
1 
 

A steel-concrete composite beam element for structural damage identification 

 

Faraz Sadeghi1, Jianchun Li1, Xinqun Zhu1 

1Centre for Built Infrastructure Research (CBIR), School of Civil and Environmental Engineering, University of 
Technology Sydney (UTS), Sydney, NSW 2007, Australia 

Corresponding author: Faraz.Sadeghi@student.uts.edu.au; Jianchun.Li@uts.edu.au 

 

Abstract 

The composite action between the layers of steel and concrete is governed by the shear connection. Because 
of the complicated interconnection behaviour of these composite layers, it is difficult to detect damage in 
the composite structures, especially the interfacial integrity of the two layers. In this paper, a novel method 
has been developed for structural damage identification of composite structures based on a steel-concrete 
composite beam element with bonding interface. In displacement-based finite element (FE) formulation, 
three damage indicators have been embedded into stiffness matrix of the composite beam that are defined 
as a stiffness reduction in the concrete, steel and interface layers. An algorithm based on recursive quadratic 
programming has been proposed to identify structural damage in the composite beam from static 
measurements. The analytical FE model is validated by adapting its static responses in undamaged state with 
those obtained from an equal experimental model as well as a FE model developed in commercial software 
ABAQUS. A convergence study is conducted to determine the number of the composite beam FEs. To verify 
the proposed method, the static responses of the FE model with different damage cases at a given loading 
are calculated, and the measurements are simulated by adding different levels of white noise. Then, the 
proposed algorithm is applied to identify damage of the composite beam. The effects of measurement noise, 
loading location and amplitude, measurement numbers and the sizes of FE mesh on the identified results 
have been investigated. The numerical results show that this method is efficient and accurate to separately 
identify small damage in the concrete slab, and the steel girder and bonding interface of the composite beam. 

  

Keywords: Composite structures, Damage identification, Shear connection, Steel-concrete composite 
element, Static measurements  

 

1. Introduction 

In the recent decades, the research on structural damage identification has attracted great deal of attention. 
During this time, many methods have been developed using dynamic and static measurements, so depending 
on the different measurements, these methods can be categorized into dynamic and static approaches. 
Unlike the static identification methods, the dynamic methods have been studied more extensively because 
they are easy to implement [1-5]. Structural modal parameters such as natural frequencies, mode shapes 
and modal damping are functions of physical parameters such as mass, damping and stiffness [6, 7], and 
while damage can change the damping and mass distribution of a structure, these changes are ignored in the 
dynamic identification analysis for simplification. Furthermore, the damage is a local phenomenon and the 
high frequency component is much more sensitive to the damage, however it is difficult to extract the 
accurate high frequency component in a noisy environment.  The static identification methods are based on 
equilibrium equations so the only significant parameters are the stiffness properties of a structure; therefore, 
the stiffness reduction is an important parameter when identifying the effects that structural damage has on 
the static responses. A large number of static measurements are generally required to obtain accurate 
damage identification, but this is not economically feasible. Choi et al [8] showed that this issue can be 
tackled by increasing the loading conditions instead of increasing the measurement numbers.  Zhang et al [9] 
proposed a method for using the optimal numbers of strain gages and displacements sensors together. They 
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claimed that using integrated sensor system gives better result in contrast to single type sensors. With 
current advances in  non-contact deflection measurement technology, the static approach has become much 
more interesting [10, 11].  

Over the past few decades, different static damage identification methods have been developed using simple 
structures such as truss, frame or beam-like structures. Zhu et al [12] proposed a displacement-based damage 
identification algorithm for reinforced concrete beams by incorporating the interface element into the FE 
formulation. Raghuprasad et al [13] presented an approach for identifying damage of a bridge girder 
subjected to loads at two symmetric points, using static deflection as the damage indicator. Li et al [14] 
developed a relative displacement sensor for damage identification of girder-slab composite bridges with 
bonding slip. Caddemi et al [15] proposed a method for identifying open cracks in beams and frame using 
static measurements. More recently, Le et al [16] proposed a new approach for locating and quantifying 
damage in Euler-Bernoulli beams using static responses. However, a three-layer composite beam considering 
partial shear connection has not been studied. The damage assessment of these composite layers alone is a 
significant issue and in particular, the inaccessible shear connectors that effect on the composite behaviour 
under loading. Therefore, this study aims to develop a steel-concrete composite element with bonding 
interface for the structural damage identification from static measurements. A new damage algorithm is then 
proposed based on damage indicators embedded into stiffness matrices and the composite beam responses, 
in the undamaged and damaged states. 

Steel-concrete composite structures are widely investigated by many researchers due to complicated 
interconnection of the composite layers. Dynamic behaviour of the steel-concrete composite beams with 
partial shear interaction was studied by [17, 18]. In both studies, they highlighted the effect of bonding slip 
on the response of the composite beams. A notable research was established by Ayoub and Filippou [19] 
presenting an inelastic beam element for analysing a steel-concrete composite beam with partial interaction 
under cyclic loading. The shear connection is accounted for an interface model with a distributed force. Chen 
et al [20] studied the static behaviour of steel-concrete composite beams where the shear connectors had 
been damaged due to corrosion. Their experimental test results indicated that corrosion of studs has a 
significant effect on beam stiffness and the load bearing capacity. The behaviour of two-layers composite 
beams are affected by both the interface longitudinal slip and vertical uplift. However, the bonding slip has 
been significantly considered in this research topic while the vertical uplift is negligible due to small 
displacements [21, 22]. So far, existing research in steel-concrete composite members has mostly focused on 
the design aspects of bonding slip and shear connectors [23-25]. However, the damage identification of steel-
concrete composite beam-type elements is a critical issue because the contribution made by the bonding 
stiffness in global stiffness matrices of the composite beam element is smaller [12]; this leads to an intricate 
interconnection between the composite layers and therefore a robust method of identification is needed.  

In this paper, an innovative method based on displacement-based finite element (FE) modelling is proposed 
to identify the damage in steel-concrete composite structures. A steel-concrete composite element with a 
bonding interface has been developed, and the concrete and steel layers are independently interpolated into 
a displacement-based finite element (FE) formulation. Three damage indices are defined to describe the 
stiffness reduction of a concrete slab, a steel girder and the bonding interface. These damage indicators are 
incorporated into the stiffness matrix of composite beam. The recursive quadratic programming (RQP) 
algorithm is used to solve the optimization problem for structural damage identification from static 
measurements. To validate the FE model, its static responses in undamaged state are adapted with those 
obtained from an equal experimental model as well as a FE model developed in commercial software 
ABAQUS [26]. Then, the proposed algorithm is used to identify damage from the static responses of the FE 
model. White noise is added to the calculated responses to simulate the measurements and the effect of 
measurement noise is studied. The effects of the measurement locations and numbers, type of static 
parameters and the sizes of FE mesh on the identified results are also discussed. The results show that this 
method can effectively identify defects in the composite layers and the bonding interface.    

 

2. Analytical procedure 
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2.1. Basic formulations 

The fundamental equations that govern the two-layered behaviour of a composite beam with deformable 
shear connector are presented in this section. The effects that the deformable shear connectors have on the 
behaviour of a composite beam are considered as interface element. A distributed interface element is taken 
into account for simplification. The aim is to develop displacement-based FE derivations of a composite beam 
element that consists of two beam elements (concrete slab and steel girder) and an interface element. The 
composite beam element with 10 degrees of freedom (DOFs) includes 3 axial displacements for the concrete 
slab 𝒖𝒖𝒄𝒄 = [𝑢𝑢𝑐𝑐1 𝑢𝑢𝑐𝑐2 𝑢𝑢𝑐𝑐3]𝑇𝑇, three axial displacements for the steel girder 𝒖𝒖𝒔𝒔 = [𝑢𝑢𝑠𝑠1 𝑢𝑢𝑠𝑠2 𝑢𝑢𝑠𝑠3]𝑇𝑇 and, two 
rotations and two transverse displacements for the composite element 𝒗𝒗 = [𝑣𝑣1 𝜃𝜃1     𝑣𝑣2 𝜃𝜃2]𝑇𝑇.  

A composite beam element consists of a concrete slab located on top of a steel girder, and the bonding 
interfaces are shown in Figure (1.a). For each component of this composite beam, the equilibrium equations 
with bond slip and uplift effects are formulated [27]. The forces referring to concrete and steel are denoted 
by the subscripts 𝑐𝑐 and 𝑠𝑠. 𝑁𝑁 and 𝑉𝑉 denote the axial force and shear force, respectively. 𝑀𝑀𝑐𝑐 and 𝑀𝑀𝑠𝑠 are the 
bending moment of concrete and steel, respectively. 𝐷𝐷𝑠𝑠𝑠𝑠 and 𝐷𝐷𝑡𝑡 are the shear force (bonding slip) and the 
transverse force (uplift) per unit length. 𝑃𝑃 is the external distributed load per unit length applied 
perpendicular to the concrete slab. ℎ𝑐𝑐 and ℎ𝑠𝑠 are the distances between the interface and reference axes of 
the concrete slab and steel girder, respectively. The equilibrium equation of the composite beam section can 
be defined as [19] 

 
Figure 1. (a) Diagram and (b) Kinematic of two-layer composite beam element; c and s denotes concrete and steel 

layers, respectively 

 

𝜕𝜕𝑇𝑇𝑭𝑭(𝑥𝑥)− 𝜕𝜕𝑏𝑏𝑇𝑇𝑭𝑭𝑏𝑏(𝑥𝑥)− 𝑷𝑷(𝒙𝒙) = 0             (1) 

in which 𝑭𝑭(𝑥𝑥) = [𝑁𝑁𝑐𝑐 𝑁𝑁𝑠𝑠 𝑀𝑀]𝑇𝑇, 𝑭𝑭𝑏𝑏(𝑥𝑥) = [𝐷𝐷𝑠𝑠𝑠𝑠] and 𝑷𝑷(𝑥𝑥) = [0 0 𝑃𝑃]𝑇𝑇 are the internal forces vector 
acting on the cross section, the interface bonding force and the vector of the external load, respectively.  

Furthermore, the differential operators, 𝜕𝜕 and 𝜕𝜕𝑏𝑏 are given as 

𝜕𝜕 = �
𝜕𝜕𝑥𝑥 0 0
0 𝜕𝜕𝑥𝑥 0
0 0 𝜕𝜕𝑥𝑥2

�                  (2) 

𝜕𝜕𝑏𝑏  = [1 −1 ℎ𝜕𝜕𝑥𝑥]             (3) 

Although any section of this composite beam has four unknown forces 𝑁𝑁𝑐𝑐 ,𝑁𝑁𝑠𝑠,𝑀𝑀 and 𝐷𝐷𝑠𝑠𝑠𝑠, there are only three 
equations of equilibrium for each section. Therefore, to tackle the indeterminacy of the composite beam, 
compatibility equations must be added to the equilibrium equations. Figure (1.b) shows the kinematics of a 
two-layer composite beam with bond slip. Since the same transverse displacement (no uplift) has been 
considered for both layers, the curvature and rotation will be the same.  The left and right figures clearly 
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show the bond slip and its value between two layers, where 𝜐𝜐, 𝑢𝑢, ℎ, 𝑔𝑔 and 𝜃𝜃 are the transverse displacement, 
axial displacement, distance between the centroid axes of concrete and steel, interface slip and rotation, 
respectively. Different axial deformations can occur in the steel and concrete sections. The axial and 
transverse deformations at any section of the composite beam are handled by the compatibility conditions 
based on the Euler-Bernoulli beam theory. The compatibility conditions are treated for the concrete slab and 
steel girder components subjected to a small displacement. The composite beam section displacements are 
assembled in a vector where 𝒖𝒖(𝑥𝑥) = [𝑢𝑢𝑐𝑐(𝑥𝑥) 𝑢𝑢𝑠𝑠(𝑥𝑥) 𝜐𝜐(𝑥𝑥)]𝑇𝑇, in which 𝑢𝑢(𝑥𝑥) and 𝜐𝜐(𝑥𝑥) are the axial and 
transverse displacements, respectively. The section deformations are also presented as a vector where 
𝒅𝒅(𝑥𝑥) = [𝜀𝜀𝑐𝑐(𝑥𝑥) 𝜀𝜀𝑠𝑠(𝑥𝑥) 𝜅𝜅(𝑥𝑥)]𝑇𝑇, in which 𝜀𝜀𝑐𝑐(𝑥𝑥) = 𝜕𝜕𝑥𝑥𝑢𝑢𝑐𝑐(𝑥𝑥) is the concrete slab axial strain, 𝜀𝜀𝑠𝑠(𝑥𝑥) = 𝜕𝜕𝑥𝑥𝑢𝑢𝑠𝑠(𝑥𝑥) 
is the steel girder axial strain and 𝜅𝜅(𝑥𝑥) = 𝜕𝜕𝑥𝑥2𝜐𝜐(𝑥𝑥) is the curvature [19].  

The compatibility conditions define the deformation and displacement at the interface between the concrete 
slab and steel girder. This relative displacement at the interface is known as the bond slip 𝑔𝑔 and can be 
defined as; 

 𝑔𝑔 = 𝑢𝑢𝑐𝑐(𝑥𝑥) − 𝑢𝑢𝑠𝑠(𝑥𝑥) + ℎ𝜕𝜕𝑥𝑥𝜐𝜐(𝑥𝑥)          (4)  

Eq. (4) can be written in the form of matrices as follows: 

⎣
⎢
⎢
⎡
𝜕𝜕𝑥𝑥 0 0
0 𝜕𝜕𝑥𝑥 0
0
1

0
−1

𝜕𝜕𝑥𝑥2
ℎ𝜕𝜕𝑥𝑥⎦

⎥
⎥
⎤
�
𝑢𝑢𝑐𝑐
𝑢𝑢𝑠𝑠
𝜐𝜐
� − �

𝜀𝜀𝑐𝑐
𝜀𝜀𝑠𝑠
𝜅𝜅
𝑔𝑔
� = �

0
0
0
0

�              (5) 

Eq. (5) can be separated into the section deformation 𝒅𝒅(𝑥𝑥) = 𝜕𝜕𝒖𝒖(𝑥𝑥) and bond deformation 𝒅𝒅𝒃𝒃(𝑥𝑥) =
𝜕𝜕𝑏𝑏𝒖𝒖(𝑥𝑥). Eqs. (1) and (4) are the equilibrium and compatibility relations and the material constitutive laws for 
a steel-concrete composite beam element. The response of the composite beam subjected to external loads 
can be obtained with proper boundary conditions. Then the sectional and elemental stiffness matrices of the 
composite element for structural damage identification are derived in Section 2.2. 

 

2.2 Stiffness matrix of the steel-concrete composite element 

Three different stiffness matrices are presented for the concrete and steel beam components and bonding 
interface. These matrices are exploited to obtain the local and global matrices of the composite beam 
element. The interface element is assumed to be a continuous spring element with particular stiffness 
parameters. In order to estimate the displacements of the composite beam, quadratic polynomial functions 
are used for the axial displacements and cubic Hermitian polynomials are used for the transverse 
displacements [28]. To permit the quadratic polynomials for the axial displacements, two extra nodes (DOFs) 
are introduced separately in the middle of each element (concrete slab and steel girder). These provide a 
continuous quadratic bond slip condition along the interface. The same transverse displacement are 
considered for both layers (no uplift) and therefore, the steel-concrete composite beam element with bond 
slip in the interface connection consists of ten DOFs including two transverses and rotations, and six axial 
displacements (Figure 2). 𝑼𝑼 = [𝑢𝑢𝑐𝑐1 𝑢𝑢𝑐𝑐2 𝑢𝑢𝑐𝑐3     𝑢𝑢𝑠𝑠1 𝑢𝑢𝑠𝑠2 𝑢𝑢𝑠𝑠3     𝜈𝜈1 𝜃𝜃1     𝜈𝜈2 𝜃𝜃2]𝑇𝑇 is the vector of the 
elemental nodal displacements. 

 
Figure 2. Nodal displacements of a steel-concrete composite element with 10 DOF 

 

𝒖𝒖𝒄𝒄𝟏 𝒖𝒖𝒄𝒄𝟑 𝒖𝒖𝒄𝒄𝟐

𝒖𝒖𝒔𝒔𝟏 𝒖𝒖𝒔𝒔𝟑 𝒖𝒖𝒔𝒔𝟐

𝐯𝟏𝛉𝟏 𝐯𝟐 𝛉𝟐
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The internal forces of the composite beam are related to the deformation, and the interface bonding force 
is related to the bond slip. Therefore, the force-deformation relationships for a linear-elastic steel-concrete 
composite beam are defined by the material properties and cross sectional geometry of the beam as  

𝑭𝑭𝒄𝒄(𝑥𝑥) = 𝒌𝒌𝑐𝑐𝒅𝒅𝑐𝑐(𝑥𝑥)          (6) 
𝑭𝑭𝒔𝒔(𝑥𝑥) = 𝒌𝒌𝑠𝑠𝒅𝒅𝑠𝑠(𝑥𝑥)         (7) 
𝑭𝑭𝑏𝑏(𝑥𝑥) = 𝒌𝒌𝑏𝑏𝒅𝒅𝑏𝑏(𝑥𝑥)         (8) 

where 𝑭𝑭𝑐𝑐(𝑥𝑥) and 𝑭𝑭𝑠𝑠(𝑥𝑥) are the internal force vectors for concrete and steel sections, respectively; 𝒅𝒅𝑐𝑐(𝑥𝑥) 
and 𝒅𝒅𝑠𝑠(𝑥𝑥) are the concrete and steel sections deformation vectors, respectively.  𝒌𝒌𝑐𝑐, 𝒌𝒌𝑠𝑠 and 𝒌𝒌𝑏𝑏 are the 
stiffness matrices of concrete section, steel section and bonding interface, respectively. The stiffness matrices 
are obtained by the virtual work method. A small displacement caused by the external loads is assumed to 
occur, and the amount of work is equalled to the amount of residual internal strain energy. Therefore, the 
sectional stiffness matrices for the concrete and steel sections and the bonding interface are given as below: 

𝒌𝒌𝑐𝑐 = �
𝑘𝑘𝑐𝑐1 0 𝑘𝑘𝑐𝑐2
0 0 0
𝑘𝑘𝑐𝑐3 0 𝑘𝑘𝑐𝑐4

�         (9) 

𝒌𝒌𝑠𝑠 = �
0 0 0
0 𝑘𝑘𝑠𝑠1 𝑘𝑘𝑠𝑠2
0 𝑘𝑘𝑠𝑠3 𝑘𝑘𝑠𝑠4

�         (10) 

𝒌𝒌𝑏𝑏 = �
𝑘𝑘𝑏𝑏1 𝑘𝑘𝑏𝑏2 𝑘𝑘𝑏𝑏3
𝑘𝑘𝑏𝑏4 𝑘𝑘𝑏𝑏5 𝑘𝑘𝑏𝑏6
𝑘𝑘𝑏𝑏7 𝑘𝑘𝑏𝑏8 𝑘𝑘𝑏𝑏9

�          (11) 

where 𝑘𝑘𝑐𝑐1 = 𝐸𝐸𝑐𝑐𝐴𝐴𝑐𝑐, 𝑘𝑘𝑐𝑐2 = 𝑘𝑘𝑐𝑐3 = −𝐸𝐸𝑐𝑐𝐴𝐴𝑐𝑐ℎ𝑐𝑐 and 𝑘𝑘𝑐𝑐4 = 𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐, 𝑘𝑘𝑠𝑠1 = 𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠, 𝑘𝑘𝑠𝑠2 = 𝑘𝑘𝑠𝑠3 = −𝐸𝐸𝑠𝑠𝐴𝐴𝑠𝑠ℎ𝑠𝑠 and 𝑘𝑘𝑠𝑠4 =
𝐸𝐸𝑠𝑠𝐼𝐼𝑠𝑠, 𝑘𝑘𝑏𝑏1 = 𝑘𝑘𝑏𝑏5 = 𝐸𝐸𝑏𝑏𝑊𝑊𝑏𝑏, 𝑘𝑘𝑏𝑏2 = 𝑘𝑘𝑏𝑏4 = −𝐸𝐸𝑏𝑏𝑊𝑊𝑏𝑏, 𝑘𝑘𝑏𝑏3 = 𝑘𝑘𝑏𝑏7 = 𝐸𝐸𝑏𝑏𝑊𝑊𝑏𝑏ℎ, 𝑘𝑘𝑏𝑏6 = 𝑘𝑘𝑏𝑏8 = −𝐸𝐸𝑏𝑏𝑊𝑊𝑏𝑏ℎ and ℎ𝑏𝑏9 =
𝐸𝐸𝑏𝑏𝑊𝑊𝑏𝑏ℎ2. 𝐸𝐸𝑐𝑐, 𝐴𝐴𝑐𝑐 and 𝐼𝐼𝑐𝑐 are the Young’s elastic modulus, cross sectional area and moment of inertia of the 
concrete section, respectively. 𝐸𝐸𝑠𝑠, 𝐴𝐴𝑠𝑠 and 𝐼𝐼𝑠𝑠 are the Young’s elastic modulus, cross-sectional area and 
moment of inertia of the steel section, respectively. 𝐸𝐸𝑏𝑏, 𝑊𝑊𝑏𝑏 and ℎ are equivalent modulus of bonding 
interface between concrete slab and steel girder, width of the steel top flange (concrete-steel contact length) 
and the distance between the centroid axes of concrete and steel, respectively. For a linear-elastic composite 
beam with bond slip, the vector of shape functions can be written as 

𝑸𝑸𝑢𝑢𝑐𝑐 = [𝑄𝑄𝑢𝑢𝑐𝑐1 𝑄𝑄𝑢𝑢𝑐𝑐2 𝑄𝑄𝑢𝑢𝑐𝑐3]               
 𝑸𝑸𝑢𝑢𝑠𝑠 = [𝑄𝑄𝑢𝑢𝑠𝑠1 𝑄𝑄𝑢𝑢𝑠𝑠2 𝑄𝑄𝑢𝑢𝑠𝑠3]               
𝑸𝑸𝑣𝑣 = [𝑄𝑄𝑣𝑣1 𝑄𝑄𝜃𝜃1      𝑄𝑄𝑣𝑣2 𝑄𝑄𝜃𝜃2]                   (12) 

where 𝑸𝑸𝑢𝑢𝑐𝑐 is the vector of the axial displacements shape functions 𝑄𝑄𝑢𝑢1, 𝑄𝑄𝑢𝑢2 and 𝑄𝑄𝑢𝑢3, 𝑸𝑸𝑢𝑢𝑠𝑠  is the vector of the 
axial displacements shape functions 𝑄𝑄𝑢𝑢𝑠𝑠1, 𝑄𝑄𝑢𝑢𝑠𝑠2 and 𝑄𝑄𝑢𝑢𝑠𝑠3 and 𝑸𝑸𝑣𝑣 is the vector of the transverse displacements 
and rotations shape functions 𝑄𝑄𝑣𝑣1, 𝑄𝑄𝑣𝑣2, 𝑄𝑄𝜃𝜃1  and 𝑄𝑄𝜃𝜃2 . These shape functions interpolate the discrete values 
obtained at the FE nodes. The elemental stiffness matrices are obtained by integrating the sectional stiffness 
matrices in terms of the displacement shape functions as follows  

𝑲𝑲𝑒𝑒𝑒𝑒 = �
∫ 𝑸̇𝑸𝑢𝑢𝑐𝑐

𝑇𝑇 𝑘𝑘𝑐𝑐1𝑸̇𝑸𝑢𝑢𝑐𝑐
𝐿𝐿
0 𝑑𝑑𝑑𝑑 𝟎𝟎 −∫ 𝑸̇𝑸𝑢𝑢𝑐𝑐

𝑇𝑇 𝑘𝑘𝑐𝑐2𝑸̈𝑸𝑣𝑣𝑑𝑑𝑑𝑑
𝐿𝐿
0

𝟎𝟎 𝟎𝟎 𝟎𝟎
−∫ 𝑸̈𝑸𝑣𝑣

𝑇𝑇𝑘𝑘𝑐𝑐3𝑸̇𝑸𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑
𝐿𝐿
0 𝟎𝟎 ∫ 𝑸̈𝑸𝑣𝑣

𝑇𝑇𝑘𝑘𝑐𝑐4𝑸̈𝑸𝑣𝑣𝑑𝑑𝑑𝑑
𝐿𝐿
0

�

10×10

         (13) 

𝑲𝑲𝑒𝑒𝑒𝑒 = �

𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 ∫ 𝑸̇𝑸𝑢𝑢𝑠𝑠

𝑇𝑇 𝑘𝑘𝑠𝑠1𝑸̇𝑸𝑢𝑢𝑠𝑠
𝐿𝐿
0 𝑑𝑑𝑑𝑑 −∫ 𝑸̇𝑸𝑢𝑢𝑠𝑠

𝑇𝑇 𝑘𝑘𝑠𝑠2𝑸̈𝑸𝑣𝑣𝑑𝑑𝑑𝑑
𝐿𝐿
0

𝟎𝟎 −∫ 𝑸̈𝑸𝑣𝑣
𝑇𝑇𝑘𝑘𝑠𝑠3𝑸̇𝑸𝑢𝑢𝑠𝑠𝑑𝑑𝑑𝑑

𝐿𝐿
0 ∫ 𝑸̈𝑸𝑣𝑣

𝑇𝑇𝑘𝑘𝑠𝑠4𝑸̈𝑸𝑣𝑣𝑑𝑑𝑑𝑑
𝐿𝐿
0

�

10×10

       (14) 

𝑲𝑲𝑒𝑒𝑒𝑒 =

⎣
⎢
⎢
⎢
⎡ ∫ 𝑸𝑸𝑢𝑢𝑐𝑐

𝑇𝑇𝐿𝐿
0 𝑘𝑘𝑏𝑏1𝑸𝑸𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑 −∫ 𝑸𝑸𝑢𝑢𝑐𝑐

𝑇𝑇𝐿𝐿
0 𝑘𝑘𝑏𝑏2𝑸𝑸𝑢𝑢𝑠𝑠𝑑𝑑𝑑𝑑 ∫ 𝑸𝑸𝑢𝑢𝑐𝑐

𝑇𝑇𝐿𝐿
0 𝑘𝑘𝑏𝑏3𝑸̇𝑸𝑣𝑣𝑑𝑑𝑑𝑑

−∫ 𝑸𝑸𝑢𝑢𝑠𝑠
𝑇𝑇𝐿𝐿

0 𝑘𝑘𝑏𝑏2𝑸𝑸𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑 ∫ 𝑸𝑸𝑢𝑢𝑠𝑠
𝑇𝑇𝐿𝐿

0 𝑘𝑘𝑏𝑏1𝑸𝑸𝑢𝑢𝑠𝑠𝑑𝑑𝑑𝑑 −∫ 𝑸𝑸𝑢𝑢𝑠𝑠
𝑇𝑇𝐿𝐿

0 𝑘𝑘𝑏𝑏3𝑸̇𝑸𝑣𝑣𝑑𝑑𝑑𝑑

∫ 𝑸̇𝑸𝑣𝑣
𝑇𝑇𝐿𝐿

0 𝑘𝑘𝑏𝑏7𝑸𝑸𝑢𝑢𝑐𝑐𝑑𝑑𝑑𝑑 −∫ 𝑸̇𝑸𝑣𝑣
𝑇𝑇𝐿𝐿

0 𝑘𝑘𝑏𝑏7𝑸𝑸𝑢𝑢𝑠𝑠𝑑𝑑𝑑𝑑 ∫ 𝑸̇𝑸𝑣𝑣
𝑇𝑇𝐿𝐿

0 𝑘𝑘𝑏𝑏9𝑸̇𝑸𝑣𝑣𝑑𝑑𝑑𝑑 ⎦
⎥
⎥
⎥
⎤

10×10

  (15)    
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where 𝑲𝑲𝑒𝑒𝑒𝑒, 𝑲𝑲𝑒𝑒𝑒𝑒 and 𝑲𝑲𝑒𝑒𝑒𝑒 are the element stiffness matrices of concrete, steel and bonding interface, 
respectively. Therefore, the stiffness matrix of the composite beam element is obtained by the summation 
of three elements given as: 

𝑲𝑲𝑒𝑒 = 𝑲𝑲𝑒𝑒𝑒𝑒 + 𝑲𝑲𝑒𝑒𝑒𝑒 + 𝑲𝑲𝑒𝑒𝑒𝑒 = �
[𝑲𝑲𝑒𝑒1]3×3 [𝑲𝑲𝑒𝑒2]3×3 [𝑲𝑲𝑒𝑒3]3×4
[𝑲𝑲𝑒𝑒4]3×3 [𝑲𝑲𝑒𝑒5]3×3 [𝑲𝑲𝑒𝑒6]3×4
[𝑲𝑲𝑒𝑒7]4×3 [𝑲𝑲𝑒𝑒8]4×3 [𝑲𝑲𝑒𝑒9]4×4

�

10×10

      (16) 

where 𝑲𝑲𝑒𝑒 is the steel-concrete composite element stiffness matrix.  

 

2.3 Elemental damage indicators 

The damage of the composite structure is defined as three damage indicators that correspond to the 
reduction in elemental stiffness of the concrete, the steel beams and the interface bonding. The bonding 
force distributed between the steel and concrete components can be expressed as 

∆𝑁𝑁 = ∫ 𝐹𝐹𝑏𝑏(𝑥𝑥)𝑑𝑑𝑑𝑑𝐿𝐿
0        (17) 

where ∆𝑁𝑁 is the bonding force and 𝐿𝐿 is the length of the beam element. The relationship between the 
bonding force and bonding slip in a composite beam element can be defined as 

∆𝑁𝑁 = 𝐾𝐾𝑒𝑒𝑒𝑒∆𝑼𝑼𝑏𝑏 = 𝐸𝐸𝑏𝑏𝑊𝑊𝑏𝑏∆𝑈𝑈𝑏𝑏       (18) 

where ∆𝑼𝑼𝑏𝑏 is the difference between the vector of analytical displacements of interface before and after 
damage. From Eqs. (17) and (18), the equivalent bonding stiffness can be written as 

𝐾𝐾𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑏𝑏𝑊𝑊𝑏𝑏 = ∫ 𝐹𝐹𝑏𝑏(𝑥𝑥)𝑑𝑑𝑑𝑑𝐿𝐿
0

∆𝑈𝑈𝑏𝑏
         (19) 

In these above equations, a damage index is introduced based on the degradation in the stiffness 
characteristic of the boning interface as 

𝛼𝛼𝑏𝑏 = 1 − 𝐾𝐾𝑒𝑒𝑒𝑒
𝐾𝐾�𝑒𝑒𝑒𝑒

= 1 − 𝐸𝐸𝑏𝑏
𝐸𝐸�𝑏𝑏

           (20) 

where 𝐾𝐾�𝑒𝑒𝑒𝑒  is the equivalent bonding stiffness without damage or slippage 𝐸𝐸�𝑏𝑏 is the equivalent modulus of 
bonding interface between the concrete slab and steel  girder without damage or slippage, and  𝛼𝛼𝑏𝑏 is the 
damage index parameter for the interface element. By using a similar approach, the damage indices for the 
concrete and steel elements are defined as follow 

𝛼𝛼𝑐𝑐 = 1 − 𝐸𝐸𝑐𝑐
𝐸𝐸�𝑐𝑐

           (21) 

𝛼𝛼𝑠𝑠 = 1 − 𝐸𝐸𝑠𝑠
𝐸𝐸�𝑠𝑠

         (22) 

where 𝐸𝐸�𝑐𝑐 is the equivalent Elastic modulus of the intact concrete element, 𝐸𝐸�𝑠𝑠 is the equivalent Elastic 
modulus of the undamaged steel element, and 𝛼𝛼𝑐𝑐 and 𝛼𝛼𝑠𝑠 are the damage index parameters for the concrete 
and steel elements, respectively. In any case, when the damage indices are equal to zero, it means there is 
no damage in that element (0 ≪ 𝛼𝛼𝑐𝑐 ,𝛼𝛼𝑠𝑠,𝛼𝛼𝑏𝑏 ≪ 1). Since damaged composite element components have been 
assumed, Eq (22) can be updated using the damage indicators as 

𝑲𝑲𝑒𝑒 = 𝑲𝑲𝑒𝑒𝑒𝑒 + 𝑲𝑲𝑒𝑒𝑒𝑒 + 𝑲𝑲𝑒𝑒𝑒𝑒 = (1 −  𝛼𝛼𝑐𝑐)𝑲𝑲�𝑒𝑒𝑒𝑒 + (1 −  𝛼𝛼𝑠𝑠)𝑲𝑲�𝑒𝑒𝑒𝑒 + (1 −  𝛼𝛼𝑏𝑏)𝑲𝑲�𝑒𝑒𝑒𝑒        (23)  

where 𝑲𝑲�𝑒𝑒𝑒𝑒  and 𝑲𝑲�𝑒𝑒𝑒𝑒 are the stiffness matrices of the intact concrete and steel elements, respectively. The 
damage indices 𝛼𝛼𝑐𝑐, 𝛼𝛼𝑠𝑠 and 𝛼𝛼𝑏𝑏 are considered separately as scalar values embedded in the elemental damage 
indices zero vectors with a size equal to the composite element FE numbers.  Eq. (23) is a local stiffness matrix 
and must be transformed to the global stiffness matrix using a transformation matrix as: 

𝑲𝑲 = 𝑲𝑲𝑐𝑐 + 𝑲𝑲𝑠𝑠 + 𝑲𝑲𝑏𝑏 = �𝑻𝑻𝑇𝑇𝐾𝐾𝑒𝑒𝑒𝑒𝑻𝑻
𝑛𝑛

𝑖𝑖=1

 = �𝑻𝑻𝑇𝑇𝑲𝑲𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻
𝑛𝑛

𝑖𝑖=1

+ �𝑻𝑻𝑇𝑇𝑲𝑲𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻
𝑛𝑛

𝑖𝑖=1

+ �𝑇𝑇𝑇𝑇𝑲𝑲𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻
𝑛𝑛

𝑖𝑖=1
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= ∑ 𝑻𝑻𝑇𝑇(1 −  𝛼𝛼𝑐𝑐𝑐𝑐)𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑛𝑛
𝑖𝑖=1 + ∑ 𝑻𝑻𝑇𝑇(1 −  𝛼𝛼𝑠𝑠𝑠𝑠)𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑛𝑛

𝑖𝑖=1 + ∑ 𝑻𝑻𝑇𝑇(1 −  𝛼𝛼𝑏𝑏𝑏𝑏)𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻 𝑛𝑛
𝑖𝑖=1                 (24)  

where 𝑛𝑛 is the number of FEs. 𝑲𝑲, 𝑲𝑲𝑐𝑐, 𝑲𝑲𝑠𝑠 and 𝑲𝑲𝑏𝑏 are the global stiffness matrices of the damaged composite 
beam, concrete, steel and interface elements. 𝛼𝛼𝑐𝑐𝑐𝑐, 𝛼𝛼𝑠𝑠𝑠𝑠  and 𝛼𝛼𝑏𝑏𝑏𝑏 are the 𝑖𝑖th element damage indices of 
damaged concrete, steel and bonding interface, respectively. 𝑻𝑻 is the transformation matrix of element nodal 
displacement that assembles the global stiffness matrix form of the elemental local stiffness matrix.  

 

3. Structural damage identification using static measurements 

A damage algorithm is proposed for the local damage detection of steel-concrete composite structures by 
incorporating bonding slip. For a damaged structure, the force-displacement equation can be defined as  

𝑭𝑭 = 𝑲𝑲𝑲𝑲           (25) 

where 𝑭𝑭 is the force vector, 𝑲𝑲 is the stiffness matrix of the damaged composite beam element and 𝑼𝑼 is the 
vector of the nodal displacements and rotations. The discrepancy between intact and damaged states in 
terms of stiffness and displacement can be expressed as 

∆𝑲𝑲 = 𝑲𝑲� −𝑲𝑲          (26) 
∆𝑼𝑼 = 𝑼𝑼� −𝑼𝑼             (27) 

where ∆𝑼𝑼 is the difference between the vector of analytical displacements before and after damage, ∆𝑲𝑲 is 
the stiffness matrix difference of the structure with and without damage, 𝑲𝑲�  and 𝑼𝑼�  are the stiffness matrix 
and displacement of the composite beam in an undamaged state, respectively, and 𝑲𝑲 and 𝑼𝑼 are the stiffness 
matrix and displacement of the damaged composite beam, respectively. By substituting Eqs. (26) and (27) 
into (25), the force vector can be represented as 

𝑭𝑭 = (𝑲𝑲� − ∆𝑲𝑲)(𝑼𝑼� − ∆𝑼𝑼)          (28) 

∆𝑼𝑼 can be obtained from Eq. (27) as  

 ∆𝑼𝑼 = 𝑲𝑲�−1∆𝑲𝑲𝐾𝐾�−1𝑭𝑭+ 𝑲𝑲�−1∆𝑲𝑲∆𝑼𝑼 ≈ 𝑲𝑲�−1∆𝑲𝑲𝑲𝑲�−1𝑭𝑭     
= 𝑲𝑲�−1∆𝑲𝑲𝒄𝒄𝑲𝑲�−1𝑭𝑭+𝑲𝑲�−1∆𝑲𝑲𝑠𝑠𝑲𝑲�−1𝑭𝑭+ 𝑲𝑲�−1∆𝑲𝑲𝑏𝑏𝑲𝑲�−1𝑭𝑭      (29) 

where ∆𝑲𝑲𝑐𝑐 = ∑ 𝑻𝑻𝑇𝑇𝛼𝛼𝑐𝑐𝑐𝑐𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑛𝑛
𝑖𝑖=1 , ∆𝑲𝑲𝑠𝑠 = ∑ 𝑻𝑻𝑇𝑇𝛼𝛼𝑠𝑠𝑠𝑠𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

𝑖𝑖=1 𝑻𝑻 and ∆𝑲𝑲𝑏𝑏 = ∑ 𝑻𝑻𝑇𝑇𝛼𝛼𝑏𝑏𝑏𝑏𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑛𝑛
𝑖𝑖=1 . The following 

relation can be obtained by substituting Eq. (16) into Eq. (29) 

∆𝑼𝑼 = �𝑲𝑲�−1𝑻𝑻𝑇𝑇𝛼𝛼𝑐𝑐𝑐𝑐𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑲𝑲�−1𝑭𝑭
𝑛𝑛

𝑖𝑖=1

+ �𝑲𝑲�−1𝑻𝑻𝑇𝑇𝛼𝛼𝑠𝑠𝑠𝑠𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑲𝑲�−1𝑭𝑭
𝑛𝑛

𝑖𝑖=1

+ �𝑲𝑲�−1𝑻𝑻𝑇𝑇𝛼𝛼𝑏𝑏𝑏𝑏𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑲𝑲�−1𝑭𝑭
𝑛𝑛

𝑖𝑖=1

    

= ∑ 𝛼𝛼𝑐𝑐𝑐𝑐𝑲𝑲�𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 + ∑ 𝛼𝛼𝑠𝑠𝑠𝑠𝑲𝑲�𝑠𝑠𝑠𝑠𝑛𝑛

𝑖𝑖=1 + ∑ 𝛼𝛼𝑏𝑏𝑏𝑏𝑲𝑲�𝑏𝑏𝑏𝑏𝑛𝑛
𝑖𝑖=1          (30) 

where 𝑲𝑲�𝑐𝑐𝑐𝑐 = 𝑲𝑲�−1𝑻𝑻𝑇𝑇𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑲𝑲�−1𝑭𝑭, 𝑲𝑲�𝑠𝑠𝑠𝑠 = 𝑲𝑲�−1𝑻𝑻𝑇𝑇𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑲𝑲�−1𝑭𝑭 and 𝑲𝑲�𝑏𝑏𝑏𝑏 = 𝑲𝑲�−1𝑻𝑻𝑇𝑇𝑲𝑲�𝑒𝑒𝑒𝑒𝑒𝑒𝑻𝑻𝑲𝑲�−1𝑭𝑭. In practice, 
there are only a limited number of measurements available. These measurements are as follows 

𝑼𝑼𝑚𝑚 = 𝑩𝑩𝑩𝑩            (31) 

where 𝑼𝑼𝑚𝑚 is the vector of measured responses, 𝑩𝑩 is the Boolean matrix and 𝑼𝑼 is the vector of displacements. 
An error is defined based on the differences of the analytical and measured displacement vectors of the 
structure before and after damage as follows  

𝑒𝑒(𝜶𝜶𝑐𝑐 ,𝜶𝜶𝑠𝑠,𝜶𝜶𝑏𝑏) = 𝑩𝑩∆𝑼𝑼− ∆𝑼𝑼𝑚𝑚        (32) 

in which ∆𝑼𝑼𝑚𝑚 is the discrepancy of the measured displacements of the structure from intact to damaged 
states.  The proposed algorithm is derived by the minimization of  a least square function [29] in Eq. (32) as 
given  

𝐽𝐽(𝜶𝜶𝑐𝑐 ,𝜶𝜶𝑠𝑠,𝜶𝜶𝑏𝑏) =
1
2
�‖𝑒𝑒(𝜶𝜶𝑐𝑐 ,𝜶𝜶𝑠𝑠,𝜶𝜶𝑏𝑏)‖2
𝑛𝑛

𝑖𝑖=1

 

= 1
2

  �∑ 𝛼𝛼𝑐𝑐𝑐𝑐𝑩𝑩𝑲𝑲�𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 + ∑ 𝛼𝛼𝑠𝑠𝑠𝑠𝑩𝑩𝑲𝑲�𝑠𝑠𝑠𝑠𝑛𝑛

𝑖𝑖=1 + ∑ 𝛼𝛼𝑏𝑏𝑏𝑏𝑩𝑩𝑲𝑲�𝑏𝑏𝑏𝑏𝑛𝑛
𝑖𝑖=1 − ∆𝑼𝑼𝑚𝑚�

2       (33) 
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where 𝑒𝑒 is the Euclidean norm, 0 ≪ 𝛼𝛼𝑐𝑐𝑐𝑐,𝛼𝛼𝑠𝑠𝑠𝑠,𝛼𝛼𝑏𝑏𝑏𝑏 ≪ 1 and 𝑖𝑖 = 1,2, … . ,𝑛𝑛. Banan et al [30, 31] employed the 
recursive quadratic programming (RQP) method to solve the least square minimization function. In this study, 
this method has been employed to solve the Eq. (33) problem that leads to determining the damage 
indicators as 

𝐽𝐽(𝜶𝜶) = 1
2
𝜶𝜶𝑻𝑻𝑲𝑲��𝜶𝜶 − ∆𝑼𝑼𝑚𝑚

𝑇𝑇 𝑲𝑲��𝜶𝜶+ 1
2
∆𝑼𝑼𝑚𝑚

𝑇𝑇 ∆𝑼𝑼𝑚𝑚 =  𝐽𝐽𝐽𝐽(𝜶𝜶) + 1
2
∆𝑼𝑼𝑚𝑚

𝑇𝑇 ∆𝑼𝑼𝑚𝑚     (34) 

in which 𝜶𝜶 = {𝛼𝛼𝑐𝑐𝑐𝑐 𝛼𝛼𝑠𝑠𝑠𝑠 𝛼𝛼𝑏𝑏𝑏𝑏, 𝑖𝑖 = 1,2, … ,𝑛𝑛}𝑇𝑇, 𝑲𝑲�� = {𝑩𝑩𝑲𝑲�𝑐𝑐𝑐𝑐 𝑩𝑩𝑲𝑲�𝑠𝑠𝑠𝑠 𝑩𝑩𝑲𝑲�𝑏𝑏𝑏𝑏, 𝑖𝑖 = 1,2, … ,𝑛𝑛} and 𝐽𝐽𝐽𝐽(𝜶𝜶) =
1
2
𝜶𝜶𝑻𝑻𝑲𝑲��𝜶𝜶 − ∆𝑼𝑼𝑚𝑚

𝑇𝑇 𝑲𝑲��𝜶𝜶. Eq. (34) is the proposed algorithm and must be updated for the different damage 
scenarios. In a case with one type of damage, Eq. (32) can be represented as 

𝑒𝑒�𝜶𝜶𝑐𝑐,𝑏𝑏,𝑠𝑠� = 𝑩𝑩∆𝑼𝑼− ∆𝑼𝑼𝑚𝑚 = 𝑩𝑩∑ 𝛼𝛼𝑐𝑐,𝑏𝑏,𝑠𝑠𝑠𝑠  𝑲𝑲�𝑐𝑐,𝑏𝑏,𝑠𝑠𝑠𝑠
𝑛𝑛
𝑖𝑖=1 − ∆𝑼𝑼𝑚𝑚     (35) 

where the subscript 𝑐𝑐, 𝑏𝑏, 𝑠𝑠 denotes using either a concrete slab, a bonding interface or a steel girder, 𝜶𝜶𝑐𝑐,𝑏𝑏,𝑠𝑠 
and 𝑲𝑲�𝑐𝑐,𝑏𝑏,𝑠𝑠 are the damage indicator and intact stiffness matrix, respectively. The RQP is applied to minimize 
𝐽𝐽𝐽𝐽(𝛼𝛼) by assuming 𝜶𝜶0 = [0 0  … 0]𝑇𝑇as the initial value for damage index. The outputs are the damage 
index vector 𝜶𝜶 obtained from minimizing 𝐽𝐽𝐽𝐽(𝜶𝜶) (starting from first the iteration, 𝑟𝑟 = 1), and the value of the 
objective function (VOB). These damage indices and the VOB are used to define two errors as given: 

𝐸𝐸𝐸𝐸1 = VOB + 1
2
∆𝑼𝑼𝑚𝑚

𝑇𝑇 ∆𝑼𝑼𝑚𝑚        (36) 

𝐸𝐸𝐸𝐸2 = ‖𝜶𝜶𝑟𝑟+1−𝜶𝜶𝒓𝒓‖
‖𝜶𝜶𝑟𝑟‖

 × 100%          (37) 

in which 𝐸𝐸𝐸𝐸1 and 𝐸𝐸𝐸𝐸2 represent errors 1 and 2, respectively;  𝜶𝜶𝑟𝑟+1 and 𝜶𝜶𝑟𝑟 are the damage indices resulting 
from two consecutive iterations. The problem is solved when both errors are less than the given tolerances 
of 10−20 and 10−6, respectively. Otherwise, let 𝜶𝜶0 = 𝜶𝜶𝑟𝑟+1, and repeat the above procedure. Further 
expansion of the damage algorithm is presented when two types of damage exist concurrently in concrete 
and steel, concrete and bonding, and steel and bonding. For damage in concrete and steel, Eq. (32) is updated 
as 

𝑒𝑒(𝜶𝜶𝑐𝑐 ,𝜶𝜶𝑠𝑠) = 𝑩𝑩∆𝑼𝑼− ∆𝑼𝑼𝑚𝑚 = 𝑩𝑩�∑ 𝛼𝛼𝑐𝑐𝑐𝑐 𝑲𝑲�𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 + ∑ 𝛼𝛼𝑠𝑠𝑠𝑠 𝑲𝑲�𝑠𝑠𝑠𝑠𝑛𝑛

𝑖𝑖=1 � − ∆𝑼𝑼𝑚𝑚    (38) 

When one of damage occurs in bonding and another occurs in concrete or steel, Eq. (32) is expressed as 

𝑒𝑒�𝜶𝜶𝑐𝑐,𝑠𝑠,𝜶𝜶𝑏𝑏� = 𝑩𝑩∆𝑼𝑼− ∆𝑼𝑼𝑚𝑚 = 𝑩𝑩�∑ 𝛼𝛼𝑐𝑐,𝑠𝑠𝑠𝑠 𝑲𝑲�𝑐𝑐,𝑠𝑠𝑠𝑠
𝑛𝑛
𝑖𝑖=1 + ∑ 𝛼𝛼𝑏𝑏𝑏𝑏  𝑲𝑲�𝑏𝑏𝑏𝑏𝑛𝑛

𝑖𝑖=1 � − ∆𝑼𝑼𝑚𝑚     (39) 

where the subscript 𝑐𝑐, 𝑠𝑠 denotes using either concrete or steel. In this case, however, the identification of 
bonding damage from the abovementioned procedure is not straightforward because the contribution of 
bonding stiffness is very small in the global stiffness matrix of the composite beam. A multiplier is defined 
based on the Newton iteration method [32] to normalize the bonding damage indicator gradient 
�𝛼𝛼𝑏𝑏𝑏𝑏𝑟𝑟+1 − 𝛼𝛼𝑏𝑏𝑏𝑏𝑟𝑟�, as given: 

𝛽𝛽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = �𝑩𝑩∑ 𝑲𝑲�𝑐𝑐,𝑠𝑠𝑠𝑠
𝑛𝑛
𝑖𝑖=1 �

�𝑩𝑩∑ 𝑲𝑲�𝑏𝑏𝑏𝑏𝑛𝑛
𝑖𝑖=1 �

         (40) 

where subscript 𝑐𝑐𝑐𝑐, 𝑠𝑠𝑠𝑠 denote multiplier for the case of concrete and bonding or steel and bonding, 
respectively. Moreover, in case of simultaneous triple damage, Eq. (32) can be defined as 

𝑒𝑒(𝜶𝜶𝑐𝑐 ,𝜶𝜶𝑠𝑠,𝜶𝜶𝑏𝑏) = 𝑩𝑩∆𝑼𝑼− ∆𝑼𝑼𝑚𝑚 = 𝑩𝑩�∑ 𝛼𝛼𝑐𝑐𝑐𝑐  𝑲𝑲�𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 +∑ 𝛼𝛼𝑠𝑠𝑠𝑠  𝑲𝑲�𝑠𝑠𝑠𝑠𝑛𝑛

𝑖𝑖=1 +∑ 𝛼𝛼𝑏𝑏𝑏𝑏  𝑲𝑲�𝑏𝑏𝑏𝑏𝑛𝑛
𝑖𝑖=1 � − ∆𝑼𝑼𝑚𝑚        (41) 

and the aforementioned multiplier in Eq. (40) is expressed as 

𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑩𝑩∑ 𝑲𝑲�𝑐𝑐𝑐𝑐+𝑛𝑛
𝑖𝑖=1 𝑩𝑩∑ 𝑲𝑲�𝑠𝑠𝑠𝑠𝑛𝑛

𝑖𝑖=1 �
�𝑩𝑩∑ 𝑲𝑲�𝑏𝑏𝑏𝑏𝑛𝑛

𝑖𝑖=1 �
        (42) 

in which the subscript 𝑐𝑐, 𝑏𝑏, 𝑠𝑠 indicates a triple damage multiplier.    

 

4. Results and Discussion 

4.1. Model validation 
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The preliminary aim is to develop a reliable baseline FE model that can represent the real structure of 
interest. To this end, the FE model of the steel-concrete composite beam is built through numerical modelling 
in MATLAB based on detailed mathematical formulations presented in Section 2.2. The static responses of 
this model in terms of different loading locations, bond interactions and damage scenarios are to be used 
specifically for the damage identification using the proposed algorithm. However, to obtain the baseline 
model, no damage and bond slip are taken into account for this analysis. This analytical FE model is validated 
by adapting its maximum displacements with those obtained from the experimental testing as well as a FE 
model developed using ABAQUS. The beam models considered for either of FE and experimental models are 
equivalent in the geometrical and material properties. The concrete slab length is 6000mm with 1000mm 
width and 150mm depth. The steel girder used is the standard section 460 UB 74.6 with 6000mm length. The 
values of Young’s modulus and density for concrete and steel are 𝐸𝐸𝑐𝑐 = 32000 𝑀𝑀𝑀𝑀𝑀𝑀, 𝜌𝜌𝑐𝑐 = 2700 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄ , 
𝐸𝐸𝑠𝑠 = 210000 𝑀𝑀𝑀𝑀𝑀𝑀 and 𝜌𝜌𝑠𝑠 = 7800 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄ , respectively. In each model, the beam is subjected to a static 
load of 𝑃𝑃 = 10000 𝑁𝑁 first at the middle of the beam and then at 𝐿𝐿/3 from the left support, and the 
displacements are measured from different point along the span. In Figure 3, dash and red colour lines 
labelled FE-M show the displacements obtained from our developed FE model using MATLAB. 
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Figure 3. Displacements along the beam obtained from FE modeling in MATLAB (FE-M), ABAQUS (FE-A) and 
experimental testing (Ex-S) 

 

a) Experimental model 

The structural model used in this study is a simply supported steel-concrete composite beam with a 6000mm 
length from support to support (Figure 4), which has been designed according to Australian Standard [33, 
34]. Two layers of steel bars including 4×N12 @ 240mm and 25×N12 @ 240mm in longitudinal and transverse 
directions, respectively, have been embedded into the concrete slab. The shear connectors are tiered in two 
lines with 95mm spacing and 47.5mm offsets from two sides of the steel girder top flange edges. Despite the 
on-centre spacings between the shear connectors in each line are 460mm, the total numbers of shear 
connectors in one line is 14 and in another line is 13. This is because the end spacings in one line is 110mm 
and another line is 340mm. Figure 4 shows the composite beam experimental model and the plan view of 
top flange for the shear connector’s alignments.  
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Figure 4. The experimental model (a) steel-concrete composite specimen and (b) top plan view of the specimen 

showing the shear connector’s alignments (length in mm) 
 

The results obtained from experimental tests have been presented in Figure 3 (labelled as Ex-S), in which 
blue colour lines show the beam displacement when subjected to static load applied at the middle of span 
(Figure 3.a) and 𝐿𝐿/3 from the left support (Figure 3.b). Clearly, there is a very good agreement between our 
FE model developed using MATLAB (red lines) and our experimental result (blue line).  

 

b) FE model developed using ABAQUS 

A FE model has been developed using commercial software ABAQUS [26] as presented in Figure 5. To 
simulate the concrete slab and steel girder as composite layers, elastic isotropic solid elements have been 
used with the aforementioned properties. To model the bonding interface, a zero-thickness cohesive 
element based on traction separation law [35, 36] has been taken into account that is distributed in the 
interfacial of two layers. This cohesive element is based on the three fracture modes including vertical 
separation, shear slip and out of plane shear, and for each mode specific stiffness properties are introduced. 
In Figure 3, black and green colour lines labeled FE-A show the displacements obtained from our developed 
FE model using ABAQUS.  

 

 
Figure 5. The FE model of steel-concrete composite beam; displacements along the beam subjected to mid-span point 

load 
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For the FE model developed in MATLAB and ABAQUS, different mesh sizes have been considered to enhance 
the validity of the numerical analysis. In order to conform maximum displacements of two models, the FEs 
of numerical models have been refined as 12, 24, 36, 48 and 60 and then the displacements due to the static 
loadings have been collected. Figure 3 shows the displacements obtained from the FE model developed in 
MATLAB and their comparison to the results of experimental tests (Figure 3.a and 3.b) and FE model using 
ABAQUS (Figure 3.c and 3.d). As evidenced in Figure 3 and Table 1, the differences between the maximum 
displacements for the FE models with 12 FEs are greater than others with smaller mesh sizes. Since the 
discrepancies after the model with 24 FEs are very small, and the best match with the experimental results 
is given in the model with 24 FEs. 
 

Table 1. Maximum displacements (in m) measured from the numerical models in MATLAB (FE-M) and ABAQUS (FE-A), 
and the experimental model (Ex-S) 

Measurement Maximum Displacements 
Number of FEs 12 24 36 48 60 
Load applied at L/2 FE-M 2.89x10-3 2.64 x10-3 2.60 x10-3 2.58 x10-3 2.57 x10-3 

FE-A 2.65 x10-3 2.64 x10-3 2.63 x10-3 2.62 x10-3 2.61 x10-3 
Ex-S  - 2.73 x10-3 - - - 

Load applied at L/3 FE-M 2.46 x10-3 2.27 x10-3 2.23 x10-3 2.22 x10-3 2.21 x10-3 
FE-A 2.45 x10-3 2.26 x10-3 2.24 x10-3 2.21 x10-3 2.21 x10-3 
Ex-S  - 2.32 x10-3 - - - 

 

c) Convergence analysis 

In order to obtain an optimal number of FEs for the numerical model, a further study has been carried out in 
terms of convergence of mesh sizes and static parameters. In Figure 6, the number of FEs has changed from 
6 to 60 and the displacement and strain values have been measured. It is shown that while the maximum 
displacements and strains gradually improved by increments of the number of FEs, there are immediate 
falling down from models with FE numbers 6 to 20 in both cases. The curves are almost flatted after 24 FEs 
that are signs for selecting the optimal number of FEs for the model. Therefore, 24 elements are used in the 
numerical modelling for the damage identification. 
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Figure 6. Convergence analysis (a) the maximum displacement and (b) the maximum strain in terms of number of FEs 

 

4.2. Verification of the proposed method 

The numerical model with 24 FEs of equal size are considered in the FE modelling. Depending on the damage 
case, the steel-concrete composite beam subjected to a static load 𝑃𝑃 = 10000 𝑁𝑁 at 𝐿𝐿/3, 𝐿𝐿/2 and 2𝐿𝐿/3 and 
the static responses are measured from 12, 24 and 48 points spread equally along the length of the beam. 
Note that the reason for choosing even numbers for measurement is to avoid measurement points exactly 
on the two-end supports. The analytical responses are simulated by adding the white noise as: 

𝒖𝒖 = 𝒖𝒖𝑎𝑎(1 + 𝑁𝑁𝑙𝑙𝑁𝑁𝑛𝑛)        (43) 

in which 𝒖𝒖 is the simulated measurements and 𝒖𝒖𝒂𝒂 is the analytical responses. 𝑁𝑁𝑙𝑙  and 𝑁𝑁𝑛𝑛 are the noise level 
and the zero mean normally distribution vector, respectively. To determine the reliability of the proposed 
method, different cases (Figure 7) of single, double and triple damage are introduced by defining the damage 
index vectors with a size equal to the FE’s number of the beam. Table 2 is a summary of different damage 
cases. First, the effects of measurement noise and loading locations in the single damage case are 
investigated, and then the sensitivity of static parameters to measurement noise for the bonding case is 
studied. Following this, sporadic and neighbour damage types are considered for the double damage case, 
and then triple damage for sporadic damage type is studied in terms of different numbers of measurements 
and FEs using displacements and strains. It is worth mentioning that in the cases of single and double damage 
with different noise levels, since it is impossible to identify the true damage index, the results have been 
compared with the identified results with no measurement noise. 

Case 1 21 Case 2 21 Case 3 21

Case 4.b 20 21 Case 5.a  4 Case 5.a  717 21 8 33 34 41 42

Case 4.a  4 21

 
Figure 7. Schematic of the damage cases introduced for different elements; red colour denotes damage on the 

concrete (top), bonding (middle) and steel (bottom), each FE element number stands in the circle on top  

 

Table 2. The summary of proposed damage cases; D, S and Sp denotes displacement, strain and sporadic, respectively.  

Cases Case 1 Case 2 Case 3 Case 4 Case 5 
Elements Concrete Steel Bonding Concrete 

Steel 
Concrete 
Steel 
Bonding 

FEs no. a) 24 
b) 24 

a) 24 
b) 24 

a) 24 
b) 24 

a) 24 
b) 24 

a) 24 
b) 48 

Load locations (L) a) 1/2  
b) 1/3, 1/2, 2/3 

a) 1/2  
b) 1/3, 1/2, 2/3 

a) 1/2  
b) 1/3, 1/2, 2/3 

a) 1/2  
b) 1/2 

a) 1/2  
b) 1/2 

Static parameters a) D 
b) D 

a) D 
b) D 

a) D 
b.1) D 
b.2) S 

a) D 
b) D 

a.1) D 
a.2) S 
b) S 

Noise (%) a) 0, 1, 5, 10 
b) 5 

a) 0, 1, 5, 10 
b) 5 

a) 0, 1, 5, 10 
b.1) 5 
b.2) 5 

a) 0, 1, 5, 10 
b) 0, 1, 5, 10 

a.1) 5 
a.2) 5 
b) 5 

Measurements 
number 

a) 24 
b) 24 

a) 24 
b) 24 

a) 24 
b.1) 24 

a) 24 
b) 24 

a.1.1) 12 
a.1.2) 24 

a.2.3) 48 
b.1) 12 
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b.2) 24 a.1.3) 48 
a.2.1) 12 
a.2.2) 24 

b.2) 24 
b.3) 48 

Damage types a) Single 
b) Single 

a) Single 
b) Single 

a) Single 
b.1) Single 
b.2) Single 

a) Sporadic 
b) Neighbour 

a.1.1) Sp 
a.1.2) Sp 
a.1.3) Sp 
a.2.1) Sp 
a.2.2) Sp 

a.2.3) Sp 
b.1) Sp 
b.2) Sp 
b.3) Sp 

 

4.2.1. Single damage 

4.2.1.1. Case 1: Damaged concrete slab 

In this case, a steel-concrete composite beam without bonding slip is considered. It is assumed that damage 
occurs at a 10% reduction of elemental stiffness in Element 21 where 𝜶𝜶𝑐𝑐 = {0, 0, … , 0, 0, 0.1, 0, 0, 0}𝑇𝑇. The 
displacement values obtained from 24 measurements located equally along the beam have been polluted by 
noises of 1, 5 and 10 percent. This analysis is repeated for the static loads at 𝐿𝐿/3, 𝐿𝐿/2 and 2𝐿𝐿/3. Since the 
identification of true damage index is not possible, the results are compared with the identified results with 
no measurement noise. 

 

  
Figure 8. The damage indices identified for the concrete slab from the displacement measurements in terms of (a) the 

noise level and (b) different load locations 

 

0
24

0.02

21

0.04

18 Interface

D
am

ag
e 

In
de

x

15

0.06

(a)

No. of Element

12

0.08

Composite Layers

Steel9

0.1

6
3 Concrete

0% Noise
1% Noise
5% Noise
10% Noise



14 
 

Figure 8 shows the damage indices identified for the concrete slab where a single damage has been 
introduced close to the left hand side support. This analysis is first carried out in terms of different noise 
levels when a load is applied at the middle of the span; the results are then compared to the approximate 
true value (Figure 8.a). Here, the damage indices are very close to those without noise, which indicates they 
are insensitive to the contaminated measurements. Second, the effect of static load locations are considered 
in the analyses with 5% of white noise (Figure 8.b). It is shown that the load location has no significant effect 
on the damage identification. The results presented in Figure 8 confirm effectiveness of the proposed method 
in determining the damage location. 

 

4.2.1.2. Case 2: Damaged steel girder 

In this case, a perfect connection between a steel girder and a concrete slab is considered. It is assumed that 
10% damage occurs at Element 21 where 𝜶𝜶𝑠𝑠 = {0, 0, … , 0, 0, 0.1, 0, 0, 0}𝑇𝑇. The displacements obtained from 
24 measurements located equally along the beam have been affected by 1, 5 and 10 percent noises. This 
analysis is established in terms of the noise level and the static load locations. 

 

 
Figure 9. The damage indices identified for the steel girder from the displacement measurements in terms of (a) the 

noise level and (b) different load locations 

 

Figure 9 shows the damage indices identified for the steel girder where a single damage exists close to the 
left hand side support. This analysis has been established in terms of different noise levels when a load is 
applied at the middle of the span, and the results are compared with the approximate true value (Figure 9.a); 
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here, the identified damage indices are very close to true values, which indicate they are insensitive to the 
noisy measurements. Moreover, the effect of static load locations are considered in the analyses with 5% of 
white noise (Figure 9.b); here, the damage indices are almost the same that demonstrates the load location 
does not affect the damage indices.  

 

4.2.1.3. Case 3: Bonding loss 

A steel-concrete composite beam with a bonding loss is considered in this case. It is assumed that 15% of 
bonding damage has occurred at Element 21 where 𝜶𝜶𝑏𝑏 = {0, 0, … , 0, 0, 0.15, 0, 0, 0}𝑇𝑇. The displacements 
obtained from 24 measurements located equally along the beam have been contaminated with noise at 1, 5 
and 10 percent. This analysis is repeated for the loading at 𝐿𝐿/3, 𝐿𝐿/2 and 2𝐿𝐿/3. 

 

 
Figure 10. The damage indices identified for the bonding from the displacement measurements in terms of (a) the 

noise level and (b) different load locations 

 

Figure 10 shows the damage indices identified for the interface when a single damage is assumed. In Figure 
10.a, the analysis has been established in terms of different noise levels when a load is applied at the middle 
of the span; the results are then compared with the approximate true value. Although the damage in 
interface has been identified with a reasonable error, this small severity has no effect on the upper and lower 
layers. This is realistic because it is demonstrated in reference [12] that the contribution made by the bonding 
stiffness in the composite beam stiffness is very small and consequently any damage that defined by 
reduction in the interface stiffness has less effect on the composite layers stiffness. Since there are some 
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incoherencies in the damage indices when the noise levels are changed, this procedure is iterated using strain 
values. Figure 11 shows that the damage indices identified from the strain measurements give a better result 
than the previous case. Here the identified damage indices are almost accurate, which shows they are 
insensitive to the polluted measurements. The effect of static load locations are also considered in the 
analyses in the presence of 5% white noise (Figure 10.b). It is shown that the load location changes do not 
have remarkable effect on the bonding damage indices. In Figures 8.b, 9.b and 10.b, although the location of 
the load has no significant effect on the damage indices, vicinity of the load location to the damage and 
support may well help to identifying the damage. Furthermore, the results shown in Figures 8-11 confirm 
that the proposed method can determine effectively the location of damage may occur individually in each 
layers of the composite beam. 

 
Figure 11. The damage indices identified for the bonding from the strain measurements in terms of noise levels 

 

4.2.2. Double damage  

4.2.2.1. Case 4: Damaged concrete slab and steel girder 

The steel-concrete composite beam without bonding slip is considered in this case. The effects of multiple 
damage in sporadic and neighbour elements are investigated separately. The sporadic damage (Figure 7, 
Case 4.a) occurs at Element 21 in the concrete slab, 𝜶𝜶𝑐𝑐 = {0, 0, … , 0, 0, 0.1, 0, 0, 0}𝑇𝑇and Element 4 in the 
steel girder, 𝜶𝜶𝑠𝑠 = {0, 0, 0, 0.1, … , 0, 0}𝑇𝑇.  
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Figure 12. The damage indices identified for the concrete slab and steel girder from the displacement measurements 

in terms of (a) two distributed elements and (b) two grouped elements 

 

Two neighbour Elements (Figure 7, Case 4.b), 20 for the steel girder and 21 for the concrete slab, 𝜶𝜶𝑐𝑐,𝑠𝑠 =
{0, 0, … , 0, 0.1, 0.1, 0, 0, 0}𝑇𝑇 are then subjected to damage. The composite beam is under the same static 
load at the middle of the span. Three levels of noise 1%, 5% and 10% are added to the displacement responses 
measured by 24 measurements located evenly along the beam. Figure 12 shows the damage indices 
identified for the concrete slab and steel girder. These analyses are in terms of different noise levels; the 
results confirm that the proposed method can detect multiple damage that may occur in different spots or a 
zone. 

 

4.2.3. Triple damage 

4.2.3.1. Case 5: Damage on concrete, steel and bonding 

a) Effects of static parameters and the number of measurements  

The effects of concurrent multiple damages on the concrete slab, steel girder and bonding interface are 
considered in this section, albeit identification in this case (Figure 7, Case 5.a)  is complicated due to 
interaction between the multiple type damage. However, this is used to examine how well the proposed 
method can detect each layer independently. It is assumed here that bonding damage occurs at Element 4, 
𝜶𝜶𝑏𝑏 = {0, 0, 0, 0.15, … , 0}𝑇𝑇, and damage of the concrete slab and steel girder are in Elements 21 and 17, 
respectively, 𝜶𝜶𝑐𝑐,𝑠𝑠 = {0, 0, 0 , 0.1, … , 0.1, … , 0}𝑇𝑇.  

Figure 13 shows the damage indices identified from the displacement values obtained separately from 12, 
24 and 48 measurements, and with 5% noise. The damage indices for the concrete slab and steel girder are 
very close to the introduced (true) value, but there are unexpected increments when the number of 
measurements changes, and moreover, there are some inconsistencies in the other elements possibly due 
to the effect of bonding damage. A smeared spot has been identified for bonding damage. Since the 
contribution made by the bonding stiffness in the composite beam stiffness is very small, the severity of the 
damage from the concrete slab and steel girder are greater than the bonding damage. Therefore, identifying 
the bonding damage is more complicated, and must be considered more precisely. 
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Figure 13. The damage indices identified for the concrete slab, steel girder and bonding from the displacement 

measurements in terms of different number of measurements 

 

Case 3 shows that the damage indices from the strain values are more explicit and less sensitive to noise 
(Figure 11) compared to that of the displacements (Figure 10.a), so the identification process is repeated 
using strain values to reach more reliable values. Figure 14 shows the identified damage indices from the 
strain values as obtained separately from 12, 24 and 48 measurements. Like the previous case, 5% noise is 
also added to the strain values. The smeared zones have almost eased off, thus confirming the effectiveness 
of stain parameter in the damage identification when the beam is slightly deformed. Another important 
contribution to this analysis is the number of measurements. The results confirm that the increment of the 
measurements does not necessarily improve the identified damage indices, but it does lead to interaction 
between the responses measured in a noisy environment. Therefore, to obtain a reliable damage 
identification, it is important to select an optimal number of measurements. 

 
Figure 14. The damage indices identified for the concrete slab, steel girder and bonding from the strain measurements 

in terms of different number of measurements  

 

b) Effects of mesh sizes 

In order to study the effect of the FE mesh size on the identified damage indices, each FE is refined by dividing 
it into two elements, so the overall number of FEs becomes 48 with similar damage parameters for the 
concrete slab, steel girder and bonding interface. This means the layout of the damaged elements remains 
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constant but their quantities are doubled. Therefore, the introduced damage vector has values for the 
concrete slab in Elements 41 and 42, for the steel girder in Elements 33 and 34, and for the bonding in 
Elements 7 and 8 (Figure 7, Case 5.b). The strain responses measured from 12, 24 and 48 measurements are 
used for the damage identification with 5% added noise. The concurrent multiple damage is also considered 
in this case and the identified results are presented independently. Figure 15 shows the identified damage 
indices for the composite beam with 48 FEs that are presented in terms of different numbers of 
measurements. 

 
Figure 15. The damage indices identified for the concrete slab, steel girder and bonding from the strain measurements 

in terms of different numbers of measurements  

 

The results show that the identified damage indices have almost the same values as those presented in Figure 
13, while the number of FEs and measurements are changed regularly. When 12 measurements are used for 
24 FEs, the error in the identification is less than those with 48 FEs. The accuracy of the results identified in 
the case with 48 measurements (Figure 15), is better than the others. The small variations in the results 
identified on the other elements through the beam could be due to the effect of the bonding loss. The results 
from Figures 14 and 15 confirm that the increments of FEs and measurements do not necessarily enhance 
the accuracy of the damage identification. An acceptable relationship between the numbers of FEs and 
measurements must be taken considered in order to give the best results, particularly when the bonding loss 
is the main issue. 

 

5. Suggestion for practical application 

The steel-concrete composite bridge deck is widely used in bridge constructions in Australia. This is due to 
the unique characteristics of steel-concrete composite elements such as being lightweight with high stiffness 
and strength. When an external loading outreaches the bonding of a steel-concrete composite member (as 
a component of a structural system), it results a relative displacement between its layers that can affect the 
whole system. The damage identification of complex structures such as bridges are faced with difficulties due 
the large quantity of analytical model that leads to inaccuracy in the assessment. To address this issue, one 
way is to consider a smaller part of the structure as a substructure in the analysis. This is useful because the 
number of unknown parameters is also reduced. Therefore, the steel-concrete composite members are 
considered individually as the substructures of a system and the proposed method can be applied for 
identifying their possible damage. 

 

6. Conclusion 
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In this paper, a steel-concrete composite element with a bonding interface has been developed based on the 
displacement-based FE formulation, and a damage identification method based on this composite element 
has been proposed. The static responses are acquired at undamaged and different cases of damaged states 
by adding the white noise. The proposed algorithm is applied for the damage identification of the composite 
beam form the static responses obtained from the analytical FE model. The findings from this numerical 
analysis are as follows: 

• This method is effective and accurate to detect small damage in the concrete slab, steel girder and 
bonding interface of the composite beam, even with 10% of measurement noise. 

• This method is robust to the measurement noise, and the location of loading has no significant effect 
on the identified results.  

• The effect that the number of measurements has on both displacement and strain responses has also 
been investigated. It has been shown that the identification is more accurate when the number of 
measurements are adequate than the number of FEs. 

•  The identification from strain responses is more accurate than with displacement measurements 
because they are not as sensitive to the measurement noise.  

• The effect of FE mesh sizes has been investigated, and it is shown that the increment of FEs does not 
give a good result unless the number of measurements is also increased.    
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