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Abstract: 

The current study was conducted to examine the sediment floc size and density changes over time 

in quiescent water by experimenting with a plexy glass settling column with 0.19 m in inner 

diameter and 3 m in height. The experiments were done with 5 initial concentrations of 3, 5, 10, 

15 and 20 g/l and suspended sediment concentration was measured at different time and height 

intervals. Mclauglin differential equation was used to obtain the settling velocity of the sediments 

and Kranenburg’s equation, and Stokes’ Law relationship were solved to estimate the geometrical 

characteristics of the flocs. In all experiments, the maximum settling velocity of particles occurred 

15 minutes after the beginning of the settling process, which was in agreement with results 

obtained by other researchers. The results show that the maximum settling velocity of sediments 

is about 8 times the average settling velocity of the sediments. The results of floc density 

calculations show that the floc density gets to the minimum value after 15 minutes of the start of 

the experiment, and it is concluded to the primary particle density. Also, the floc diameter reaches 

to the maximum value after 15 minutes of the start of the experiment because the flocs reach their 

maximum size at this time.  
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Introduction: 

The investigation of settling process and cohesive sediments consolidation in dam reservoirs and 

beaches is one of the most important issues playing an effective role in different descaling and 



sediment controlling designs, including dredging projects and hydraulic sediment removal 

operations. The superfine cohesive sediments even settle in the canals in which the existing 

standard criteria of design have been observed. They have also settled in dam reservoir and resulted 

in trapping efficiency near 100%. In addition to reducing the service life of reservoir, this problem 

has also changed the limpidity of the water released from the existing reservoir, ecology and 

morphology of the downstream river. In the beaches and seaports, the cohesive sediments 

settlement has caused an increase in dredging costs. In many cases it is impossible to overcome 

this phenomenon in practice (Samadi-Boroujeni et al. 2005). 

A key component of fine-sediment dynamics is the settling process resulting in the deposition of 

sediment. Due to flocculation, the settling velocity of fine sediments is significantly more complex 

and dynamic than that of noncohesive sediments. Flocculation is a reversible process through 

which suspended fine-sediment particles are aggregated in the water column to produce flocs. 

Flocculation of fine sediment involves the complex interactions of particles, fluid, biology, and 

chemistry through the processes of aggregation, breakup, settling, and transport. Flocs are complex 

composite structures composed of organic (e.g., bacteria and detritus) and inorganic (e.g., clay 

particles) materials that are formed through attractive electrochemical forces, biochemical 

bonding/binding, and interparticle collisions (Mehta, 2014).  

Based on the conducted research, the settling velocity of cohesive sediments varies from 0.01 to 

10 mm/s. Normally, the maximum settling velocity of cohesive sediments occurs at the 

concentration of 2 -10 g/l. At the higher concentrations, the flocs are broken, and their velocity 

decreases too (Sanford et al. 2005). 

Generally the settling velocity of cohesive sediments is dependent on how sedimentary particles 

stock to each other, flocs formation, and their characteristics. Studies conducted by shin et al. 

(2015) showed that floc formation is done at the first 15 minutes of cohesive sediments' settling 

process, and the size of flocs reaches to its maximum value at this interval, and after that 

approximately remains constant until settlement occurs. This finding which is in agreement with 

those obtained by Spicer et al. (1998) and Sanford et al. (2005) shows that the maximum rate of 

flocculation process of cohesive sediments occurs 15 minutes after the experiment. 

Zhongfan Zhu (2019) developed a simple formula to relate the size and settling velocity of 

cohesive sediment flocs in both the viscous and inertial settling ranges. This formula maintains 

javascript:;


the same basic structure of the existing formula. However, it is amended to incorporate the fact 

that the flocculated sediment has internal fractal architecture and is composed of different-sized 

primary particles.  

 Zhao et al. (2018) developed a method to determine the settling velocity of both flocs and 

particles without using the fractal dimension. To achieve this goal, porosity was introduced as a 

substitute for the fractal dimension, and a simple method with three variables, floc diameter, 

mass concentration, and volume concentration of flocs, was developed. Results indicated that 

this method has higher accuracy than traditional methods such as the Stokes equation and the 

Rubey equation.  

Mhashhash et al. (2018) used an extensive experimental setup using a particle image velocimetry 

(PIV) camera system to measure floc size distribution and establish a new settling velocity 

equation as a function of salinity and turbulence. 

In practical applications involving sediment transport processes, various methods of identifying 

the settling velocity of flocs have been used. Numerous empirical and numerical models have been 

developed from laboratory and field data predicting the settling velocity of flocculated material. 

These models are grouped into six classes based on methods of formulation and level of 

complexity (Floyd et al., 2016). The six classes are listed in order of increasing complexity: (1) 

constant settling velocity, (2) simple empirical (Owen 1971; Gibbs 1985; Kranck and Milligan 

1992), (3) process-based empirical (van Leussen 1994; Teisson 1997; Teeter 2001; Soulsby et al. 

2013), (4) complex empirical (Soulsby 2000; Teeter 2001; Manning and Dyer 2007; Pejrup and 

Mikkelsen 2010), (5) fractal-based (Winterwerp 1998; Khelifa and Hill 2006; Strom and Keyvani 

2011), and (6) Population Balance Equations (Verney et al. 2011; Lee et al. 2011).  

It has been generalised that there are two distinct component groups of flocs: macroflocs and 

microflocs (Manning and Dyer 2007). Macroflocs are large, highly porous (> 90%), fast settling 

aggregates which are typically the same size as the turbulent Kolmogorov (1941) microscale. 

Macroflocs (𝑑𝑑𝑓𝑓> 160 μm) are recognised as the most important sub-group of flocs, as their fast 

settling velocities tend to have the most influence on the mass settling flux (Mehta and Lott, 1987). 

The smaller microflows (𝑑𝑑𝑓𝑓 < 160 μm) are generally considered to be the building blocks from 

which the macroflocs are composed. Microflocs are much more resistant to a breakup by turbulent 
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shear. Generally, they tend to have slower settling velocities, but exhibit a much wider range in 

effective densities than the larger macroflocs (Fennessy et al., 1994a). 

The initial research studies on the effect of sedimentary particles concentration on the settling 

velocity conducted by Mclauglin (1959), show that the settling velocity of particles decreases as 

the sediment concentration increases. Researchers such as Cancio and Neves (1995), Cancio and 

Neves (1999), krone (1962), Mehta and partheniades (1973), and Mehta and partheniades (1979) 

have defined the settling velocity as a function of fluid concentration.  

If a floc is settling within the viscous Reynolds region (i.e., when the particle Reynolds number, 

Re,< 0.5), the effective density for each floc could be obtained by applying a Stokes’ Law 

relationship: 

𝑤𝑤𝑠𝑠𝑓𝑓 = 1
18𝜇𝜇

d𝑓𝑓
2𝑔𝑔(𝜌𝜌f − 𝜌𝜌𝑤𝑤)        (3) 

where, μ is the dynamic viscosity of water, 𝜌𝜌𝑓𝑓 is the wet bulk density of floc, 𝜌𝜌𝑤𝑤 is the density of 

water, and d𝑓𝑓 is the floc diameter.  

Son and Hsu, (2011) added the function of �1 − ϕf�
4
 to the aforementioned equation as follows 

to consider hindered settling, consistent with the formula suggested by Richardson and Zaki 

[1954].   

𝑤𝑤𝑠𝑠𝑓𝑓 = 1
18𝜇𝜇

df
2𝑔𝑔(ρf − ρw)�1 − ϕf�

4
       (4) 

Where, ϕf is the solid volume fraction which is defined as C/ρf , C is the sediment concentration. 

Both ρf and df are variables in this equation due to the flocculation process.  

Kranenburg (1994) developed the following relationship to estimate the floc wet bulk density ρf:  

ρf = ρw + (ρs − ρw) �d𝑓𝑓
𝑑𝑑𝑠𝑠
�
F−3

       (5) 

Where the densities is in g cm−3 and 𝑑𝑑𝑓𝑓 is in µm. 𝑑𝑑𝑓𝑓  is the diameter of the primary particles and F 

is the fractal dimension which it is not a constant but a variable ranging from around 2.0 for a large 

floc aggregate and approaching 3.0 when floc is disaggregated into primary particles (Son and 

Hsu, 2011). Assumption of constant fractal dimension, if in fact, it is a decreasing function of size, 

would cause the observed overprediction of density and settling velocity at large and small floc 
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sizes. It is then legitimate to consider a continuous decrease of the fractal dimension as the size of 

flocs increases. The following power-law represents a reasonable proposed approximation for F: 

F = α �d𝑓𝑓
𝑑𝑑𝑠𝑠
�
β
          (6) 

Where the coefficient α is proposed to be equal 3 and the exponent β can be calculated using the 

following boundary conditions criterion (e.g. Winterwerp, 1998; Dyer and Manning, 1999; Khelifa 

and Hill, 2006): 

𝐹𝐹 = �
3     𝑎𝑎𝑎𝑎 𝑑𝑑𝑓𝑓 = 𝑑𝑑𝑠𝑠 
2    𝑎𝑎𝑎𝑎 𝑑𝑑𝑓𝑓 = 𝑑𝑑𝑓𝑓𝑓𝑓

         (7) 

 

Where 𝑑𝑑𝑓𝑓𝑓𝑓 is the characteristic floc size, this value can reach 2000μm (Khelifa and Hill, 2006).  

The settling velocity of the sediment is obtained from the settling column data and Mclauglin’s 

differential equation. Mclauglin (1959) described a way for measuring the settling velocity in the 

quiescent water carrying solids. He established his research using settling column and the 

following differential equation. 

𝜕𝜕𝜕𝜕𝑤𝑤𝑠𝑠����
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0          (8) 

Where C is suspended sediment concentration (kg/m3), z is the vertical distance from a datum line 

(m), t is time (sec), and 𝑤𝑤𝑠𝑠��� is the settling velocity.  

In the current study, the time variability of the mud floc diameter and wet bulk density are 

investigated based on the settling column data.  

2. Materials and Methods: 

2-1: Laboratory Model  

In this study, to perform experiments, the settling column model was constructed in the hydraulic 

laboratory of Shahrekord University. The model mentioned above was made of plexy glass with a 

total height of 3 meter consisting of 3 pieces of plexy glass columns; each one was 1 meter in 

length. These pieces were connected by ring and flange. The internal diameter of the column and 

the plexy glass thickness was chosen to be 0.19 m and 5 mm, respectively. The lower end of the 



column was connected to a cone-like depletion canal, and a discharge valve was embedded beneath 

it, and the whole model was mounted on a leggy metal chassis (Fig. 1). 

Additionally, in order to provide a mixture of water and sediment for performing experiments, a 

metal reservoir with 250 L capacity equipped with electronic mixer and booster pump was made, 

and the water transfer pipe from the reservoir to the top of the column was embedded into the 

column to transfer the mixture of water and sediment. Reading the water level in the model was 

done using a band meter with 3m length installed on the model. To determine concentration, 

sampling valves were installed on the settling column at 0.2 m depth intervals for sediment 

sampling. 

2-2- Specification of the used sediment  

To do the current research, the sediments were collected from the dry bed of earth dam reservoir 

of Pirbalout located 20 km southwest of shahrekord and transferred to Laboratory. The grain size 

distribution curves for sediment used in this work is presented in Fig. (2). According to the 

gradation curve, it is found that the sediments contain 64% clay and 36% silt. The median diameter 

of the sediment particle, 𝑑𝑑50, is obtained 3.5 μm. Also, the liquid limit (LL), plastic limit (PL), and 

plasticity index of the sediment was determined based on the ASTMD423 standard (ASTM 1972). 

The test showed that LL, PL, and plasticity index are 48.0, 37.2, and 10.8%, respectively. Density 

of the primary particles of the sediment was obtained 2.69 g/cm3. 

2-3- Sediment concentration measurement 

To measure the sediments concentration at different times, sediment samples (≃100cc) were 

collected using sampling valves and then the suspended sediment concentration was measured by 

drying and weighing methods. To perform these measurements, digital balance with 0.001 gr 

accuracy and an oven with maximum internal heat of 1200 C was used. 

 

2-4- Experiment steps: 

The experiments were performed in 3 steps in this research, including preparing the sediment and 

water mixture, transferring the mixture to the settling column model, and measuring during the 

settlement. In the first step, primarily the sediments were dried completely and beaten well by a 

metal hammer and passed through the sieve number 200. Given the initial intended concentration, 



a certain amount of dry sediments was selected and added to a certain amount of water in a 250 

liters tank to prepare the water and sediment mixture, then using a mixer and a submersible pump 

(simultaneously), the mixture was completely mixed for 1 hour to ensure that no floc has formed 

before the settling experiment. To perform the second step, a 1 inch pump was used and the mixture 

of sediment and water was transferred into the model. Considering the volume of the settling 

column and the pump discharge, it took us 1 minute to fill the column. 

The initial concentrations under the test were 3, 10, 5, 15, and 20 g/l. For each of these initial 

concentrations, sampling was done at different depths to determine the concentration at times of 

5, 15, 30, 60, 120, 240 and 480 minutes.  Samples were also taken from depths of 0.4, 0.8, 1.4, 

1.8, 2.4 and 2.8 m relative to the water surface in the model. Of course, at the time of starting the 

experiment, a control sample was taken for each initial concentration, to estimate the initial 

concentration. 

2-5- Settling velocity computation method 

In order to estimate the settling velocity, Mclauglin equation was used, which is defined as follows. 

( , ) . 0z tdC C C dz
dt t z dt

∂ ∂
= + =
∂ ∂

         (9) 

Where, C: the average concentration at different depths in a certain time interval, and 𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

= 𝑤𝑤�(𝑧𝑧, 𝑎𝑎). 

By integrating the mentioned above equation and substituting  𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

= 𝑤𝑤�(𝑧𝑧, 𝑎𝑎) in this equation, we 

have:  

0 0
(wC)

d d

z d
C dz Cdz
t t=

∂ ∂
= − = −

∂ ∂∫ ∫          (10) 

According to the obtained equation, the settling velocity of suspended sediments is calculated as 

follows: 

0

(w)

d

d

Cdz

t
C

∂

∂= −

∫
                        (11) 



To use the mentioned above equation, the concentration changes curve was used, and the 

numerator is the area under the concentration distribution curve relative to the depth at different 

times. 

3- Results and discussion: 

3-1- Changes in Concentration with Depth  

The concentration increases by increasing depth, and as time goes by, the concentration of 

sediments decreases due to the sediments settlement. According to the results of measuring 

sediment concentration, the concentration depth distribution at different times is shown in Fig.s 

(3, a - e). The concentration depth distribution in the conducted experiments shows that 15 minutes 

after the beginning of settlement, the highest gradient of depth changes in concentration occurs 

(on average equal to 1.25 g/l per each meter of depth). 

In contrast, 60 minutes after the beginning of settlement, the maximum gradient of depth changes 

in concentration occur (on average equal to 0.14 g/l per each meter of depth). The reason can be 

attributed to the flocs reaching to their maximum size after the first 15 minutes and the maximum 

rate of settlement at this time (Spicer et al., 1998 and Sanford et al., 2005). Additionally, results 

showed as the initial concentration of experiment increases, the gradient of deep changes in 

concentration increases as well, such that the average gradient of depth changes in concentration 

for initial concentration of 3 gr/ L is equal to 0.3 g/l per each meter of depth. And for initial 

concentration of 20 g/l, this gradient is equal to 0.7 g/l per each meter of depth. This may occur 

due to the effect of high initial concentration on increasing the settling and sedimentation rate of 

suspended sediments. 

3-2: Changes in Concentration over Time: 

To investigate time changes of sediments concentration, Figs. 4 and 5 are presented. As shown in 

these figures, for experiments with different initial concentrations, after 15 minutes of settling, 

concentration changes occur gradually. Still, after this time, the concentration reduction process 

becomes faster, and after 60 minutes of settling, the sediment concentration reaches 12% of initial 

concentration. After 120 minutes, the sediment concentration reaches 5% of initial concentration. 

This shows that most of the sediments will be deposited in the first 1-2 hours of the experiment. 

3-3: The settling velocity computation: 



In order to compute the settling velocity of sediments based on equation (11), at first, the numerator 

i.e., the surface under the depth-concentration curve, which is  
𝛿𝛿 ∫ 𝑓𝑓𝑑𝑑𝜕𝜕𝑑𝑑

0
𝛿𝛿𝜕𝜕

 , should be determined. To 

this purpose, Figs. 3 to 5 were used and the surface under the depth-concentration curve was 

separately calculated at depths of 0.4-0.8, 0.8-1.4, 1.4-1.8, 1.8-2.4 m using trapezoidal rule 5, 15, 

240, 120, 60, 30 and 480 minutes after the start of the experiment. The settling velocity was 

calculated by dividing the surface under the curve by the average concentration at different depths 

at each moment. Results are presented in table (1) and Figs. (6, a – e). These figures for all 

experiments at different initial concentrations show that the average settling velocity has an 

increasing trend at first and after reaching to its maximum value 15 minutes after the start of the 

experiment, turns its direction and becomes descending. And finally, over time, it tends to zero. 

The settling velocity of sediments gets to the maximum value after 15 minutes of the start of the 

experiment because the flocs reach to their maximum size. These results are in agreement with 

those obtained by shin et al. (2015), Sanford et al. (2005) and Spiner et al (1998) showing that the 

maximum amount of flocculation occurs 15 minutes after the start of the experiment. Furthermore, 

the figures show that the maximum rate of settling velocity at a concentration of 3 g/l is equal to 

5.84 mm/s. For initial concentrations of 5, 10, 15 and 20g/l, the maximum instantaneous settling 

velocity of sediments was obtained to be 4.822, 3.393, 2.557, and 2.135 mm/s, respectively; and 

the average settling velocity of sediments was calculated to be  0.738, 0.571, 0.474, 0.368, and 

0.266 mm/s, respectively. This shows that the maximum settling velocity of sediments is about 8 

times the average settling velocity of the sediments.  

3-3: Time Variation of the Floc Diameter and Density: 

Under the assumption that the structure of flocs is self-similar, the concept of fractal geometry can 

be used to describe the geometrical characteristics of this structure. This concept has been applied 

widely to the description of floc geometry. In this work, Kranenburg’s equation and Stokes’ Law 

relationship have been used to estimate the time variability of the geometrical characteristics of 

the floc, including diameter and density. For this purpose, these two equations have been 

numerically solved, and the floc diameter and density were calculated at each time and level. The 

results of floc density calculations, as illustrated in Fig. 7, show that the floc density gets to the 

minimum value after 15 minutes of the start of the experiment because the flocs reach their 

maximum size. After reaching its minimum value, the density has an increasing trend, and it is 



concluded to the primary particle density. This figure also shows that the averaged floc density is 

decreased with the column depth. It may be because of growing the floc size with increasing the 

depth.   

The results of floc diameter calculations, as shown in Fig. 8, indicate that the floc diameter gets to 

the maximum value after 15 minutes of the start of the experiment because the flocs reach their 

maximum size. The results also show the average floc size has an increasing trend at first and after 

reaching its maximum value. This figure also indicates that the averaged floc size is decreased 

with increasing the column depth.  

4. Conclusion: 

According to the findings of this study, it can be concluded that: 

1. At any initial concentration, as the depth of the water column increases, the amount of 

concentration increases too. 

2. The results show that the maximum settling velocity of sediments is about 8 times the average 

settling velocity of the sediments, which shows significant flocculation of the sediments. 

3. The settling velocity of sediments gets to the maximum value after 15 minutes of the start of 

the experiment because the flocs reach their maximum size. These results are in agreement 

with those obtained by shin et al. (2015), Sanford et al. (2005) and Spiner et al. (1998).  

4. The results showed that the maximum amount of the settling velocity occurred at a low initial 

concentration of sediments (3g/l). Still, by increasing the initial concentration due to the water 

and sediment mixture entering into the hindered phase, the maximum amount of settling 

velocity of cohesive sediments began to decrease. 

5. The results of floc density calculations show that the floc density gets to the minimum value 

after 15 minutes of the start of the experiment and after reaching to its minimum value; the 

density has an increasing trend. Finally, it is concluded to the primary particle density.  

6. The results of floc diameter calculations indicate that the floc diameter gets to the maximum 

value after 15 minutes of the start of the experiment because the flocs reach their maximum 

size. The results also show that the average floc size has an increasing trend at first and before 

reaching its maximum value. The averaged floc size has also been decreased with increasing 

the column depth.  

Symbols List: 



C: Suspended sediments concentration  

ws𝑓𝑓: Settling velocity of flocs  

ws: Settling velocity of primary particles.  

t: Time  

Z: Depth from the water surface  

d𝑓𝑓: Diameter of flocs  

ds: Diameter of primary particles 

𝜌𝜌f: Floc density 

𝜌𝜌𝑤𝑤: Water density 

𝜌𝜌𝑠𝑠: Primary particle density. 
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Table (1) Settling velocity of cohesive sediments in settling column tests (mm/s). 

Initial 
concentration 

Depth from 
 the water 

 surface 
Time (min) 

∆Z1 
 (Z = 0.4 
to 0.8 m 

∆Z2  
(Z = 0.8 
to 1.4 

m) 

∆Z3 
(Z = 1.4 
to 1.8 m) 

∆Z3  
(Z = 1.8 
to 2.4 m) 

∆Z4  
(Z = 2.4 
to 2.8 m) 

Co= 3 g/l 

5 0.318 0.398 0.483 0.567 0.629 
15 1.079 1.342 2.227 4.629 5.842 
30 0.465 0.748 0.964 1.085 1.181 
60 0.386 0.458 0.473 0.530 0.567 
120 0.186 0.212 0.215 0.248 0.250 
240 0.017 0.028 0.031 0.077 0.113 
480 0.008 0.013 0.014 0.016 0.020 

Co= 5 g/l 

5 0.324 0.356 0.463 0.552 0.570 
15 0.927 1.161 1.611 3.094 4.822 
30 0.445 0.509 0.578 0.765 0.904 
60 0.176 0.265 0.353 0.409 0.487 
120 0.064 0.107 0.181 0.187 0.196 
240 0.019 0.050 0.077 0.085 0.105 
480 0.010 0.016 0.021 0.030 0.064 

Co= 10 g/l 

5 0.177 0.358 0.437 0.505 0.526 
15 0.724 0.926 1.562 2.380 3.393 
30 0.397 0.482 0.541 0.634 0.821 
60 0.100 0.181 0.211 0.321 0.506 
120 0.057 0.095 0.162 0.170 0.355 
240 0.017 0.030 0.077 0.166 0.175 
480 0.009 0.015 0.018 0.024 0.044 

Co= 15 g/l 

5 0.156 0.174 0.282 0.407 0.469 
15 0.685 0.772 1.219 1.507 2.557 
30 0.197 0.266 0.516 0.648 0.674 
60 0.092 0.154 0.288 0.318 0.467 
120 0.040 0.072 0.140 0.165 0.317 
240 0.017 0.023 0.025 0.062 0.078 
480 0.009 0.014 0.017 0.024 0.031 

Co= 20 g/l 

5 0.096 0.142 0.230 0.342 0.426 
15 0.598 0.698 0.923 1.265 2.135 
30 0.152 0.181 0.194 0.309 0.430 
60 0.057 0.069 0.103 0.155 0.180 
120 0.017 0.019 0.083 0.126 0.141 
240 0.013 0.016 0.019 0.074 0.092 
480 0.003 0.004 0.008 0.012 0.014 

 

 



   

Fig. 1. Settling column, (1) storage tank (0.4 m3) for mixing water and sediment with desirable 

density, (2) pump to deliver water to settling column, (3) a mixer connected to appropriate 

electric motor, (4) plexy glass settling cylinder, 3 m height and 0.3 m diameter, and (5) sampling 

outlets, 0.3 m apart  

 

 

 

Fig. 2. The grain size distribution curve for sediment used in the experiments. 
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Fig. 3. Concentration depth distribution for the conducted experiments 

(a: Co= 3 g/l , b: Co= 5 g/l , c: Co= 10 g/l , d: Co= 15 g/l , e: Co= 20 g/l) 

 



  

Fig.4. Changes with time in sediment 

concentration in the conducted experiments  

Fig. 5. Changes with time in dimensionless 

sediment concentration in the conducted 

experiments 
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Fig. 6. Sediment settling velocity Changes versus time (a: Co= 3 g/l , b: Co= 5 g/l , c: Co= 10 g/l 

, d: Co= 15 g/l , e: Co= 20 g/l) 
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Fig. 7. Time Variation of the floc wet bulk density (a: Co= 3 g/l , b: Co= 5 g/l , c: Co= 10 g/l , 

d: Co= 15 g/l , e: Co= 20 g/l) 
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Fig.8. Time Variation of the floc diameter (a: Co= 3 g/l , b: Co= 5 g/l , c: Co= 10 g/l , d: Co= 15 

g/l , e: Co= 20 g/l) 

 


