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Abstract 19 

Symbiosis between reef-building corals and unicellular algae (Symbiodiniaceae) fuels 20 

the growth and productivity of corals reefs. Capacity for Symbiodiniaceae to fix inorganic 21 

carbon (Ci) and translocate carbon compounds to the host is central to coral health, but how 22 

these processes change for corals thriving in environmental extremes remains largely 23 

unresolved. We investigate how a model coral – Pocillopora acuta – persists from a reef habitat 24 

into an adjacent extreme mangrove lagoon on the Great Barrier Reef. We combine respirometry 25 

and photophysiology measurements, Symbiodiniaceae genotyping, and 13C labelling to 26 

compare P. acuta metabolic performance across habitats, in relation to the Ci uptake and 27 

translocation capacity by symbionts’ autotrophy. We show that differences in P. acuta 28 

metabolic strategies across habitats align with a shift in dominant host-associated 29 

Symbiodiniaceae taxon, from Cladocopium in the reef to Durusdinium in the mangroves. This 30 

shift corresponded with a change in ‘photosynthetic strategy’, with P. acuta in the mangroves 31 

utilising absorbed light for photochemistry over non-photochemical quenching. Mangrove 32 

corals translocated similar proportions of carbon compared to the reefs, despite a lower Ci 33 

uptake. These trends indicate that coral survival in mangrove environments occurs through 34 

sustained translocation rate of organic compounds from coral symbionts to host.  35 
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Introduction 36 

The ecological success of reef-building corals resides on their ability to establish and 37 

maintain metabolic exchanges through an effective symbiotic association with dinoflagellates 38 

from the family Symbiodiniaceae. Symbiodiniaceae fuel their hosts with organic carbon by 39 

fixing inorganic carbon (Ci) through photosynthesis (Davy et al. 2012). While Ci uptake rates 40 

by the algal symbionts have rarely been measured, they appear strongly regulated by 41 

environmental factors, such as availability of CO2 (pCO2) (Suggett et al. 2012b; Brading et al. 42 

2013) and temperature (Oakley et al. 2014). Recent work on cultured Symbiodiniaceae 43 

revealed that different environmental optima primarily drive variation in Ci uptake rates (Ros 44 

et al. 2020). Within reef systems where Symbiodiniaceae are hosted within cnidarian tissues, 45 

symbiont cells are typically carbon-limited (Smith and Muscatine 1999; Doherty 2009; 46 

Towanda and Thuesen 2012); as such, cnidarians can exhibit a stimulated carbon metabolism 47 

under naturally higher pCO2 (more acidic) environments (Suggett et al. 2012b). The efficiency 48 

of Symbiodiniaceae carbon metabolism across environments thus appears an important trait in 49 

supporting their host’s survival, and a means to cope with stressful conditions. 50 

 51 

Associations between the cnidarian host and specific genera, species or strains of 52 

Symbiodiniaceae profoundly influence the stress resilience of their coral host (Berkelmans and 53 

van Oppen 2006; Abrego et al. 2008; Howells et al. 2011; Oliver and Palumbi 2011). Corals 54 

commonly host different Symbiodiniaceae across environmental gradients, presumably in 55 

response to changes in available resources (Matthews et al. 2017; Suggett et al. 2017). 56 

Increasing evidence from extreme coral environments are revealing host-specific changes in 57 

associated Symbiodiniaceae that appear fundamental in supporting coral survival but suggest 58 

that there is not a ubiquitous change across hosts when surviving in extremes. For example, 59 

Hennige et al. (2010) observed a “shuffling” (sensu Baker 2003) of symbiont types from 60 

Cladocopium to Durusdinium from optimal reef environments to mangrove waters for the coral 61 

Goniastrea aspera. Conversely, Howells et al. (2016) found that Platygyra daedalea corals 62 

shifted from Durusdinium in the mild temperature of the Sea of Oman to Cladocopium in the 63 

hotter Persian-Arabian Gulf. Thus, host-Symbiodiniaceae plasticity appears central for corals 64 

to acclimatise to a broad range of environmental conditions and expand their effective niche.  65 

 66 

Whilst associating with different Symbiodiniaceae taxa appears to benefit corals 67 

thriving into extreme environments (Berkelmans and van Oppen 2006; Howells et al. 2016; 68 

Hume et al. 2016), these relationships are often associated with a ‘trade off’. For example, 69 
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Durusdinium (type D1) symbionts translocate less photosynthetic compounds to their hosts 70 

than Cladocopium (types C1 and C3; Cooper et al. 2011), and thus have been considered 71 

somewhat “parasitic” (Lesser et al. 2013; Baker et al. 2018) or “selfish” (Stat and Gates 2011). 72 

Under thermal stress, such “parasitism” can promote higher resource uptake but unchanged 73 

resource translocation to the host for both Symbiodinium (type A3) and Cladocopium (type C7; 74 

Baker et al. 2018). Consequently, host-Symbiodiniaceae associations that may promote stress 75 

resilience might come with other metabolic costs that ultimately influence fitness, such as 76 

reduced reproduction and calcification rates for corals associated with Durusdinium spp. (Jones 77 

and Berkelmans 2011; Cunning et al. 2015). Understanding which host-Symbiodiniaceae 78 

associations enable corals to persist under particularly suboptimal environments remains 79 

largely unresolved, but is fundamental to forecast changes in corals metabolic performance and 80 

productivity at the ecosystem scale (Camp et al. 2018). 81 

 82 

Reef-building corals can thrive under unexpected suboptimal conditions, providing 83 

unique opportunities to identify the physiological trade-offs underpinning their stress tolerance 84 

(Palumbi et al. 2014; Camp et al. 2018; Burt et al. 2020). Such extreme environments include:  85 

low light availability (mesophotic (Baird et al. 2018) or turbid (Suggett et al. 2012a; Sully and 86 

van Woesik 2020)), warmer waters (e.g. Persian-Arabian Gulf; Ziegler et al. 2019), low salinity 87 

(estuaries; Syahrir et al. 2018), or daily variation in multiple abiotic factors, such as 88 

temperature, light, pH and O2 (mangroves; Camp et al. 2019). Despite a combination of 89 

stressors that reach on a daily basis the ranges predicted to occur on reefs by 2100 (Camp et al. 90 

2016), reef-building corals are often abundant and healthy in mangrove systems (Camp et al. 91 

2018). Coral colonies within and adjacent to mangroves can experience symbiont shuffling 92 

(Hennige et al. 2010) and often exhibit up-regulation of the photosynthesis-to-respiration ratio 93 

(P:R), mainly through enhanced respiration rather than photosynthesis (Hennige et al. 2010; 94 

Camp et al. 2019). The processes involved in enhanced respiration in mangrove corals remain 95 

unresolved, but could originate from increased host heterotrophy (feeding), increased 96 

biological O2 demand of associated bacteria (Gregg et al. 2013; Zhang et al. 2015), and/or 97 

increased basal metabolism of the associated endosymbionts (Hill 2014).  98 

 99 

Given the generally reduced net photosynthetic capacity and enhanced respiration 100 

observed in corals adapted to mangrove lagoon environments (Camp et al. 2019), we tested the 101 

hypothesis that this altered metabolism is due to reduced autotrophic carbon uptake and 102 

translocation capacity by the algal symbionts. We sampled Pocillopora acuta coral colonies 103 
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from both the reef and neighbouring mangrove lagoon at Low Isles (Great Barrier Reef, 104 

Australia). We first assessed coral metabolism using pulse-amplitude modulated (PAM) 105 

fluorometry (energy quenching and photosynthetic potential), oxygen respirometry 106 

(photosynthesis, respiration), as well as the symbiont ITS2 diversity. We then visualised and 107 

quantified carbon uptake by Symbiodiniaceae, as well as translocation of photosynthates to the 108 

coral host at the single cell level. Together, these approaches allowed us to compare carbon 109 

uptake and translocation strategies of corals living in extreme and stable environments, to better 110 

understand how these strategies could underpin coral survival in extreme mangrove lagoons. 111 

 112 

Materials and methods 113 

 114 

Collection of corals 115 

Fifty coral fragments (< 5 cm) were sampled in May 2018 from 38 colonies of 116 

Pocillopora acuta living at 1 m of depth (see detail on Table S1) at Woody Isles (16°23'10.3"S 117 

145°33'53.9"E) mangrove lagoon and the adjacent Low Isles reef. Both sites have been 118 

previously sampled and detailed as per Camp et al. (2019). Briefly, pH, temperature, dissolved 119 

O2, and salinity of the mangrove lagoon waters had more substantial diel variations than those 120 

of the reef, and with overall lower pH and dissolved O2, and warmer temperatures (see Table 121 

S2), but similar range of light intensity. Light intensity recorded adjacent to the sampled corals 122 

showed values at noon ranging from 455-576 µmol photons m-2 s-1 in the mangrove, with 123 

parallel values of 442-483 µmol photons m-2 s-1 on the open reef (as detailed in Camp et al. 124 

2019). Coral fragments were returned to the operations vessel (Wavelength 5) and processed 125 

immediately. Corals were fragmented and left to recover in aerated aquaria for one hour in their 126 

native seawater with frequent water changes to avoid temperature increases (target temperature 127 

28.0 ± 0.2°C), with flow provided using aquarium pumps (2500 L/h). Respirometry and 13C-128 

uptake incubations, as well as PAM fluorometry, were conducted on board the vessel, and 129 

additional samples preserved for genomic analyses by flash freezing in liquid N2 whilst on site. 130 

Preserved samples were subsequently processed for further stable isotope and NanoSIMS 131 

analyses back at the University of Technology Sydney, Australia. 132 

 133 

Symbiodiniaceae photophysiology 134 

Photophysiology measurements (n = 4) were made following low light acclimation (as 135 

per Camp et al. (2019) using a PAM fluorometer (Diving PAM, Walz GmbH, Germany) 136 

configured (MI: 12, Gain: 12, SI: 6 12, SW: 0.8s, LC-INT: 3) to collect rapid light curves 137 
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(RLCs) using eight actinic light sequences from 0 to 1975 μmol photons m-2 s-1) of 20 seconds 138 

duration. For each light sequence, minimum (Fo, Foʹ, Fʹ; where Foʹ is the minimum PSII 139 

fluorescence yield calculated as Oxborough and Baker (1997) and Fʹ is the fluorescence yield 140 

under actinic light) and maximum (Fm, Fmʹ) fluorescence yields (where the prime annotation 141 

represents measurements performed in the light-acclimated state; instrument units) were 142 

recorded. These parameters were then used to calculate the maximum yield of photosystem II 143 

(PSII) photochemistry (Fv/Fm, where Fv = Fm – Fo; dimensionless), the photochemical and 144 

dynamic non-photochemical quenching ([1-C] and [1-Q], respectively; dimensionless; see 145 

Eqns. 1 and 2) as per Suggett et al. (2015): 146 

 147 

[1 − 𝐶𝐶] =  ((𝐹𝐹𝑚𝑚′ − 𝐹𝐹′) (𝐹𝐹𝑚𝑚′ − 𝐹𝐹𝑜𝑜′)⁄ )       Eqn. 1 148 

[1 − 𝑄𝑄] =  ([𝐹𝐹𝑚𝑚′ − 𝐹𝐹𝑜𝑜′] 𝐹𝐹𝑚𝑚′⁄ ) (𝐹𝐹𝑣𝑣 𝐹𝐹𝑚𝑚⁄ )⁄       Eqn. 2 149 

 150 

Where photochemical quenching [1 - C] describes the use of absorbed excitation energy for 151 

photosynthesis and non-photochemical quenching [1 - Q] represents absorbed excitation 152 

energy emitted as heat and therefore not delivered to the photosynthetic electron transport 153 

chain. 154 

 155 

Coral holobiont photosynthesis and respiration rates 156 

Coral nubbins collected from both the mangrove lagoon and reef sites (n = 5 per habitat) 157 

were incubated for 2 hr (in the light and dark, respectively) in gas tight sealed 250 mL glass 158 

incubation chambers continuously stirred using a magnetic stirrer, as per Camp et al. (2019). 159 

Prior to incubation, any non-live coral tissue was covered with Parafilm to minimise other 160 

biological alterations influencing the seawater. Each chamber was filled with seawater from 161 

the source habitat and placed in a water bath maintained at 28.0 ± 0.2oC, matching discrete 162 

measurements of seawater temperature for the same day and time of collection (reef: 28.2oC 163 

and mangrove: 28.1oC) as measured using a 3430 multi-meter (WTW GmBH, Germany). The 164 

water bath was maintained under artificial white-LED light intensity of 350-400 µmol photons 165 

m-2 s-1 (Hydra Fifty Two HD LED, AquaIllumination, Ames, IA, USA), verified using a 4π LI-166 

190SA Quantum Sensor (LI-COR, Lincoln, NE, USA). Rates of light and dark respiration (R), 167 

net photosynthesis (PN) and subsequently gross photosynthesis (PG, where PG = PN + R) were 168 

determined by measuring O2 values at the beginning and the end of the incubation with an O2 169 

probe connected to a FireStingO2 oxygen meter (PyroScience GmbH, Germany). A two-point 170 
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calibration of the optode was performed using both 0% air saturated seawater (achieved by 171 

addition of sodium sulphite) and 100% air saturated seawater following manufacturer 172 

guidelines. Control incubations were performed using native seawater without corals (Camp et 173 

al. 2019) and any measured changes in O2 were subtracted from rates of PG or R accordingly. 174 

Rates of O2 production and consumption were normalised by incubation volume, time, and 175 

either Symbiodiniaceae cell density or coral skeleton surface area. The selected light intensity 176 

and incubation length represented a balance between providing light-saturation for O2 177 

evolution and constraining large drift in pO2 over the incubation that could otherwise induce 178 

pO2-dependent variability in PG:R and/or expose corals to hyperoxia or hypoxia stress (e.g. 179 

Hughes et al. 2020). 180 
 181 
13C isotope labelling and enrichment analysis 182 

Inorganic carbon uptake incubations were performed on two different fractions of the 183 

corals: freshly isolated symbionts (FIS) (See Supplementary Information) and intact coral 184 

fragments (holobiont). Both fractions were from different branches of the same colony for both 185 

mangrove lagoon and reef environments, and for 5-7 colony replicates. Both fractions were 186 

then incubated for 3 hours within gas-tight Parafilm-sealed 400 mL glass incubation chambers 187 

with autoclaved artificial seawater (ASW, Berges et al. 2001) at pH 8.02, with a final 188 

concentration of 2 mM NaH13CO3 (13C isotopic abundance of 98%, Sigma-Aldrich), and 189 

attached with carabineers to a metallic grid fitted at the bottom of the same water bath setup as 190 

for respirometry incubations, but with a white-LED light intensity of 700-800 µmol photons 191 

m-2 s-1. Light and temperature were monitored as per respiratory incubations and recorded at 5 192 

min intervals for the duration of the experiment by HOBO Pendant data loggers (Onset, MA, 193 

USA). 194 

 195 

Intact host-Symbiodiniaceae fractions: Before incubation, small subsample fragments (1 cm) 196 

of each replicate coral fragment were flash frozen in liquid N2 to assess the natural carbon 197 

isotope ratio. Corresponding fragments (4 cm) were incubated as per the FIS (above), and upon 198 

termination of incubation, were immediately rinsed with non-labelled ASW. For each replicate, 199 

one additional fragment (1 cm) was subsampled post-incubation and kept for chemical fixation 200 

before NanoSIMS analysis. The remaining fragment was flash frozen in liquid N2 for later 201 

enrichment analysis. Upon return to the laboratory, all frozen coral fragments were thawed, 202 

airbrushed in filtered ultrapure water, and symbionts were separated from the host fraction at 203 
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3,000 RCF for 5 min (Treignier et al. 2008). Both host and symbiont fractions were treated 204 

separately for stable isotope analysis. 205 

 206 

Samples for all three fractions generated from the incubation experiment (FIS incubated 207 

ex hospite, symbionts in hospite and host coral) as well as their corresponding controls sampled 208 

before incubation were resuspended and rinsed after three extra steps of centrifugation-209 

resuspension in ultrapure water to remove residual salts interfering with the elemental analysis. 210 

Suspensions were placed in acid-washed, pre-combusted borosilicate vials, flash frozen in 211 

liquid N2 and freeze-dried (Alpha 2–4 LDplus, Martin Christ GmbH, Germany) for 48 hrs prior 212 

to encapsulation according to UC Davis Stable Isotope Facility (Davis, CA, USA) guidelines. 213 

Enrichment analysis was performed with a PDZ Europa ANCA-GSL elemental analyser 214 

interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (EA-IMRS, Sercon Ltd., 215 

Cheshire, UK). Enrichment levels were normalised relative to the natural isotope abundance in 216 

unlabelled samples and expressed using δ13C notation. Enrichment of δ13C (expressed in ‰) 217 

was quantified as follows: 218 

𝛿𝛿13𝐶𝐶 = �� 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐶𝐶𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢
� − 1� × 103        219 

Where C is the 13C/12C atom ratio of the incubated sample or unlabelled control, respectively. 220 

 221 

NanoSIMS preparation and analysis 222 

NanoSIMS analysis was performed on both freshly extracted symbionts and holobionts 223 

to visualise and confirm cellular Ci uptake and, in the case of the holobiont fraction, 224 

translocation of labelled compounds from the symbionts to their host. Labelled holobiont 225 

fragments (1 cm) and aliquots (250 µL) of the symbiont extracts were chemically fixed on the 226 

research vessel following the methods of Pernice et al. (2014) for 24 hours at 4oC in a solution 227 

containing 1% formaldehyde and 2.5% in PBS-sucrose buffer (0.1 M phosphate, 0.65 M 228 

sucrose, and 2.5 mM CaCl2), pH 7.5. After fixation, samples were rinsed and stored in PBS-229 

sucrose buffer at 4oC. Holobiont fragments underwent an extra step of decalcification process 230 

at 4oC and pH 7.5 using PBS-EDTA (0.1 M phosphate, 0.5 M EDTA) changed every 24 hours, 231 

until complete dissolution of the skeleton, and then stored in PBS buffer (0.1 M phosphate, pH 232 

7.5) at 4oC until further processing (Pernice et al. 2014). Two coral polyps were dissected from 233 

the coral tissue of the fragment and fixed in 1% OsO4 - PBS (0.1 M phosphate, pH 7.5). 234 

Dissected polyps and FIS were then dehydrated in increasing gradients of ethanol (50%, 70%, 235 

90% and 100%) followed by acetone (100%) and infiltrated with incremental gradients of 236 
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SPURR resin (25%, 50%, 75%, and 100%) before embedding in moulds and polymerisation 237 

of the resin at 65oC. Ultrathin sections of 200 nm were then cut using a diamond blade, 238 

deposited on silicon wafers, then gold-coated (10 nm) for NanoSIMS analysis. 239 

Sections were analysed on a NanoSIMS-50 (Cameca, Gennevilliers, France) at the 240 

Centre for Microscopy, Characterisation and Analysis at the University of Western Australia. 241 

Five isotopic species were simultaneously collected (12C2
- , 12C13C-, 12C14N-, 12C15N-, and 32S). 242 

Enrichment of 13C was confirmed by an increase in the carbon (13C/12C) ratio above natural 243 

abundance values recorded in controls (0.011). Samples of interest were rastered with a ~ 2.5 244 

pA Cs+ beam (~100 nm diameter) across 50 μm2 areas (512 × 512 pixels), with a dwell time of 245 

15 ms per pixel. Data were simultaneously collected for 12C12C-, 13C12C-, and 12C14N-secondary 246 

molecular ions with mass resolving power (MRP, Cameca definition) > 8000 (sufficient to 247 

separate 13C12C- from 12C2
1H-). NanoSIMS data were processed and analysed using Fiji 248 

(Schindelin et al. 2012; http://fiji.sc/Fiji) with the Open-MIMS plug-in 249 

(https://github.com/BWHCNI/OpenMIMS). Images were corrected for detector dead time (44 250 

ns) on individual pixels before 13C12C-/12C2- ratio images were generated using a colour-coded 251 

transform (hue saturation intensity, HSI) showing natural abundance levels in blue, and 252 

increasing enrichment of 13C represented by the shift in colour towards magenta (set to 253 

represent maximum enrichment). Regions of interest (ROIs) were manually selected to 254 

represent key features (symbiont cells, FIS and in hospite; and gastrodermal host tissue 255 

surrounding endosymbionts) and total ion counts calculated for each and used to generate 13C 256 

enrichment of each (13C12C-/12C2-). Ratios were calibrated by taking daily measurements of a 257 

Saccharomyces cerevisiae standard independently analysed by IRMS (corrected against 258 

Vienna-Pee-Dee Belemnite).  259 

 260 

Symbiodiniaceae cell density and skeletal surface area 261 

Aliquots of 50 µL of FIS stored in ASW were counted on the same day of extraction 262 

using a Neubauer chamber and a compound light microscope. Triplicate counting of each 263 

sample was made to reach a minimum of 200 cells per chamber and then averaged to obtain 264 

the cell concentration. The skeletal surface areas of airbrushed branches were estimated using 265 

the wax weight method following Stimson and Kinzie (1991). Eight metallic objects of known 266 

surface area (10.3 – 60.9 cm2) were wax-coated in the same way as corals skeletons to produce 267 

a standard curve of wax weight per surface area (y = 0.0405x – 0.1051; R2 = 0.9957). Measured 268 

surface areas of the broken parts of the coral skeletons were then subtracted from the value 269 

obtained with the standard curve to account for areas where Symbiodiniaceae were not present. 270 
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 271 

Symbiodiniaceae ITS2 identity 272 

Fragments of 1 cm were taken from independent colonies of P. acuta at each site 273 

(n = 4), preserved in RNAlater (Ambion, Life Technologies, Australia) and stored at -20°C 274 

until further processing. Excess RNAlater solution was removed prior to DNA extraction (Tout 275 

et al. 2015). Fragments were then airbrushed with sterile PBS-EDTA (0.1 M phosphate, 0.5 M 276 

EDTA) into small sterile zip lock bags until a slurry of coral tissue was formed. Extraction of 277 

the DNA from the slurry was performed using the Qiagen DNeasy Plant Mini Kit (Qiagen, 278 

Hilden, Germany) and cells disrupted with a Tissue Lyser II (Qiagen, Hilden, Germany) as per 279 

Camp et al. (2019). The quantity and quality of the extracted DNA were checked using a 280 

NanoDrop 2000C spectrophotometer (Thermo Fisher Scientific, MA, USA). For PCR 281 

reactions, amplification of the ITS2 region was performed using ITS2-reverse and ITSintfor2 282 

primer pairs (Camp et al. 2020), following previously published PCR conditions (Arif et al. 283 

2014). Amplicons were sequenced using the Illumina Miseq platform (2 x 300bp) at the 284 

Ramaciotti Centre for Genomics (University of New South Wales, Australia). Output files of 285 

the Illumina sequencing were then submitted to the SymPortal analytical framework (Hume et 286 

al. 2019) and quality controlled using Mothur 1.39.5 (Schloss et al. 2009), minimum entropy 287 

decomposition (Eren et al. 2015), and BLAST+ executable suites (Camacho et al. 2009) to 288 

predict Symbiodiniaceae taxa (LaJeunesse et al. 2018) from the ITS2 marker. All raw sequence 289 

data are accessible under NCBI’s BioProject (PRJNA630092). 290 

 291 

Coral Host identity 292 

Extraction of the coral DNA was performed on the coral holobiont slurry using a 293 

phenol-chloroform-isoamyl alcohol protocol (see Supplementary Information) modified from 294 

Guthrie et al. (Guthrie et al. 2000). Extracted DNA was amplified by PCR towards the 295 

mitochondrial open reading frame (ORF) region (Flot and Tillier 2007) using host-specific 296 

forward Pdam-F and reverse Pdam-R primers (Torda et al. 2013). PCR cycle conditions were 297 

as per Torda et al. (2013). PCR amplicons were then Sanger-sequenced at the Australian 298 

Genomic Research Facility, NSW. Sequences were aligned in Geneious v.6.0.6 against 299 

reference sequences for Pocillopora from NCBI and matched with reference sequences for P. 300 

acuta (Schmidt-Roach et al. 2014) and confirmed initial identification based on morphology. 301 

 302 

Statistical analyses 303 
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Statistical analyses on physiological data were performed using SPSS Statistics 25 304 

(IBM, Armonk, NY, USA). To assess the differences in photosynthetic strategies between 305 

corals from the reef and the mangrove, the slopes of the linear trends (y = ax + b) fitted for 306 

each technical replicate on the [1 – C] versus [1 – Q] curves were compared. Data series were 307 

tested for normality (Shapiro-Wilk test) and homoscedasticity (Levene’s homogeneity test). 308 

Upon confirmation of normality and homoscedasticity, independent sample one-tailed t-tests 309 

were used to compare differences between mangrove and reef (respirometry, cell density and 310 

photosynthetic strategy). Differences in Ci uptake between each site across all sample fractions, 311 

and between all sample fractions across each site were assessed with One-way ANOVAs with 312 

post-hoc Tukey HSD to determine between which samples fractions the differences occurred 313 

(elemental analysis) and with Mann-Whitney U tests (NanoSIMS). Significant outliers were 314 

removed using the Grubb’s test for outliers. For all statistical tests, alpha (α) was set to 0.05. 315 

 316 

Results 317 

Reef and mangrove coral physiology 318 

Respiration (R) and gross photosynthesis (PG) rates were similar for P. acuta from the 319 

reef and the mangrove (Figure 1a). Both R and PG normalised to coral surface area exhibited 320 

no difference between mangrove and reef corals (R: 0.27 ± 0.09 on the reef and 0.16 ± 0.02 321 

µmol O2 cm-2 h-1 in the mangrove; t(8) = 1.19, P = 0.134 and PG: 0.67 ± 0.14 on the reef and 322 

0.56 ± 0.07 µmol O2 cm-2 h-1 in the mangrove; t(8) = 0.68, P = 0.258). Symbiodiniaceae cell 323 

density per surface area (see Figure S1) was significantly higher (t(10) = 5.02, P < 0.001) for 324 

mangrove corals (1.31 × 106 ± 4.87 × 104 cells) compared to the reef (6.88 × 105 ± 9.79 × 104 325 

cells). Consequently, values of PG when normalised per symbiont cell (PG cell-1; Figure 1b) 326 

were ultimately 37.80% lower (t(8) = 2.06, P = 0.037) for corals in the mangrove lagoon (0.51 327 

± 0.11 pmol O2 cell-1 h-1) compared to the reef (0.82 ± 0.10 pmol O2 cell-1 h-1).  Analysis of PSII 328 

photochemical quenching patterns (Figure 1c) demonstrated that P. acuta preferentially 329 

utilised absorbed excitation energy through photochemical quenching ([1 - C], PSII 330 

photosynthesis) rather than dissipating as heat via non-photochemical quenching ([1 - Q] 331 

photoprotection) for samples from the mangrove compared to the reef (t(8) = 3.09, P = 0.007).  332 
 333 

Patterns of 13C uptake by Symbiodiniaceae and translocation to their host at the bulk 334 

scale (Figure 2a), followed the trends observed for PG cell-1 for P. acuta from the two habitats. 335 

Symbionts living in hospite in the mangrove corals fixed (F1.8 = 8.52, P = 0.019) and 336 

translocated (F1.8 = 12.65, P = 0.007) 29.88% less carbon than those in hospite in the reef 337 
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corals. However, the proportion of translocated carbon relative to total 13C uptake was the same 338 

for corals from both habitats (ca. 22% of total fixed carbon was in the host fraction). 13C uptake 339 

by FIS was the same for samples from both habitats (F1.8 = 1.082, P = 0.329), but approximately 340 

91% less than for the Symbiodiniaceae when in hospite (see Supplementary Information). 341 

 342 
13C uptake at the single cell level revealed that Ci uptake was generally 2.65 times 343 

greater (U = 7, P < 0.01) in hospite (Figure 2) for samples from the reef compared to the 344 

mangrove. Additionally, FIS followed the same trend (see Figure S2). Both holobiont fractions 345 

exhibited enriched areas around the symbiont cells, corresponding to host storage bodies 346 

(Figure 2c-f), with no significantly different δ13C in enriched areas (~ 344 ‰) between reef 347 

and mangrove corals (Figure 2b). 348 

 349 

Symbiont identities from mangrove and reef corals 350 

Differences in photobiology, PG and Ci uptake (and translocation) for reef versus 351 

mangrove were consistent with a shift in dominant Symbiodiniaceae taxa within P. acuta 352 

across habitats. No major ITS2 type profiles were shared between corals from the mangrove or 353 

reef habitats (Figure 3). Colonies of P. acuta associated with Symbiodiniaceae from the genus 354 

Cladocopium on the reef, while in the mangrove the association was mostly with the genus 355 

Durusdinium. Three major ITS2 types (proxies for Symbiodiniaceae genotypes) were observed 356 

in the reef colonies, with C1/C1b and C1d-C42.2 (present in three replicates), and C1k-C3cg 357 

(present in one replicate). In the mangrove corals, the major ITS2 type profile belonged to 358 

D6/D1-D4-D2.2, with a replicate also harbouring D1h type exclusively. Notably, no ITS2 359 

sequence belonging to Durusdinium was identified in reef corals and only four ITS2 sequences 360 

belonging to Cladocopium (C15, C1, C1d and C3) were shared between the reef and mangrove 361 

corals. These Cladocopium represented less than 0.02% cumulatively in three of the four 362 

mangrove replicates. 363 

 364 

Discussion 365 

Accelerating degradation and loss of coral reefs worldwide due to anthropogenic 366 

impacts have created an urgent need to identify coral populations with greater natural resilience 367 

to stress (Hoegh-Guldberg et al. 2018). Corals that already persist in present-day environmental 368 

extremes present important model organisms to identify mechanisms that support stress-369 

resilience (Camp et al. 2018). Here, we contrasted corals inhabiting extreme mangrove habitats 370 

and adjacent reefs to identify the mechanisms enabling them to survive the warmer 371 
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temperatures, low pH and low O2 conditions, analogous to future climate predictions. By 372 

assessing photosynthetic and respiratory rates, light-dependent dynamic quenching patterns 373 

and direct inorganic carbon (Ci) uptake by the symbiont and translocation to the host, we show 374 

that the coral P. acuta likely employs metabolic strategies that differ between habitats, however 375 

also reflects differences in symbiont density and types. In the mangrove lagoon, P. acuta 376 

endosymbionts appear more efficient at utilising absorbed light for photochemistry but are less 377 

able to fix Ci (or translocate fewer photosynthates to their host), confirmed by both stable 378 

isotope analysis and NanoSIMS imaging.  379 

 380 

Symbiont shuffling across environmental gradients 381 

P. acuta associated with Symbiodiniaceae from the genus Durusdinium in the 382 

mangrove lagoons but Cladocopium on the reef. Previous work from Low Isles (Camp et al. 383 

2019) also demonstrated a shift of Cladocopium to Durusdinium for Acropora millepora 384 

between mangrove and reef. In congruence with our findings, switching from Cladocopium to 385 

Durusdinium symbionts has been commonly observed when environmental conditions become 386 

suboptimal (Hennige et al. 2010; Boulotte et al. 2016; Cunning et al. 2018). However, corals 387 

can persist in suboptimal environments in association with other Symbiodiniaceae genera, e.g. 388 

the back-reef pools of American Samoa (Cladocopium; Barshis et al. 2010), and the mangroves 389 

of New Caledonia (Symbiodinium and Cladocopium; Camp et al. 2020) and Australia 390 

(Cladocopium; Camp et al. 2019)). Our findings support the body of evidence that shuffling of 391 

symbionts to a preferential association within a given environment is host-specific. Host-392 

symbiont shuffling could be a long-term adaptation to stressful conditions, with evidence from 393 

the coral Montipora digitata showing that shuffled symbionts tend to persist over multiple 394 

generations (Quigley et al. 2019). 395 

 396 

Reliance of mangrove P. acuta on photochemical quenching  397 

Light-dependent dynamic quenching assessment is a diagnostic tool to assess 398 

photosynthetic “strategy” (Suggett et al. 2015; Nitschke et al. 2018) and the preference of cells 399 

to direct absorbed excitation energy towards photochemical ([1 - C]) or non-photochemical 400 

pathways ([1 - Q]) (Kanazawa and Kramer 2002). A previous study (Camp et al. 2019) also 401 

investigated physiological trade-offs associated with the survival in the same mangrove lagoon 402 

of two other coral species (A. millepora and Porites lutea). We see a convergence of strategies 403 

for all three species of a reduction in PG and R (normalised to cell density present in hospite) 404 

and PG:R from reef to mangrove (Figure 4a) that appears mainly driven by the large increase 405 
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in cell density of the mangrove corals. A decrease in PG:R for all three coral species from reef 406 

to mangrove may be indicative of preferential reliance on heterotrophy rather than autotrophy 407 

(Goyen et al. 2019) for mangrove corals; however further studies investigating the plasticity of 408 

this ratio over a diel cycle (as well as actual measures of heterotrophy) would be required to 409 

assert trophic strategies between reef and mangrove corals. Moreover, the extent of variation 410 

was different between coral species, with a higher shift for A. millepora compared to P. acuta. 411 

Absorbed excitation energy was preferentially dissipated via [1 - Q] for A. millepora but by [1 412 

- C] for P. acuta for mangrove compared to reef populations (Figure S3), despite the fact that 413 

light intensity is generally similar across the two habitats (Camp et al. 2019). The reduced 414 

reliance on photochemical quenching is consistent with reduced PG cell-1 for A. millepora. 415 

However, for mangrove P. acuta, preferential reliance on [1 - C] was accompanied by a reduced 416 

PG cell-1 – indicating a higher capacity to process absorbed electrons that does not lead to higher 417 

net O2 release. This phenomenon could be explained by a relatively higher proportion of “light-418 

dependent O2 consumption” through processes such as photorespiration and chlororespiration 419 

that can serve as photoprotective electron sinks to dissipate excess excitation energy (Hughes 420 

et al. 2018). Such a photosynthetic strategy has been observed for Symbiodiniaceae taxa that 421 

are inherently more tolerant of heat and/or light stress (Suggett et al. 2008; Roberty et al. 2014, 422 

Pierangelini et al. 2020). This strategy is conducive to a higher overall PSII electron flow 423 

(Gorbunov et al. 2011), yet would result in a smaller proportion of electrons that flow linearly 424 

to Ci fixation (Cardol et al. 2011). Conversely, reliance on [1 - Q] for reef corals suggests a 425 

strategy facilitating dissipation of excess excitation energy upstream of PSII (i.e. rather than 426 

relying on O2-consuming pathways), which could explain the comparatively higher PG cell-1 427 

values than mangrove corals. Importantly, light-dependent O2 consumption was not explicitly 428 

measured here, so the extent to which patterns in photobiology observed here can be attributed 429 

to this process could warrant further targeted examination. Despite similar light intensity at 430 

both sites, micro-light environments and light availability to the symbionts at the cellular level 431 

could differ between the two sites. Indeed, mangrove corals harboured 48% more symbionts 432 

than those from the reef, potentially inducing self-shading and thus reducing light availability 433 

(Schrameyer et al. 2014). 434 

 435 

P. lutea exhibited further differences in its metabolic strategy compared to A. millepora 436 

and P. acuta when normalised to symbiont cell density, with a decrease of PG and an increase 437 

of respiration from the reef to the mangrove, but with the same energy-quenching pattern as A. 438 

millepora. However, in this case, symbionts of P. lutea from reef and mangrove were 439 
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conserved from the genus Cladocopium but with different ITS2 major types (C15) between 440 

habitats. Recent observations reported a similar outcome for major ITS2 type for corals in New 441 

Caledonia mangroves and adjacent reefs, whereby Acropora muricata always associated with 442 

Symbiodiniaceae of the genus Cladocopium, but Acropora pulchra associated with 443 

Symbiodinium spp. in the mangrove versus Cladocopium spp. on the reef (Camp et al. 2020). 444 

Thus, together, these observations suggest numerous “solutions” which corals may use to thrive 445 

in mangrove lagoons, via shifts in metabolic strategy that may or may not accompany 446 

associations with different Symbiodiniaceae taxa.  447 

 448 

Carbon fixation and translocation in mangrove corals 449 

Symbiodiniaceae in hospite were less efficient at fixing Ci and translocating 450 

photosynthates in the mangrove compared to reef populations. In both habitats, Ci uptake was 451 

greatly enhanced by the presence of the host compared to isolated symbionts (see 452 

Supplementary Information). Overall, mangrove corals fixed less Ci (29.88% decrease) as 453 

demonstrated by stable isotope tracking both at the bulk scale and at the single-cell levels. 454 

Mangrove corals also had similar reductions in PG cell-1 compared to the reef (37.80% 455 

decrease), suggesting that the loss of Ci in mangrove corals could come from a loss of PG. 456 

However, as the mangrove lagoon is more acidic (and has higher pCO2 availability), we 457 

expected to observe an increase in productivity (Brading et al. 2011; Suggett et al. 2012b; 458 

Hoadley et al. 2015), but in fact measured the opposite. This decrease in Ci uptake therefore 459 

might be driven by an upstream pathway independent of CO2 availability. As physiological 460 

processes did not allow for an increased uptake of Ci despite the additional carbon available in 461 

the mangrove waters, it is likely that the observed reduction is characteristic of a trade-off 462 

linked to stress tolerance. Interestingly, despite a different absolute Ci uptake between corals 463 

at the two sites, the proportion of translocated carbon to the host remained the same (~ 22%). 464 

These findings shared some consistencies with those of Hoadley et al. (2015), who found that 465 

in Exaiptasia pallida, increased pCO2 did not have an effect on carbon translocation, but 466 

enhanced Ci fixation by Breviolum minutum symbionts. Interestingly, translocation rates of 467 

Cladocopium sp. in the zoanthid Palythoa sp., found by Graham and Sanders (2016) were 468 

similar (~26%) to ours (~22%) when the holobionts were incubated at 27°C at a controlled pH 469 

of 8.1, which are similar conditions of our incubations (28.0°C at pH 8.02). Moreover, Graham 470 

and Sanders (2016) also found that the combination of high temperature (31°C) and high pCO2 471 

(pH 7.65; which are characteristic of mangrove environments) increased productivity and 472 

translocation rates (up to 40%) of Cladocopium sp. symbionts. In our study, the incubation 473 
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conditions of temperature and pH were similar between reef and mangrove corals, thus it is 474 

possible that the trends observed will be shifted towards a better performance of mangrove 475 

holobionts in response to elevated temperature and/or pCO2 (Mora et al. 2013). Whilst 476 

responses to increased pCO2 levels point toward an enhanced productivity and translocation of 477 

Symbiodiniaceae in symbiosis with anemones (Suggett et al. 2012b; Hoadley et al. 2015) and 478 

zoanthids (Graham and Sanders 2016), our results suggest that carbon assimilation and 479 

transfers are likely to be species-specific, particularly when considering calcifying hosts.  480 

Even with considerable long-term environmental differences between mangrove and 481 

reef habitats, the proportions of translocated carbon remained similar, possibly due to the host 482 

promoting microenvironmental stability surrounding the symbionts. Effect of the host on Ci 483 

uptake by the symbiont has already been characterised in previous laboratory-based studies, 484 

notably by changing the physicochemical microenvironment surrounding the symbiotic cells 485 

inside of the symbiosome (Barott et al. 2015), a specialised vacuole of the coral surrounding 486 

the endosymbionts (Roth et al. 1988), however, this has not been directly measured in 487 

mangrove corals. Since in the present study both symbiont identity and environments are 488 

different, we cannot conclude if in hospite, the difference in Ci uptake is solely due to the 489 

growth environment or the taxonomic identity. Previous work by Camp et al. (2019) at Low 490 

Isles did not measure Ci uptake (or translocation), but their parallel measurements of 491 

respirometry and photochemical quenching patterns highlight that each of the three coral 492 

species commonly found across the Low Isles reef and mangrove lagoon (A. millepora, 493 

P. lutea, P. acuta) exhibit very different metabolic strategies, suggesting that growth 494 

environments and both host and symbiont identity could play a role in diversity of Ci uptake 495 

and translocation. Quantifying the Ci uptake of in hospite symbionts from similar major ITS2 496 

types but from different environments (see P. lutea; Camp et al. 2019 and A. muricata in New 497 

Caledonia; Camp et al. 2020) could help in determining the effect of different growth 498 

environments on Ci assimilation strategies inherently characteristic of extreme environments. 499 

The combination of increased respiratory rates in mangrove compared to the reef, corroborated 500 

by a decrease in enriched storage lipid bodies suggests that heterotrophy is likely an additional 501 

way of supplementing the energetic requirements of corals in inhospitable conditions (which 502 

require an increased energetic demand to sustain homeostasis and survival) (Palardy et al. 503 

2008). Such diversity in response presumably reflects diverse resource requirements of 504 

different host-coral species (Suggett et al. 2017), how they are able to meet their requirements 505 

via heterotrophic supplementation (Fox et al. 2018), and potential co-evolution of host-506 

Symbiodiniaceae associations (Qin et al. 2019; Wright et al. 2019). 507 
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 508 

Rapid degradation of coral reefs worldwide has created an urgent need to identify local 509 

refuge environments as well as stress-tolerant coral populations that could aid the long-term 510 

survival of corals. Our work builds on the growing body of evidence (e.g. Camp et al. 2018; 511 

Morikawa and Palumbi 2019; Burt et al. 2020) that corals from extreme environments, 512 

including mangrove lagoons, have the potential to act as important stocks of stress-hardened 513 

corals. However, our findings highlight costs associated with survival into extreme 514 

environments, specifically lower quantities of Ci uptake by Symbiodiniaceae and organic 515 

carbon translocated to their coral host, P. acuta. Our results confirm that corals exhibit species-516 

specific differences in their adaptation to extremes, highlighting the complexities of resolving 517 

stress tolerance to multiple abiotic parameters, characteristic of future global climate change 518 

conditions.  519 
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Figures 760 

 761 

Figure 1. Physiology of Pocillopora acuta (n = 5; mean ± SE) in the Low Isles reef site (blue) 762 

and Woody Isles mangrove lagoon (red). (a) respiration and gross photosynthesis (PG) (as the 763 

sum of net photosynthesis and respiration) normalised per surface area, and (b) per 764 

endosymbiont cell, (c) photochemical quenching [1 – C] versus non-photochemical quenching 765 

[1 – Q]. The asterisk symbol denotes statistical differences (P < 0.05). Note: when error bars 766 

are not shown, their size are smaller than the symbol used. 767 

 768 

Figure 2. Carbon enrichments at the bulk and single-cell levels. (a) Bulk (n = 4) δ13C 769 

enrichment levels (normalised to natural abundances) for the different incubated fractions of 770 

the coral: “Coral” and “Symbiodiniaceae” refer to the incubated holobiont, and later separated 771 

algae fractions, respectively. (b) Single cell δ13C enrichment levels with NanoSIMS. The errors 772 

bars represent standard error, the asterisk symbols denote statistical differences (P < 0.05) 773 

between reef (c-d) and mangrove (e-f) sites. Representative NanoSIMS images showing (c-e) 774 

the distribution of 12C14N-, indicative of the biological structure of the sample, and (d-f) the 775 

isotope ratio of 13C/12C, with natural abundance in blue, changing to pink with increasing 13C 776 

levels. Number of cells analysed: in hospite Symbiodiniaceae (n = 19); and enriched areas in 777 

host tissue (n = 5). Scale bar: 5 µm. 778 

 779 

Figure 3. Relative abundances (%) of recovered ITS2 sequences (upper section) and predicted 780 

major ITS type profiles (lower section) for Pocillopora acuta across the Low Isles reef and 781 

Woody Isles mangrove habitats on the Great Barrier Reef. Each stacked bar corresponds to a 782 

biological replicate of a different colony, and each replicate is plotted relative to each other 783 

between the upper and lower sections of the figure. Sequences with designated names (e.g. 784 

C1b, D4c, or D6) refer to sequences frequently found in the literature or already characterising 785 

ITS2 profiles previously ran through the SymPortal analytical framework (Hume et al. 2019). 786 

Other sequences designated by a unique database ID and their associated genus (e.g. 70776_D) 787 

refer to sequences that are less common and not previously used to characterise ITS type 788 

profiles. 789 

 790 

Figure 4. Comparisons of (a) mean (n = 4 ± SE) gross photosynthesis (PG, as the sum of net 791 

photosynthesis and respiration, R) and respiration rates between reef (blue dots) and mangrove 792 

(red squares) sites. Species-specific metabolic shifts are represented by solid lines (black), and 793 
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the dashed line indicates the 1:1 ratio. The table summarises the mean (± standard error) PG:R 794 

ratios for reef and mangrove sites. (b) Summary of key metrics shifts from reef and mangrove 795 

sites. Data for Acropora millepora and Porites lutea are retrieved from Camp et al. (2019) and 796 

for Pocillopora acuta come from the present study. The asterisk symbols denote statistically 797 

different shifts (P < 0.05), the absence of asterisk symbol denotes trends, the equal signs denote 798 

no statistical differences (P > 0.05), and NA denotes data not collected. 799 


