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Abstract. This paper presents a study of the static behavior of steel-concrete composite beams
with different types of damage. Since the behavior of a composite beam under load is governed
by the shear connection, it is important to investigate the overall structural response due to
different levels of damage in the interface and composite layers. A finite element (FE) model of
a steel-concrete composite beam is developed based on two Euler-Bernoulli beams as the com-
posite layers coupled with a deformable shear connection. Three different damage indices are
defined for the concrete slab, the steel girder, and the distributed shear connection and then
embedded into the stiffness matrix of the composite beam. This model is validated by comparing
its load-displacement behavior with an equivalent FE model developed using the commercial
FE software ABAQUS. The impact that the loading location has on the results is then investi-
gated. A convergence study is also carried out in terms of the displacements and strains to
determine the number of composite beam FEs. The maximum displacements and strains of com-
posite beams with different types and levels of damage are then investigated. The numerical
analysis showed that after an initial reduction when the number of FEs increase, the changes
in displacement and strain at each location are very small. Moreover, the bonding slip has
almost no effect on the measurements, and the changes in maximum displacement and strain
from undamaged to maximum damage are almost the same.
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1 INTRODUCTION

Assessing structural damage through dynamic and static analysis has become increasingly
popular because the dynamic and static response of a structure are functions of its physical
parameters and therefore any changes in these parameters can be reflected in the structural re-
sponses. This is why attempts have been made to evaluate the structural integrity by developing
approaches based on dynamic and static measured data. Although few studies can be found in
static-based methods, dynamic-based methods have been studied more widely because they are
easier to implement [1, 2]. Static-based methods are based on equilibrium equations where the
only significant parameter is the stiffness of a structure, which is why any reduction in stiffness
due to damage is a significant parameter for damage analysis in terms of the static responses.
A large number of measurements are needed to accurately analyse structural damage, which is
not practical, however this problem can be solved by changing the loading locations and in-
creasing the number of tests rather than the measurement sensors [3]. There are a number of
researches into static-based methods which considered beam structures, and trusses or frames
as case studies. For example, Liu and Chian [4] proposed a method to identify the elemental
properties of a truss using strain values, Sanayei et al [5] used the deflection and strain data of
a steel frame to estimate stiffness parameters, and Laory et al [6] used static measurements to
determine the number of sensors. Wang et al [ 7] examined how partial shear interaction affected
the static and dynamic response of steel-concrete composite structures, and found that bond slip
and changes to the mode shapes are the effective parameters for identifying damage.

Different models have been developed to investigate the behaviour of steel-concrete com-
posite structures, especially the effect of bond slip. Nie et al [8] studied the effects of bond slip
on the deformation of steel-concrete composite beams using its equivalent rigidity, and found
that bond slip is an effective contributor to beam deformation. Kumar et al [9] used push out
test to determine how the thickness of the adhesive layer affects the capacity of composite con-
nections. Chen et al [10] studied the static and fatigue behaviour of steel-concrete composite
beams where the shear connectors had been corroded and found that the corroded studs had
reduced the stiffness and load bearing capacity of the beams. Ayoub and Filippou [11] used an
inelastic beam element to analyse a steel-concrete composite beam with partial interaction un-
der cyclic loading and considered a shear connection with a distributed force as the interface
model. Nguyen et al [12] used an FE model to carry out a linear static analysis of a steel-con-
crete composite beam with discrete shear bonding. Since no extreme loading conditions had
been considered in most of the abovementioned studies, the displacements were very small and
therefore the uplift effects were omitted, however, the bonding slip affects the behaviour of
two-layer composite beams and must be included [12-14]. Whereas in static-based methods the
displacements and/or strains are utilized to analyse structural damage, it is necessary to inves-
tigate how these parameters change in terms of different damage types.

In this paper we have developed a steel-concrete composite element with a bonding interface
where the layers of concrete and steel are independently interpolated into a displacement based
finite element (FE) formulation. Cases with different types of damage are introduced to describe
the reduction in stiffness of a concrete slab, a steel girder, and the bonding interface. This model
is verified by comparing it with the results obtained from a similar model built using the com-
mercial FE software ABAQUS [15], where the optimal number of FEs are determined through
a convergence study. A parametric study is also carried out using displacement and strain meas-
urements. The effects that different levels of damage, and the measurements and loading loca-
tions have on the identified results are also discussed.
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2  DISPLACEMENT BASED FINITE ELEMENT FORMULATION

2.1 Equilibrium and compatibility

In this section a composite beam with two layers and a deformable shear connection is for-
mulated such that the composite beam element consists of a concrete slab on top of a steel girder
with bonding interfaces (Figure 1). The equilibrium equations for each layer are formulated by
considering bond slip and the effects of uplift [16]. In Figure 1 the subscripts ¢ and s denote
the concrete and steel, N, V, M and h are the axial force, shear force, bending moment, and the
distance between the interface and reference axes of each layer, respectively, and Dy, and D,
are the shear force (bonding slip) and transverse force (uplift) per unit length. An external dis-
tributed load P is applied vertically to the concrete slab. The equilibrium equation for the com-
posite beam section is introduced as [11]

dTF(x) — 0] F,(x) — P(x) = 0 (1)

where F(x), F,(x) and P(x) are the internal force vectors acting on the cross section, the in-
terface bonding force, and the external load vector, respectively, and d and d,, are the differen-
tial operators. Although any section of this composite beam has four unknown forces N, N;, M
and Dy, there are only three equations of equilibrium for each section, so the compatibility
equations should be merged to avoid any indeterminacy with the composite beam.
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Figure 1: Diagram of a two layered composite beam element where (c) and (s) are the concrete slab and steel
girder, respectively.

Since the same transverse displacement (no uplift) is considered for both layers of the com-
posite beam, the curvature and rotation will be the same, even though different axial defor-
mation can occur in the steel and concrete sections. The axial and transverse deformations of
the composite beam are handled by the compatibility conditions based on Euler-Bernoulli beam
theory. The compatibility conditions define deformation and displacement at the interface be-
tween the concrete slab and steel girder [11]. This relative displacement at the interface is
known as the bond slip g and can be defined as:

g = uc(x) — us(x) + hoxv(x) 2)
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where u,.(x) and u,(x) are the axial displacements of the layers of concrete and steel, and v(x)
is the transverse displacement. The response of the composite beam subjected to external loads
can be obtained with proper boundary conditions.

2.2 Stiffness matrix

The stiffness matrices for the concrete slab, steel girder, and bonding interface are used to
define the local and global stiffness matrices of the composite beam element. A continuous
spring element is considered as the interface element. The axial displacements of the composite
beam are estimated using quadratic polynomial functions, while the transverse displacements
are obtained by cubic Hermitian polynomials [17]. Two extra nodes have been added to the
middle of the concrete slab and steel girder to provide a continuous bond slip condition along
the interface. The vector of elemental nodal displacement is introduced as U =
[Uer Uz Uz Ust Usy Uz vy 6B v, 0,]T where each component represents a
degree of freedom (DOF). The composite beam element with bond slip in the interface is han-
dled by ten DOFs including a transverse and rotation in each node, and six axial displacements
(Figure 2).

Ugq » Ucg l Uc
KO B
usl u53 “52
e — — gy — — — e

Figure 2: Nodal displacements of a steel-concrete composite element with 10 DOFs

To obtain the stiffness matrices, a small displacement due to an external load is presumed to
occur and the amount of work is equal to the amount of residual internal strain energy. There-
fore, the elemental stiffness matrices k,. for the concrete, k¢ for the steel sections, and k.,
for the bonding interface are defined as:

[K€1]3><3 [K62]3X3 [Ke3]3><4
K.=K., + K., + K., = [Ke4]3><3 [K35]3x3 [Ke6]3><4 A3)

[Ke7]4-><3 [K38]4x3 [Ke9]4x4 10%10

where K, is the stiffness matrix for the steel-concrete composite element.

2.3  Definition of damage

A damage index is defined as the reduction in elemental stiffness of the composite beam
layers where:

a=1-= 4
E

where « is the damage index, and E and E are the equivalent Elastic modulus with and without
damage, respectively. When damage index is zero, there is no damage in that element (0 <
a < 1). While the composite layers are assumed to be damaged, Eq (3) can be updated using
the damage indicators as
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Ke = Kec + Kes + Keb = (1 - ac)Rec + (1 - as)l?es + (1 - ab)Reb (5)

where K, and K are the stiffness matrices of the intact concrete and steel elements, and the
subscripts ¢, s and b denote the damage indices for the concrete, steel, and bonding interfaces.
These damage indices are considered individually as scalar values embedded in the elemental
damage indices zero vectors with a size that is equal to the composite element FE numbers. A
transformation matrix T is used to assemble the global stiffness matrix from the local stiffness
matrix presented in Eq (5) as

n
K=K, +K,+K, :ZTTKeiT

n i=1 n n
= z TTK,.T + z TTK, ;T + Z TTK ;T (6)
i=1 i=1 i=1
n n n
= Z TT(]- - aci)ReciT + Z TT(l - asi)ResiT + TT(]- - abi)kebiT
i=1 i=1 i=1

where n is the number of FEs. K, K., K¢ and K, are the global stiffness matrices of the dam-
aged composite beam, concrete, steel and interface elements, and a;, a; and ay; are the ith
element damage indices of damaged concrete, steel and bonding interfaces, respectively.

3 RESULTS AND DISCUSSION

3.1 Validation of the finite element model

The structural model used in this study is a simply supported 6m long steel-concrete com-
posite beam with a concrete slab sitting on top of an I-shape steel girder with shear connectors.
The Young’s modulus and density of the concrete and steel are E. = 3200 MPa, p. =
2700 kg/m*, E; = 210000 MPa and p; = 7800 kg/m?, respectively. The geometrical char-
acteristics of the beam are shown in Figure 3.

607
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<

Figure 3: The geometrical characteristics of steel-concrete composite beam cross-section (length in mm)
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To develop a reliable baseline FE model that could represent the real structure of interest,
two equivalent FE models are constructed and their static response are compared. To this end
an FE model of the steel-concrete composite beam is modelled by FE programming in
MATLAB. This model is used for the damage identification in terms of different static loading
locations, bond interactions, and damage cases. However, to obtain the baseline model, no dam-
age and bond slip are considered in the analysis. Besides, another FE model with the same
material and geometrical properties is built using the FE software ABAQUS, as shown in Figure
4.

U, uz
+3.191e-06
-2,172e-04
-4,376e2-04
-6.580e-04
-8,784e2-04
-1,099e-03
-1,.319e-03
-1.540e-03
-1,760e-03
-1,980e-03
-2,201e-03
-2,421e-03

-2.641e-03

Figure 4: The FE model of steel-concrete composite beam showing displacements along the beam subjected to
mid-span point loads

In each case the structure is subjected to a static load where P = 10000 N at the middle of
the beam, and then at L /3 from the left support; the analytical displacements are measured from
60 points located equally along the composite beam. The validity of this analysis is enhanced
by analysing five models with 12, 24, 36, 48 and 60 FEs for each case and then the displace-
ments due to static loadings are used to compare the two FE models. Table 1 shows the maxi-
mum displacements of the steel-concrete composite beam obtained from the FE models
developed in MATLAB (FE-M) and ABAQUS (FE-A). These displacements are almost the
same for both models, showing how precise the FE model developed is by being programmed
in MATLAB.

Measurement Maximum Displacements
Number of FEs 12 24 36 48 60
3 -3 -3 -3 -3
Load applied at L2 FE-M  2.89x10 . 2.64x10 . 2.60x10 : 2.58x10 : 2.57x10 :
FE-A  2.65x10” 2.64x10~ 2.63x10~ 2.62x10~ 2.61x10"
3 3 3 3 3
Load applied at L/3 FE-M  2.46x10~ 2.27x10~ 2.23x10~ 2.22x10~ 2.21x10

FE-A  245x10° 2.26x10° 2.24x10° 221x10° 2.21x107

Table 1: Maximum displacements (in m) measured from the numerical models in MATLAB (FE-M) and
ABAQUS (FE-A)

The differences between the maximum displacements for the model with 12 FEs are greater
than those with smaller sized mesh. A convergence study has been carried out using the FE-M
in terms of different numbers of FEs, where the FEs are changed from 6 to 60 and the displace-
ment and strain values are measured.
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Figure 5: Convergence of maximum (a) displacement, and (b) strain in terms of the number of FEs

Figure 5 shows the convergence of maximum displacement and strain in terms of the number
of FEs. While these maximum displacements and strains gradually improve by increments with
the number of FEs, in both cases there is an immediate reduction in the models with FE numbers
from 6 to 20. Furthermore, since the discrepancies of the model with 24 FEs are very small, 24
elements are used in the following studies.

3.2 Parametric study

A series of parametric studies based on the static responses of the beam have been carried
out, and the behavior of the composite beam has been investigated for potential damages in
terms of variations in static parameters such as displacement and strain. The parameter that best
identifies damage is then selected. The parametric analysis is based on the displacements and
strains of the composite beam for six different cases. This consists of three cases of single dam-
age in concrete, steel and interface, two cases of double damage in the concrete-interface, and
steel-interface, and one case of triple damage in the concrete-steel-interface. These cases are
introduced as a reduction in the stiffness of an element in the composite beam.

Figure 6 shows the changes of maximum displacement and strain of the composite beam
with 24 FEs in terms of different cases of damage and reductions in stiffness. Elements number
4 from the support on the left hand side of the composite beam have been considered as the
damaged ones and a range of reduction in stiffness is applied from 0% to 90%. The static re-
sponses of the composite beam have been obtained for six different cases of damage in ten steps
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of the stiffness reductions (intact to maximum damage). Although the maximum displacements
increase when the stiffness decrease, these values are very small, particularly in the case of
bonding loss. The discrepancies in the strains are almost zero for cases with a loss of bonding.
Since the main objective is to analyse the damage on the bonding interface, the case with a
single damage on the interface (Case 3 in Figure 6) is used to select the proper parameter. It is
found that the loss of bonding interface results a minimum change in the maximum displace-
ment (Figure 6.a) and strain (Figure 6.b) from undamaged to maximum damaged states. There-
fore, in order to a reliable damage identification, both parameters could be used because their
changes are almost the same.
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Figure 6: The changes of maximum (a) displacements and (b) strains of the beam with 24 FEs due to reductions
in stiffness (from 0% to 90%) in Elements 4 for single damage (cases 1, 2 and 3), double damage (cases 4 and 5),
and triple damage (case 6)

4 REVIEW

Peer review under the responsibility of the Scientific committee of Eurodyn 2020.

5 CONCLUSION

In this paper, a numerical analysis of various cases of structural damage has been carried out
on a steel-concrete composite beam subjected to static loadings. An FE model of the composite
beam is developed by incorporating a distributed shear connection, and then different damage
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indices have been embedded into the stiffness matrix of the beam. The results indicate that the
model is reliable because the displacements are acceptable in terms of different load locations
with a similar FE model built from the commercial FE package ABAQUS. The convergence
study established to determine the optimal number of FEs for the composite beam indicates that
the discrepancies in the displacements and strains after the model with 24 FEs are very small,
and therefore 24 elements are used in the numerical analysis. The maximum displacements and
strains in the beam in various cases are also investigated and compared. It is found that the
maximum displacements and strains at each loading location remain constant after an initial
reduction when the number of FEs increase. Moreover, the bonding slip does not impact the
measurements very much, and the change of maximum displacements and strains from undam-
aged to maximum damage are almost the same.
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