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Using induced UV attenuation across a twisted fibre 
asymmetric core drawn from a 3D printed preform, 
linear fibre Bragg gratings are produced on one side of 
the core. By removing the twist, a helical grating with a 
period matching the twist rate is produced. Balancing the 
rate with the polarisation beat length in a form 
birefringent fibre allows the production of a combined 
rocking filter and fibre Bragg grating device with tunable 
properties. Direct observation of the fibre grating 
dispersion within the rocking filter rejection band is 
possible. © 2019 Optical Society of America 

http://dx.doi.org/10.1364/OL.99.099999 

By pre-twisting a birefringent fibre it is possible to balance 
and match optical losses of each polarisation eigenstate 
creating an effective zero birefringence. In this way, phase 
shifted gratings can in principle be written that have no 
intrinsic splitting, a method previously utilised to remove 
intrinsic birefringence in conventional photosensitive rare-
earth doped germanosilicate optical fibres for optimized 
distributed feedback (DFB) fibre lasers [1,2]. Notably, it was 
a simple method to remove polarisation hole burning and 
subsequent laser instability that arises from intrinsic form 
birefringence existing in all fibres. Those results 
demonstrated the principle worked well with commercial-
ready CW 244 nm laser writing of fibre Bragg gratings 
(FBG). Despite the weakly absorbed CW 244 nm light 
generally producing very little intrinsic birefringence (Δn < 
10-6, depending on [GeO2]), it is commensurate with existing 
form birefringence in uniform low loss fibres. The small but 
finite induced twisting is thought to arise predominantly 
from defect and/or interfacial stress anisotropy can be used 
to compensate weak form birefringence directly. This allows 
permanent birefringence removal from grating devices with 
untwisting.  

   The method was instrumental in the successful 
demonstration of ultra-narrow linewidth DFB fibre lasers. In 
this work, we go further to demonstrate the novel production 
of helical gratings in fibres that have higher form 
birefringence arising from an initial strong core asymmetry 
combined with the greater induced index asymmetry from 
pulsed UV light.  
   Penetration across a germanosilicate core using pulsed 193 
nm [3,4] is significantly less than at 244 nm for reasons that 
involve two-step excitation paths [5]. At higher intensities, 
these lead to localized index change at the core cladding 
interfaces that can generate, within a uniform fibre, 
significant form birefringence compared to UV CW light. 
This can be exploited by matching the twist rate with the 
induced birefringence beat length such that it makes both 
eigenstates degenerate through cross-coupling, then the twist 
period, Λτ (>> ΛB) will be superimposed and locked onto the 
grating with Bragg period, ΛΒ, after the fibre twist is relaxed 
or removed. Under such a condition, it should be possible to 
produce a long period rocking filter [6,7] superimposed on 
the grating profile – its 1st order (m = 1) spectral position is 
then related to the wavelength, λ, dependent birefringence 
B(λ):  

                                     λ = ΛτB(λ)                                      (1) 

Figure 1 summarizes the concept. It can be greatly enhanced 
using a pre-existing high asymmetry in the fibre core profile.  
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   Fig. 5. By fine tuning the degree of twist in the setup shown in Fig. 1, the rocking filter can be shifted over the fibre Bragg grating bandgap to optimize the notch transmission peak to floor signal within the rocking filter rejection band - (a) to (b) to (c) to (d). When overlapping spectrally, this improves polarization cross-coupling around the transmission notch, including the side cladding mode grating resonances at shorter wavelengths, and demonstrates tunability. This is due to the phase spoiling the grating and side resonance dispersion profile introduces. 
   A large induced attenuation around the grating spectrum 
reflects high core asymmetry so that when unwound, the 
localised UV induced changes introduce a broadband, flat 
loss around the grating. This is a combination of the grating 
asymmetry along with grating twist as the fibre twist is 
relaxed, leading to a periodic coupling of the two 
polarization eigenstates – a rocking filter is superimposed on 
the Bragg grating. From equation (1), the central wavelength 
of this rocking filter is dependent on the twist period, Λτ, the 
coupling order, m, and the wavelength dependent 
birefringence B(λ):  ߣఛ =  ஃ೟௠  ሻ                                     (3)ߣሺܤ

However, those wavelengths that interact with the fibre 
Bragg grating experience resonance delays, or a dispersive 
time, and therefore a phase delay so the condition in 
equation (3) is not met over the grating bandgap. At the 
point where the rocking filter phase matching is no longer 
achieved, the rocking filter cross coupling from one 
polarization to the other is avoided and the signal not 
blocked by the in-line polarizers. This leads to a 
transmission peak notch within the rocking filter bandwidth, 
shown in more detail in Figure 5. Similarly, this behavior is 
observed at the shorter wavelength Bragg cladding 
resonances. Further, it predicts that there should be no 
transmission peak in the centre of the fibre grating and 
cladding resonances because there is no dispersion at that 
point – and this is observed as an narrow rejection notch 
within the transmission band. What this physically means is 
that there is a rocking filter induced broad rejection band of 
one polarisation state and a narrower suppression of this 
polarisation rejection in the centre due to the fibre grating 

dispersion. An ultranarrow polarisation notch within the 
bandgap is also present – quite a complicated polarisation 
distribution in the spectra is created with a relatively simple 
grating combination. This can be extended by designing 
complex fibre Bragg grating functions such as chirped 
gratings, sample gratings and more. 
   Figure 5(c) shows when the rocking filter spectrum exactly 
overlaps the FBG spectrum. Further optimization in both 
signal-to-noise and rocking filter bandwidth can be locked in 
once the ideal conditions are implemented initially. When 
the rocking filter and Bragg grating wavelengths, λτ, λB are 
equal:  

ఛߣ  = ஻ߣ  =  2݊ Λ஻ =  ஃ೟௠  ሻ                     (3)ߣሺܤ
Rearranging for the lowest rocking filter order m = 1 and 
minimizing the twist over Λτ = 1 cm to obtain full rotation, 
the minimum birefringence, B(λ), can be estimated:  ܤሺߣሻ = ଶ௡തஃಳஃഓ >  1.45 × 10ିସ                       (4) 

Given the presence of cross-coupling increases with twist 
before degeneracy, this figure is a measure of elliptical 
birefringence. As it approaches or exceeds the UV induced 
index change for the fibre grating, elliptical birefringence 
will convert to circular birefringence. As well as form twist, 
it combines localised UV-induced changes making it > 20 
times the estimated untwisted fibre form birefringence. The 
value will also be larger than UV induced birefringence 
generated by 193 nm written gratings within uniform fibres 
[18]. 
   The observed resonances are asymmetric reflecting the 
grating chirp and consequently the asymmetric time delay on 
the grating band edge. This resonant phenomenon is difficult 
to directly observe in spectra because of the presence of 
uncoupled background light. Coupling between polarisation 
states with the rocking filter and using the Bragg grating 
dispersion to spoil that coupling, has been used to generate a 
transmission notch within a high loss polarisation window. 
Combining these unique filter properties opens up 
interesting filter functions that offer narrowband fibre 
grating transmission and selective narrow and broadband 
polarisation separation around the FBG bandgap. Such 
devices could be used in advanced polarisation 
discrimination and polarisation based filtering applications 
in telecommunications and sensing. Further they offer a 
novel dispersion diagnostic because the information revealed 
by in-line analysis of the resonance impacted polarisation 
states directly mirrors the fibre grating dispersion. By 
comparison, conventional approaches to measuring 
dispersion use a network analyser whilst modulating a 
narrow linewidth source sufficiently fast to obtain high 
resolution group delay measurements after signal processing. 
The current approach is also an alternative to direct bandgap 
resonance measurements from the side that rely on low 
levels of scattered light that limits resolution [19]. 
   In conclusion, it has been shown within germanosilicate 
fibres produced from 3D printed preforms that it is possible 
to overcome polarisation splitting from form birefringence 
by twisting and to undo this permanently by as much as 85% 
with laser processing. Hybrid rocking filter and fibre Bragg 
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grating devices where high-resolution selective spoiling of 
the rocking filter polarisation coupling by the Bragg grating 
dispersion are demonstrated. This enables novel polarisation 
and helical filter profiles to be tailored within the rejection 
band by directly tailoring the fibre Bragg grating. More 
localized multiphoton excitation of the glass band-edge with 
femtosecond near IR lasers [20,21], if needed, may permit 
additional degrees of processing and tunability. 
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