {(x,y)∈
R2
∣∣ |x| ≤ 1, |y| ≤ 1} where x and y are coordinates in S.

Similarly, let the O-space (circle) be defined as O = {(u,v)∈
R2|u2+v2≤ 1} where u and v are coordinates in O, as shown
in Fig. 4(Left).

A squircular mapping technique, named Fernandez-Guasti
squircular mapping (FG-squircular mapping) [18], is used to
map a non-uniform arithmetic spiral created within the O-
space to a deformed spiral within the S-space, as shown in
Fig. 4(Right). Using the FG-squircular mapping, given u and
v coordinates of a point, p, in O-space, the corresponding x
and y coordinates of p in S-space can be calculated [18]:

px = O2S(u,v) =
sgn(u,v)

v
√

2

√
u2 + v2−

√
(u2 + v2)(u2 + v2−4u2v2),

py = O2S(u,v) =
sgn(u,v)

u
√

2

√
u2 + v2−

√
(u2 + v2)(u2 + v2−4u2v2),

(4)
and conversely, for mapping from S-space to O-space:

pu = S2O(x,y) = x
√

x2 + y2− x2y2/
√

x2 + y2,

pv = S2O(x,y) = y
√

x2 + y2− x2y2/
√

x2 + y2.
(5)

Unlike DSCPP algorithm [7], the goal here is to find the
region of the O-space within which the arithmetic spiral will
be generated such that when mapped into the S-space it can
be made to occupy BS↑ (M2:StepD). This goal is achieved
using the shrunken FG-squircle (Eq. (6)).

Let k = s in Eq. (1), then the equation reduces to:

x2 + y2− x2y2 = s2 (6)

which is referred to as the shrunken FG-squircle in [18].
Using this equation, both the size and the squareness of the
squircle is controlled using the value of s. For s = 0.2 to 1
in steps of 0.2, the shrunken squircles shown in the S-space
(Fig. 4(Left)) are generated. Hence, the larger the s value,
the bigger the squircle and the closer it is to a square. Using
the FG-squircular mapping, this squircles map to the circles
generated in the O-space (Fig. 4(Left)), and vice versa.

The s values of these shrunken FG-squircles (in S-space)
are in fact the radii of the circles (in O-space) [18]. Thus,
a circle in the O-space with a radius of r would map to a
shrunken FG-squircle (in S-space) with s = r = k. Thus, the
spiral path is first generated within the circle of radius r = s
in the O-space where s equals to the s value of the BS↑. The
spiral path is then mapped to the shrunken FG-squircle in
the S-space. Since k = s for shrunken FG-squircle, then the
spiral needs to be scaled up by a factor of s to occupy the
BS↑ (M2:StepE).



2) Generating the Deformed Spiral Path: The rest of the
procedure for generating a spiral path is similar to DSCPP
[7]. One main modification is that, instead of deforming the
spiral path to occupy the entire S-space, the spiral path is
deformed to fit within the BS↑. Since the BS↑ will be scaled
back to fit within the original MBR, the final spiral path may
no longer be within a bounding squircle but rather within
an intermediate shape between the ellipse and the rectangle.
This process of scaling back needs a special treatment for
keeping the gaps between consecutive laps of the spiral to
be less than or equal to the maximum allowed gap while
ensuring that the path is not excessively longer than needed.

Let the maximum gap between consecutive laps of the
spiral path be denoted as gmax. As explained in Section IV-
B, the MBR (M2:StepB) is scaled to occupy the entire S-
space (M2:StepB). The resulting MBR was referred to as
MBR↑. This allows a bounding squircle, termed BS↑ above,
to fit the points in MBR↑ (M2:StepC). The gap gmax is scaled
similarly to become g↑. Finally, BS↑ is scaled to become the
shrunken squircle (M2:StepD); thus, the maximum gap is
scaled similarly to become g= s g↑ where s is the squareness
value of BS↑. Therefore, the spiral path is first generated
within the circle of radius r = s in the O-space and then
mapped to the shrunken squircle in the S-space (M2:StepD)
such that the gap between any two consecutive laps does
not exceed gmax and that the path length is not excessively
long when the spiral is scaled back to fit the original MBR
(M2:StepE). For details, readers are advised to refer to [7].

F. Task Execution

After generating the smooth coverage path using
Squircular-CPP, the task is executed (Module 3) through the
control of the robot to follow the coverage path. There are
numerous control strategies for various robots and applica-
tions; details are beyond the scope of this paper.

V. CASE STUDIES

Four case studies are presented to demonstrate and com-
pare the performance of Squircular-CPP algorithm. The
work in [4] has already proved, through analytical and
experimental studies, that “spirals become the most energy-
efficient because the robot can continuously move without
stopping and turning” as compared to square spiral paths and
boustrophedon paths (lawn-mover paths). Hence, the work in
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Fig. 7: (Left) Testing using a submersible pylon inspection robot (SPIR) [8]
developed in the Center for Autonomous Systems at UTS. (Middle) SPIR
in real-world environment. (Right) An example path using Squircular-CPP
where the map generation is discussed in [7].

this paper is complimentary with this respect and has been
implemented in a real system for marine growth removal,
as shown in Fig. 7. For this application, smooth spiral paths
have the additional benefit of reducing the prolonged local
exposure of the water jet on the pylon’s surface as a result
of sharp turns which can cause structural damage.

The smoothness of a spiral path generated through
Squircular-CPP depends on two factors: (i) the squareness
value s, and (ii) MBR’s aspect ratio (ratio of the width to the
height of the MBR). A visual demonstration of spiral paths
for increasing values of s and aspect ratio is shown in Fig.
8. Hence, in the following case studies, the performance of
Squircular-CPP is analyzed with respect to these two param-
eters. In doing so, both the path length as well as smoothness
are considered for the analysis. Furthermore, Squircular-CPP
is compared to two algorithms: (i) the DSCPP algorithm
[7] to assess the extent of improvements on the smoothness,
and (ii) the boustrophedon path since it is optimal in length
considering that the path is generated for an MBR.

Similar to the work in [9], the curvature is used for
quantifying smoothness. Suppose that the path is partitioned
evenly into ns small segments with a length ls (0.01 m in this
paper). The curvature of each segment is derived as [9]:

κ =
|∆ϑ j|

ls =
|ϑ j+1−ϑ j|

ls (7)

where ϑ j+1 and ϑ j are the start and end orientation of the
jth segment along the path. A smaller value of κ indicates
a smaller turn (a smoother path segment), and vice versa.

The work in [9] considers the average curvature of the
path. However, a path, such as a boustrophedon path, can
have many sharp turns and yet provide a relatively small
average curvature due to the straight line segments of the
path. Thus, in this work, the sum of undesirable turns above
a curvature threshold is considered. Let κ ′ be the curvature
threshold for a path segment. Then, from Eq. (7), the
maximum acceptable turn per path segment is ϑ max = κ ′ ls.
If κ ≤ κ ′ for a path segment, then the robot can smoothly
execute the path segment (i.e. benefit from the smoothness of
the path segment) otherwise the path segment is considered
as a sharp turn. The sum of excessive undesirable turns above
ϑ max indicates the extent of decrease in the smoothness of
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Fig. 8: Spiral paths generated through Squircular-CPP for increasing values
of the squareness value s and MBR aspect ratios.



Fig. 9: (Left) SoT value for paths generated through Squircular-CPP for
various κ ′ and squareness values. (Right) Percentage decrease in SoT
relative to DSCPP [7].

the path. This sum is termed as Sum over Threshold (SoT):

SoT=
ns−1

∑
j=1

({
0, if |ϑ j+1−ϑ j| ≤ ϑ max

|ϑ j+1−ϑ j|−ϑ max, otherwise

)
.

(8)
where ns is the total number of path segments. A smaller
value of SoT indicates a smoother path.

A. Case Study 1: Comparison with DSCPP

This case study is designed to assess the extent of im-
provements obtained through the proposed Squircular-CPP
algorithm relative to the DSCPP algorithm [7]. A 2 m by
2 m area is considered and paths are generated within the
area while setting the maximum gap between laps to gmax =
0.01 m. Results are shown in Fig. 9 where large number
of paths are generated with different squareness values and
curvature threshold, κ ′.

Figure 9(Left) show that as the squareness value decreases,
so does the SoT, which improves the smoothness of the path.
It also shows that setting a higher curvature threshold, κ ′,
leads to a smoother path (lower SoT value).

Figure 9(Right) shows the percentage decrease in SoT
value relative to the DSCPP algorithm. The Squircular-CPP
achieves up to 45% improvement (reduction in SoT). The
main reason for this improvements is that Squircular-CPP
fits a better shape with smoother boundary, and therefore the
deformed spiral path can be made smoother as it needs to
gradually deform to a smoother boundary shape rather than
an MBR. Better shape fitting can also reduce the path length,
as shown in later case studies.

B. Case Study 2: Comparison with Boustrophedon Path

The improvements in smoothness through Squircular-CPP
is shown relative to the boustrophedon path for the same
setup as in Case Study 1. The percentage decrease in SoT

Fig. 10: Percentage decrease in SoT relative to the boustrophedon path for
various κ ′ and squareness values.

Fig. 11: (Left) Percentage decrease in SoT relative to the boustrophedon
path when varying MBR aspect ratios (width fixed at 2 m) and κ ′. (Middle)
Percentage decrease in SoT for κ ′ = 40 deg/m. (Right) Percentage decrease
in SoT for κ ′ = 150 deg/m.

value relative to the boustrophedon path is shown in Fig.
10. For κ ′ values of greater than approx. 35 deg/m, the
Squircular-CPP algorithm performs significantly better in
terms of smoothness, particularly for lower values of s. This
is because as κ ′ is increased, more segments of the path
generated through Squircular-CPP fall below the threshold
whereas the sharp 90 degree turns of the boustrophedon
path remain well above the threshold. Once again, lower
squareness value improves the smoothness of the path.

C. Case Study 3: Effect of MBR’s Aspect Ratio

The ratio of the width to the height of the MBR (aspect
ratio) does affect the performance of the Squircular-CPP
algorithm. Figure 11(Left) shows what happens to the per-
centage decrease in SoT value relative to the boustrophedon
path when varying the aspect ratio (width is fixed at 2 m
while varying the height from 0 to 2 m). For aspect ratios of
2:1 to 2:2, Squircular-CPP outperforms boustrophedon path,
particularly for κ ′ values of greater than around 20 deg/m.

To construct the heatmap in Fig. 11(Left), for each pair of
κ ′ and aspect ratio values, the average of the SoT values
from all squareness values (0.01 to 1 in steps of 0.01)
is considered. Then, the percentage decrease in average
SoT (relative to the boustrophedon-based path) is calculated.
To see the effect of aspect ratio for a particular κ ′, two
example heatmaps are generated where in the first one (Fig.
11(Middle)) κ ′= 40 deg/m and in the second (Fig. 11(Right))
κ ′ = 150 deg/m. In general, a higher κ ′ value and a smaller
squareness value implies a smoother path.

D. Case Study 4: Comparisons with Respect to Path Length

The main objective in this paper is not to minimize
path length but rather to achieve smooth paths. However,
analyzing path length can provide more insight into the per-
formance of Squircular-CPP. Same as previous case studies,
maximum gap between laps is gmax = 0.01 m.

First, comparisons are made relative to the DSCPP and
the boustrophedon algorithms. Note that in both DSCPP
and boustrophedon algorithms, squircular shape fitting is not
used; hence, the entire MBR is covered. Results are shown in
Fig. 12(Left). Reducing the squareness value can improve the
path length by up to 45%̇ when compared to a path generated
through the DSCPP algorithm. For squareness values of 0.85
and lower, Squircular-CPP outperforms boustrophedon path
in terms of length and up to 20 % improvement is achieved.



Fig. 12: (Left) Comparison of Squircular-CPP relative to the DSCPP and
the boustrophedon algorithms in terms of path length. (Right) Percentage
decrease in length relative to boustrophedon path when varying MBR aspect
ratio (MBR width is fixed at 2 m).

Comparisons are also made relative to the boustrophedon
path by varying the aspect ratio of the MBR as shown
in Fig. 12(Right). Increasing the aspect ratio improves the
path length in Squircular-CPP, particularly for lower values
of squareness. However, for thin MBRs (aspect ratio of
around 2:1 to 2:0), the boustrophedon path is better in terms
of length, particularly for squareness values of close to 1.
Nonetheless, the work in [4] shows that “if a shorter route
contains several sharp turns, the robot may consume more
energy due to frequent decelerations, changes of directions,
and accelerations. A longer route may require less energy if
the robot does not have to accelerate often”. Note that the
boustrophedon path can still benefit from using squircular
shape fitting proposed in this paper to generate a shorter
path within the squircle rather than the MBR.

VI. CONCLUSION

The Squircular-CPP algorithm is developed with the aim
of achieving smooth coverage paths. The novelty of the
algorithm lies within the squircular shape fitting of the target
area which is not only simple, fast and analytical, but also
enables a smooth spiral path to be appropriately deformed
within the fitted shape. The Squircular-CPP algorithm starts
with fitting a minimum bounding rectangle (MBR) to the
target area. However, instead of deforming the arithmetic
spiral path to fit within the MBR, the aim is to fit it within
a shape that is closer to a circle (or ellipse) so as to obtain a
smoother spiral path. After appropriately scaling the MBR,
the best fit squircle, which is an intermediate shape between
the square and the circle, is determined analytically. The best
fit squircle within an MBR is considered as the squircle that
is closest to a circle while encompassing the target area. A
simple arithmetic spiral path is generated within a circle and
then deformed to fit within the squircle using Fernandez-
Guasti squircular mapping. Four case studies are presented
to validate the algorithm and to show its properties in terms
of smoothness and length.

Future work includes extending the algorithm to be ap-
plicable to multi-robot coverage and surfaces with com-
plex curvatures (i.e. three-dimensional coverage), performing
analysis based on comprehensive real-world experiments,
and incorporating task planning where areas to cover are
constrained by complex tasks including priorities [19].

VII. ACKNOWLEDGEMENTS

This work is supported in part by the Australian Research
Council (ARC) Linkage Project (LP150100935), the Roads
and Maritime Services of NSW, and the Centre for Au-
tonomous Systems at the University of Technology, Sydney.
Authors thank Dr. Andrew To and Dr. Khoa Le for their help
with implementation work in the SPIR system.

REFERENCES

[1] M. Hassan and D. Liu, “Simultaneous area partitioning and allocation
for complete coverage by multiple autonomous industrial robots,”
Autonomous Robots, vol. 41, no. 8, pp. 1609–1628, Dec 2017.

[2] R. Almadhoun, T. Taha, L. Seneviratne, J. Dias, and G. Cai, “A survey
on inspecting structures using robotic systems,” International Journal
of Advanced Robotic Systems, vol. 13, no. 6, pp. 1 – 18, Dec 2016.

[3] A. Khan, I. Noreen, and Z. Habib, “On complete coverage path
planning algorithms for non-holonomic mobile robots: Survey and
challenges.” Journal of Information Science & Engineering, vol. 33,
no. 1, pp. 101–121, Jan 2017.

[4] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. S. G. Lee, “Energy-efficient motion
planning for mobile robots,” in IEEE International Conference on
Robotics and Automation, vol. 5, April 2004, pp. 4344–4349.

[5] T.-K. Lee, S.-H. Baek, Y.-H. Choi, and S.-Y. Oh, “Smooth coverage
path planning and control of mobile robots based on high-resolution
grid map representation,” Robotics and Autonomous Systems, vol. 59,
no. 10, pp. 801 – 812, 2011.

[6] Y. H. Choi, T. K. Lee, S. H. Baek, and S. Y. Oh, “Online complete
coverage path planning for mobile robots based on linked spiral
paths using constrained inverse distance transform,” in International
Conference on Intelligent Robots and Systems, 2009, pp. 5788–5793.

[7] M. Hassan and D. Liu, “A deformable spiral based algorithm to smooth
coverage path planning for marine growth removal,” in International
Conference on Intelligent Robots and Systems, 2018, pp. 1913–1918.

[8] J. Woolfrey, D. Liu, and M. Carmichael, “Kinematic control of an
autonomous underwater vehicle-manipulator system (AUVMS) using
autoregressive prediction of vehicle motion and model predictive
control,” in International Conference on Robotics and Automation
(ICRA), May 2016, pp. 4591–4596.

[9] T. K. Lee, S. H. Baek, S. Y. Oh, and Y. H. Choi, “Complete coverage
algorithm based on linked smooth spiral paths for mobile robots,” in
International Conference on Control Automation Robotics Vision, Dec
2010, pp. 609–614.

[10] F. Balampanis, I. Maza, and A. Ollero, “Spiral-like coverage path plan-
ning for multiple heterogeneous UAS operating in coastal regions,” in
International Conference on Unmanned Aircraft Systems, June 2017,
pp. 617–624.

[11] J. Backman, P. Piirainen, and T. Oksanen, “Smooth turning path gener-
ation for agricultural vehicles in headlands,” Biosystems Engineering,
vol. 139, pp. 76 – 86, 2015.

[12] E. Gonzalez, P. Aristizabal, and M. Alarcon, “Backtracking spiral
algorithm: a mobile robot region filling strategy,” in International
Symposium on Robotics and Automation, 2002, pp. 261–266.

[13] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara, “BSA:
A complete coverage algorithm,” in IEEE International Conference
on Robotics and Automation, April 2005, pp. 2040–2044.

[14] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp.
1258 – 1276, 2013.

[15] Z. Ren, J. Yuan, and W. Liu, “Minimum near-convex shape de-
composition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 10, pp. 2546–2552, Oct 2013.

[16] S. Asafi, A. Goren, and D. Cohen-Or, “Weak convex decomposition by
lines-of-sight,” Computer Graphics Forum, vol. 32, no. 5, pp. 23–31,
2013.

[17] D. Chaudhuri and A. Samal, “A simple method for fitting of bounding
rectangle to closed regions,” Pattern Recognition, vol. 40, no. 7, pp.
1981 – 1989, 2007.

[18] C. Fong, “Analytical methods for squaring the disc,” arXiv preprint
arXiv:1509.06344, 2015.

[19] C. Yoo, R. Fitch, and S. Sukkarieh, “Online task planning and control
for fuel-constrained aerial robots in wind fields,” The International
Journal of Robotics Research, vol. 35, no. 5, pp. 438–453, 2016.


	20xx IEEE
	67eca85e-bd75-445d-bf58-ae9b1593dfaa
	INTRODUCTION
	RELATED WORKS
	PROBLEM DEFINITION
	THE SQUIRCULAR-CPP ALGORITHM
	Convex Decomposition
	Fitting an MBR
	Transforming and Scaling of the MBR and the Points
	Fitting a Squircle
	Deforming a Spiral Path into a Squircle
	Determining the Appropriate Circle Size in O-Space
	Generating the Deformed Spiral Path

	Task Execution

	CASE STUDIES
	Case Study 1: Comparison with DSCPP
	Case Study 2: Comparison with Boustrophedon Path
	Case Study 3: Effect of MBR's Aspect Ratio
	Case Study 4: Comparisons with Respect to Path Length

	CONCLUSION
	ACKNOWLEDGEMENTS
	References


