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DOB-Net: Actively Rejecting Unknown Excessive Time-Varying
Disturbances

Tianming Wang1, Wenjie Lu1,2, Zheng Yan3 and Dikai Liu1

Abstract— This paper presents an observer-integrated Rein-
forcement Learning (RL) approach, called Disturbance OB-
server Network (DOB-Net), for robots operating in environ-
ments where disturbances are unknown and time-varying,
and may frequently exceed robot control capabilities. The
DOB-Net integrates a disturbance dynamics observer network
and a controller network. Originated from conventional DOB
mechanisms, the observer is built and enhanced via Recurrent
Neural Networks (RNNs), encoding estimation of past values
and prediction of future values of unknown disturbances in
RNN hidden state. Such encoding allows the controller generate
optimal control signals to actively reject disturbances, under
the constraints of robot control capabilities. The observer and
the controller are jointly learned within policy optimization
by advantage actor critic. Numerical simulations on position
regulation tasks have demonstrated that the proposed DOB-
Net significantly outperforms a conventional feedback controller
and classical RL algorithms.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have become
vital assets in search and recovery, exploration, surveillance,
monitoring, and military applications [1]. For large AUVs
in deep water applications, the strength and changes of
external wave and current disturbances are negligible to the
AUVs, due to their considerable size and thrust capabilities.
While small AUVs are required for some shallow water
applications, like bridge pile inspection [2], where the distur-
bances coming from the turbulent flows may frequently ex-
ceed AUVs’ thrust capabilities. These unknown disturbances
inevitably bring adverse effects and may even destabilize
robots [3]. Thus this paper studies an optimal control prob-
lem of robots subject to excessive time-varying disturbances,
and presents an observer-integrated RL solution.

RL [4] is a trial-and-error method that does not require an
explicitly system model, and can naturally adapt to noises
and uncertainties in the real system. However, the excessive
disturbances are not appropriate to be regarded as noises
any more, since AUV’s state transition is heavily affected

This work was supported in part by the Australian Research Council
Linkage Project (LP150100935), the Roads and Maritime Services of NSW,
and the Centre for Autonomous Systems at the University of Technology
Sydney.

1Tianming Wang, Wenjie Lu and Dikai Liu are with Centre
for Autonomous Systems, University of Technology Sydney, Ultimo,
NSW 2007, Australia tianming.wang@student.uts.edu.au
{wenjie.lu,dikai.liu}@uts.edu.au

2Wenjie Lu is with School of Mechanical Engineering and Automation,
Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055,
China wenjie.lu@outlook.com

3Zheng Yan is with Centre for Artificial Intelligence,
University of Technology Sydney, Ultimo, NSW 2007, Australia
yan.zheng@uts.edu.au

Disturbance 
Dynamics 
Observer

Controller

AUV Dynamics

action

state

DOB-Net

disturbance 
behaviour 

embedding

Disturbances

Environment

𝑡

𝑑

𝑢

𝑢

Fig. 1. Working flow of the DOB-Net (u and u are control limits).

by the external disturbances, thus violating the assumption
of Markov Decision Process (MDP).While considering the
time-varying characteristics of the current and wave distur-
bances, if future disturbances can be predicted, RL may be
able to generate optimal controls.

Conventional DOB [5] and Disturbance-Observer-Based
Control (DOBC) [6], [7] have been applied in various
industrial sectors. The main objective is to estimate the
disturbances, then produce controls to compensate their
influence. However, conventional DOBC does have some
limitations when solving our problem. The first limitation is
that DOB normally needs an accurate system model, which is
usually unavailable for underwater vehicles due to complex
hydrodynamics. In this case, model uncertainties are lumped
with external disturbances, and then estimated by DOB
together. Thus, the original properties for some disturbances,
such as harmonic ones, are changed. Furthermore, even with
an sufficiently accurate estimate of disturbances at current
timestep, the optimal control solution is still unreachable,
since disturbances exceeding control constraints cannot be
well rejected only through feedback regulation. Thus, AUV
behaviors need to be optimized over a future time horizon
considering time correlation of disturbances.

This paper proposes a novel RL approach called DOB-Net,
which enables integrated learning of disturbance dynamics
and an optimal controller, for current and wave disturbance
rejection control of AUVs in shallow and turbulent water,
as shown in Fig 1. The DOB-Net consists of a disturbance
dynamics observer network and a controller network. The
observer network is built and enhanced via RNNs, through
imitating conventional DOB mechanisms. But this network is
more flexible, since it encodes the prediction of disturbances
in RNN hidden state, instead of only estimating the current
value of disturbances. Also, the observer is more robust to
model uncertainties and rapidly time-varying characteristics
of disturbances. Based on the encoded disturbance predic-



tion, the controller network is able to actively reject the
unknown disturbances. The observer and the controller are
jointly learned within policy optimization by advantage actor
critic. This integrated learning may achieve an optimized
representation of observer outputs, compared with traditional
hand-designed features. The policy is trained using simulated
disturbances consisting of multiple sinusoidal waves, and
evaluated using both simulated disturbances and collected
disturbances, the latter is collected in a water tank with
artificial waves.

In this paper, related work is presented in Section II. Sec-
tion III introduces problem formulation. Section IV provides
the detailed description of the DOB-Net. Then, Section V
presents validation procedures and result analysis. Some po-
tential future improvements are discussed in the last section.

II. RELATED WORK

A. Feedback and Predictive Control

In the early development of disturbance rejection con-
trol, feedback control strategies are used to suppress the
unknown disturbances [8]–[10]. Then, disturbance estima-
tion and attenuation methods through adding a feedforward
compensation term have been proposed and practiced, such
as DOBC [5], [6]. However, these methods are built on the
assumption of bounded disturbances which should be small
enough, thus fail to guarantee stability under disturbances
exceeding control constraints [11].

To this end, Model Predictive Control (MPC) [12] is
often applied due to its constraint handling capacity through
optimizing plant behaviour over a certain time horizon [11].
The MPC requires a prediction model of the system to
optimize future behaviour, this model includes not only the
robot dynamics, but also the predicted disturbances over
next optimization horizon. Thus, a compound control scheme
consisting of DOB and MPC (DOB-MPC) [13] has been
developed. However, its performance heavily relies on the
accuracy of given system model, and the requirement for
online optimization at each timestep leads to a low com-
putational efficiency. Besides, such separated modeling and
control optimization process might not be able to produce
models and controls that jointly optimize robot performance,
as evidenced in [14]. In contrast, the DOB-Net uses neural
networks to construct both the observer and the controller,
achieving model-free control, high run-time efficiency as
well as a joint optimization of the observer and the controller.

B. Classical RL

RL has drawn a lot of attention in finding optimal con-
trollers for systems that are difficult to model accurately.
Recently, deep RL algorithms based on Q-learning [15],
policy gradients [16], and actor-critic methods [17] have been
shown to learn complex skills in high-dimensional state and
action spaces. RL generally considers stochastic systems of
the form xt+1 = f (xt ,ut)+ε [18], with state variables x∈RD,
control signal u ∈ RK and i.i.d. system noise marginalized
over time ε ∼N (0,E), where E = diag

(
σ2

1 , . . . ,σ
2
D
)
. While

in our case, the current and wave disturbances should be

regarded as functions of time instead of random noises,
refer to (1), due to its large amplitudes and time-varying
characteristics, as evidence in Section V.

C. History Window Approach

When using RL to deal with unknown disturbances, the
problem cannot be defined as a MDP, since the transition
function does not only depend on the current state and
action, but also heavily on the disturbances. The history
window approaches [19] attempt to resolve the hidden state
by making the selected action depend not only on the current
state, but also on a fixed number of the most recent states
and actions. Wang et al. [20] applied this approach to handle
the external disturbances of an AUV through characterizing
the disturbed AUV dynamics model as a multi-order Markov
chain xt+1 = fh(Ht ,xt ,ut), and assuming the unobserved
time-varying disturbances and their prediction over next
planning horizon are encoded in state-action history of
fixed length Ht = {xt−N ,ut−N , · · · ,xt−1,ut−1}. However, it is
difficult to determine an optimal length of the history. Wang
et al. [20] considered the history length as a hyperparameter
that was statistically optimized during training.

D. Recurrent Policy

Due to the difficulty in determining optimal history length
through history window approach, RNN is then utilized to
automatically learn how much past experience should be
explored to achieve optimal performance. Using RNN to
represent policies is a popular approach to handle partial
observability and solve tasks that require memory [21]–
[23]. The idea being that the RNN will be able to retain
information from observations and actions further back in
time and incorporate this information into predicting better
actions and value functions and thus performing better on
tasks that require long term planning. Compared with the
recurrent RL approach, the contributions of DOB-Net lie in
the exploration and application of the architectural similari-
ties between Gated Recurrent Unit (GRU) and conventional
DOB, and then the ability to encode the prediction of
disturbance dynamics function.

III. PROBLEM FORMULATION

A. System Description

Our 6 Degree Of Freedom (DOF) AUV is designed to
be sufficiently stable in orientation even under strong distur-
bances, thanks to its large restoring forces. Thus, we only
consider the disturbance rejection control of the vehicle’s 3-
DOF position, and assume its orientation is well controlled
all the time. However, the framework can be easily extended
to 6-DOF case, where a larger network and longer training
time may be required. And it is also applicable for other
kinds of mobile robots subject to excessive time-varying
disturbances, such as quadrotors [24], gliders, and surface
vessels, but the effectiveness needs further investigation.



The AUV model can be considered as a floating rigid body
with external disturbances, which can be represented by

M(q)q̈+G(q, q̇) = u+d(t)
G(q, q̇) =C(q, q̇)q̇+D(q, q̇)q̇+g(q) , (1)

where M(q) ∈ R3×3 is the inertia matrix, C(q, q̇) ∈ R3×3 is
the matrix of Coriolis and centripetal terms, D(q, q̇)∈R3×3 is
the matrix of drag force, g(q)∈R3 is the vector of the gravity
and buoyancy forces, q, q̇, q̈ ∈ R3 represent replacements,
velocities and accelerations of the AUV, u ∈ R3 represents
the control forces, d(t) ∈R3 is the time-varying disturbance
forces, and the variation of d(t) with time from the past to
the future is the disturbance dynamics, which is exactly what
the observer network tries to produce. The AUV dynamic
model is assumed to have fixed parameters, the model and
the parameters are not known. In our case, we assume that
the magnitudes of the disturbances will exceed the AUV
control limits u ∈R3 and u ∈R3, but are constrained within
reasonable ranges, ensuring the controller is able to stabilize
the AUV in a sufficiently small region.

B. Problem Definition

In RL, the goal is to learn a policy that chooses actions ut
at each timestep t in response to the current state xt , such that
the total expected sum of discounted rewards is maximized
over all time. The state of the robot consists of position as
well as the corresponding velocities x = [qT q̇T ]T ∈X ∈R6.
The action includes the control forces u ∈U ∈ R3. At each
timestep, the system transitions from xt to xt+1 in response
to the chosen action ut and the transition dynamics function
f : X ×U →X , collecting a reward rt according to reward
function r (xt ,ut) = xT

t Qxt + uT
t Rut , where Q ∈ R6×6 and

R ∈ R3×3 represent weight matrices. The discounted sum
of future rewards is then defined as ∑

T−1
t ′=t γ t ′−tr (xt ′ ,ut ′),

where γ ∈ [0,1] is a discount factor that prioritizes near-term
rewards over distant rewards [25].

IV. METHODOLOGY

The underwater disturbances present great challenges for
stabilization control due to its excessive amplitudes as well
as rapidly time-varying characteristics. In this section, a
conventional DOB is first compared with a GRU, the re-
sults show some similarities in the structure of processing
hidden information. Thus, an enhanced observer network for
excessive time-varying disturbances is designed using GRUs,
encoding the disturbance dynamics into GRU hidden state. A
following controller network is then built upon this encoding
in order to generate optimal controls.
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Fig. 2. Architecture of DOB and GRU.

A. Conventional DOB

The basic idea of conventional DOB is to estimate current
disturbance forces based on robot state and executed controls,
its formulation is proposed as

ẏ =−L(q, q̇)y+L(q, q̇)(G(q, q̇)− p(q, q̇)−u)
d̂ = y+ p(q, q̇)

, (2)

where d̂ ∈ R3 is the estimated disturbances, y ∈ R3 is
the internal state of the nonlinear observer, p(q, q̇) is the
nonlinear function to be designed, and L(q, q̇) is the DOB
gain. It has been shown in [5] that DOB is globally asymp-
totically stable by choosing L(q, q̇)= diag{c,c}, where c> 0.
The convergence and the performance of the DOB have
been established for slowly time-varying disturbances and
disturbances with bounded rate in [26]. A discrete version
of DOB is also provided (illustrated in Fig. 2(a))

ỹt = G(xt)− p(xt)−ut−1
yt = (1−L(xt)dt)yt−1 +L(xt)dtỹt

d̂t−1 = yt−1 + p(xt)
. (3)

B. Gated Recurrent Unit (GRU)

The architecture of GRU [27] is shown in Fig. 2(b). The
formulations are given below:

zt = σ (Wz [ht−1,st ]+bz)
rt = σ (Wr [ht−1,st ]+br)
h̃t = tanh(Wh [rt ◦ht−1,st ]+bh)
ht = (1− zt)◦ht−1 + zt ◦ h̃t

, (4)

where st is the input vector, ht is the output vector, zt is
the update gate vector, rt is the reset gate vector, W and b
are the weight matrices and bias vectors, σ and tanh are
the activation functions (sigmoid function and hyperbolic
tangent). The operator ◦ denotes the Hadamard product.

C. DOB-Net

The DOB-Net is constructed based on classical actor-critic
architecture. As described in Fig. 2(a) and Fig. 2(b), the DOB
and GRU have a similar architecture, especially the part in
the red box. yt of DOB acts as the hidden state, similar
to the role of ht in GRU, which preserves past processed
information. In order to imitate the function of DOB, a GRU
is first employed to process the state-action pair [xt ,ut−1].
Then, fully connected layers are required to further extract
embedding of estimated disturbances d̂t−1. After disturbance
estimation, the observer network can be further enhanced
through feeding this embedding into another GRU, in order
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Algorithm 1: DOB-Net - pseudocode for each thread
Assume global params θ , θv and thread params θ ′, θ ′v
Initialize global counter T =0 and thread counter t=1
repeat

Reset gradients: dθ ← 0 and dθv← 0
Synchronize parameters θ ′ = θ and θ ′v = θv
tstart = t
Get state xt , last action ut−1, last hidden state ht−1
repeat

Sample ut according to π (ut |xt ,ut−1,ht−1;θ ′),
receive ht

Perform ut , receive rt and xt+1
t← t +1 and T ← T +1

until terminal xt or t− tstart == tmax;

R =

{
0 for terminal xt
V (xt ,ut−1,ht−1;θ ′v) for non-terminal xt

for i ∈ {t−1, . . . , tstart} do
R← ri + γR
Accumulate gradients wrt θ ′ : dθ ←
dθ +∇θ ′ logπ (ui|xi,ui−1,hi−1;θ ′)(R−
V (xi,ui−1,hi−1;θ ′v))

Accumulate gradients wrt θ ′v : dθv←
dθv +∂ (R−V (xi,ui−1,hi−1;θ ′v))

2 /∂θ ′v
end
Perform update of θ , θv using dθ , dθv

until T > Tmax;

to encode a sequence of past estimated disturbances. The
hidden state of the second GRU ht is supposed to represent
the disturbance dynamics. It can then be combined with the
current state xt , becoming the actual inputs of the controller
network. One design parameter of the DOB-Net is the
embedding dimension of d̂t−1. In this paper, 3-dimension (the
dimension of disturbances) and 64-dimension (the dimension
of RNN hidden state) are chosen and compared in simulation.
Such comparison shows the flexibility of neural networks
after building observer from GRU.

Training: Advantage Actor Critic (A2C) [17] is a con-
ceptually simple and lightweight framework for RL that
uses synchronous gradient descent for optimization of neural
network controllers. The algorithm synchronously execute
multiple agents in parallel, on multiple instances of envi-
ronment. This parallelism also decorrelates the agents’ data
into a more stationary process, since at any given time-step
the parallel agents will be experiencing a variety of different
states. Our algorithm is developed in A2C style. Pseudocode
of the DOB-Net is shown in Algorithm 1. Each thread
interacts with its own copy of environment. The disturbances
are also different in each thread, and each of them are
randomly sampled. We found this setting helps accelerate
the convergence of learning and improve performance.

V. SIMULATION EXPERIMENTS

A. Simulation Setup

A position regulation task is simulated to test our ap-
proaches. The simulated AUV has the mass m = 60 kg with
the size of 0.8×0.8×0.25 m3. Only positional motion and
control are considered, thus the AUV has a 6-dimensional
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Fig. 4. Example disturbances in X, Y and Z directions, (a) small simulated
disturbances; (b) large simulated disturbances; (c) collected disturbances.

state space and a 3-dimensional action space. The control
limits |u|= |u|= [120N 120N 120N]T . Each training episode
contains 200 steps with 0.05s per step. In each episode, the
robot starts at a random position with a random velocity, and
it is controlled to reach a target position and stay within a
region (refer to as converged region) thereafter.

In these experiments, the algorithms are trained using
simulated disturbances, and tested using both simulated
disturbances and collected disturbances. The simulated dis-
turbances are constructed as a superposition of multiple
sinusoidal waves (three in our case) with different ampli-
tudes, frequencies and phases. Two different scenarios are
considered, one has close or slightly excessive amplitudes
(around 100-120% of control limits), the other one has
larger amplitudes (130-150% of control limits). Examples
of the simulated disturbances are given in Fig. 4 (a) and
(b). Our purpose is to enable the trained policy to deal with
unknown time-varying disturbances, thus their amplitudes,
frequencies and phases are randomly sampled from the given
distributions in each training episode. In order to further
validate the efficacy of the proposed algorithms, we also
collected the current and wave disturbance data in a water
tank using wave generator, as shown in Fig. 4 (c). The
data is collected through an onboard Inertial Measurement
Unit (IMU) of an unactuated AUV, the measured linear
accelerations are mapped to forces, which can be assumed
as the disturbances. We notice that the amplitudes of the
collected disturbances are not constrained within the ranges
seen during training, leading to a more challenging scenario.

Ten different approaches for disturbance rejection control
are tested and compared:

(1) Robust Integral of Sign Error (RISE) Control [28]
(2) DOBC
(3) A2C
(4) History Window A2C with state history (HWA2C-x)
(5) HWA2C with state-action history (HWA2C-xu)
(6) Recurrent A2C with state history (RA2C-x)
(7) RA2C with state-action history (RA2C-xu)
(8) DOB-Net (n = 3)
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(9) DOB-Net (n = 64)
(10) Trajectory Optimization

Notice that, among these methods, the trajectory optimization
assumes the full knowledge of the disturbances over the
whole episode is given in advance, while all other algo-
rithms deal with unknown disturbances. The comparison is
obviously not fair, the trajectory optimization is used only
to provide an optimal performance under ideal conditions,
it can be regarded as an informal upper bound for all the
algorithms. Our goal is to narrow the gap between the
proposed algorithm and the upper bound. RISE control is a
conventional feedback controller; HWA2C applies the history
window approach into the A2C framework, the used window
length is 10 timesteps, which is 0.5s in our simulation setup;
and RA2C employs RNNs to deal with the past states and
actions. The applied A2C framework employs a parallel
training mode, 16 agents are used at the same time, the
equivalent real-world training time for each agent is 43.4
hours. In the remaining part of this section, we first evaluate
the training process of different algorithms, then test and
compare the control performance among them using either
the simulated disturbances or the collected disturbances.

B. Training and Test Results on Simulated Disturbances

Fig. 5 shows the change of cumulative reward over time
during training. But the training reward is not sufficient to
compare the performance among different algorithms, we are
also interested in state distribution and bounded response (i.e.
converged region) of the AUV disturbed by flows. As shown
in Fig. 6, the box plot is used to represent and compare the
distribution of the AUV’s distance from target during last
100 steps of each episode among different algorithms.

It is clear both the history window policies and the
recurrent policies perform better than the classical RL policy
(A2C) and the conventional control schemes (RISE and
DOBC), which means considering history information does
improve the disturbance rejection capability. When only
small disturbances occur, different approaches to use the
history information have nearly the same results. While if
the disturbances become larger, the recurrent policies achieve
better results compared with the history window policies,
proving that RNN is able to utilize the history information
more efficiently than naively combining past states and
actions into policy input space. Furthermore, including past
actions as additional input besides states yields performance
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Fig. 6. Distribution of distance from target during last 100 steps, (a) small
simulated disturbances (amplitude between 100-120% of control limits);
(b) large simulated disturbances (amplitude between 130-150% of control
limits).

improvement for both HWA2C and RA2C. The DOB-Net
achieves the best performance among all these algorithms,
using larger embedding dimension (n = 64) of disturbance
estimate produces higher cumulative reward and smaller
movement range. We believe enlarging the embedding di-
mension of disturbance estimate can provide better represen-
tation of disturbance dynamics. Transforming this embedding
from a 64-dimensional variable to a 3-dimensional variable
may cause loss of information. However, even using the best
RL algorithms we mentioned so far, the control performance
still has a large gap from the trajectory optimization solution.
There is still room for further improvements.

In addition, it is obvious that stronger disturbances lead
to worse performance. But we also found larger amplitude
range of disturbances gives closer performance between the
DOB-Net and the optimal approach (the ratio of medians
between the DOB-Net and the trajectory optimization is
502.31% and 186.65% respectively for small and large
simulated disturbances). This phenomenon might result from
the optimal controls for different disturbance patterns with
large amplitudes tend to be more similar than those with
small amplitudes, thus it is easier for RL to learn a near-
optimal policy under larger disturbance amplitudes.

The 3D trajectories of these algorithms subject to large
simulated disturbances are compared in Fig. 7. The red ball
represents the AUV’s maximum distance from target during
last 50 steps, called converged region. According to this
region, we can see that the AUV is difficult to achieve
satisfactory bounded response using either conventional con-
troller (RISE and DOBC) or classical RL (A2C). While the
proposed DOB-Net can significantly narrow the converged
region. Using the DOB-Net, the AUV can quickly navigate
to the target and stabilize itself within a distance of 0.493m
from the target thereafter. However, there is still an obvious
gap between the DOB-Net and the optimal trajectory.

C. Test Results on Collected Disturbances
Besides the simulated disturbances, we also use collected

current and wave disturbances (as shown in Fig. 4 (c)) for
testing. Note the collected data is only used for testing, no
retraining is required. The DOB-Net still has satisfactory
performance on real-world disturbance scenarios and out-
performs all the other algorithms, which proves the practical
effectiveness of the DOB-Net. However, the converged re-
gion of all the competitors become larger compared with



(a) RISE (b) DOBC (c) A2C

(d) HWA2C-xu (e) RA2C-xu (f) DOB-Net

(g) Trajectory Optimization

Fig. 7. 3D trajectories with large simulated disturbances (R is the radius of the converged region). Note the trajectory optimization assumes the disturbance
dynamics is known in advance, thus provides the ideal performance.

the simulated case, and the performance between the DOB-
Net and the optimal approach gets less closer (the ratio of
medians between the DOB-Net and the trajectory optimiza-
tion increases to 264.88%, with respect to 186.65% when
using large simulated disturbances). The reason behind is that
the collected disturbances are more diverse and complicated,
thus have a wider range of amplitudes compared with the
simulated case. The proposed algorithms may not be capable
of handling such unseen scenarios optimally. This gives
rise to another research question, which is to deal with
disturbances with a wider range of parameters based on
training on small range of parameters. This may require the
technique of transfer learning [29].

VI. CONCLUSION & FUTURE WORK

This paper proposes an observer-integrated RL approach
called DOB-Net, for mobile robot control problems under
unknown excessive time-varying disturbances. A disturbance
dynamics observer network employing RNNs has been used
to imitate and enhance the function of conventional DOB,
which produces the embedding of disturbance estimation
and prediction. A controller network is designed using the
observer outputs as well as current state as inputs, to generate
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Fig. 8. Distribution of distance from target with collected disturbances.

optimal controls. Multiple control and RL algorithms have
been tested and compared on position regulation tasks using
both simulated disturbances and collected disturbances, the
results demonstrate that the proposed DOB-Net does have a
significant improvement for the disturbance rejection capac-
ity compared to existing methods.

Currently, the test disturbances are collected in a water
tank using wave generator, we plan to seek for the dis-
turbance data from open water environments with natural
current and wave for further testing. Also, we have noticed
that the performance of the DOB-Net is worse using the
collected disturbances, due to its more complex and diverse
dynamics. An interesting future work is to investigate the
usage of transfer learning in dealing with real world current
and wave disturbances when simulated data and only a
small amount of collected data are available. In addition,
the deployment of this method on real-world robotic systems
requires future investigation, where the low sample efficiency
of generic model-free RL might be a problem. Some model-
based approaches are necessary to overcome the constraints
of real-time sample collection in the real world.

Fig. 9. 3D trajectories with collected disturbances (R is the radius of the
converged region).
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