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Abstract: This article presents a novel Ka-band Marchand balun implemented in 0.13-µm SiGe bipolar
complementary metal–oxide–semiconductor (BiCMOS) process. By combining both edge- and
broadside-coupled structures, the new hybrid balun is able to increase the coupling and minimize the
balun insertion loss. As compared with conventional edge-coupled or broadside-coupled structures,
the proposed balun achieves the lowest insertion loss of 1.02 dB across a wide 1-dB bandwidth from
29.0 GHz to 46.0 GHz, with a core size of 270 µm × 280 µm.
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1. Introduction

Balun, which converts single ended signals into balanced signals is widely used in RF front-end
modules, such as frequency multipliers, mixers which utilize differential signals for common-mode
signal cancellation, and to improve port isolations. Key performance specifications of a balun include
insertion loss, amplitude/phase balance, and chip size. These parameters are important in the design of
millimeter-wave (MMW) circuits and systems [1]. Marchand balun [2–10], which utilizes two coupled
line sections, is widely used in MMW frequency circuit design, due to its wide operating bandwidth
and easy implementation.

In [2], an asymmetric broadside coupled Marchand balun based on the modified off-center
frequency method was proposed. It achieves a bandwidth of 34–110 GHz; however, it suffers from high
insertion loss averaging around 3 dB. Another 30 GHz to 60 GHz transformer balun [11] with offset
radii coils was designed to address imbalance performance. Results show a low-amplitude imbalance
of 0.12 dB and phase imbalance of less than 1◦; however, the maximum insertion loss is around 3 dB.
A miniaturized on-chip Marchand balun [12], based on a stacked-spiral-coupled (SSC) structure with a
self-coupled compensation line and center-tapped ground-shield with deep trench, was designed for
wideband operation from 6.5 GHz to 28.5 GHz, but a maximum of 3 dB insertion loss was measured.
Wideband operation and amplitude/phase imbalance had been the focus of previous reported literature,
with the trade-off of balun insertion loss. In this article, the design of a novel Ka-band Marchand balun
with low insertion loss is presented, while achieving wideband operation with acceptable imbalance
performance. The proposed balun employs both edge- and broadside-coupled combined structures to
enhance the coupling between the primary and secondary signals and, thus, achieves a measured low
insertion loss of 1.02 dB across a 1 dB bandwidth from 29.0 GHz to 46.0 GHz. Section 2 presents the
detailed balun analysis and proposed balun design, Section 3 discusses the experiment results and
makes a comparison with the state-of-the-art, and Section 4 draws the conclusion.

Electronics 2020, 9, 1116; doi:10.3390/electronics9071116 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5518-9379
https://orcid.org/0000-0002-4524-707X
http://dx.doi.org/10.3390/electronics9071116
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/7/1116?type=check_update&version=2


Electronics 2020, 9, 1116 2 of 9

2. Design of the Proposed Balun

2.1. Technology

A high-performance bipolar complementary metal–oxide–semiconductor (BiCMOS) technology
(SG13G2) with a 0.13-µm complementary metal–oxide–semiconductor (CMOS) process from
innovations for high performance microelectronics (IHP) has been used for designing the balun.
The backend of the line offers 5 thin metal layers, metal 1 (M1) to metal 5 (M5), two thick metal
layers, top metal 1 (TM1, 2 µm thick) and top metal 2 (TM2, 3 µm thick), and a metal–insulator–metal
(MIM) layer.

2.2. Balun Analysis

Figure 1 shows the schematic of the conventional Marchand balun, which consists of two identical
coupled line sections, where a single section coupler with electrical length of θ, is shown in Figure 2,
and its four-port S-parameter matrix can be represented by Equation (1), as given in [13].

[
S

]
coupler

=


0 x/z y/z 0

x/z 0 0 y/z

y/z 0 0 x/z

0 y/z x/z 0

 (1)

where x =
√

1− k2, y = jk sinθ, and z =
√

1− k2 cosθ+ j sinθ, and k is the coupling coefficient.
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Figure 1. Block diagram of the conventional Marchand balun.
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Figure 2. A single section coupler.

Then from [9], the insertion loss of the Marchand balun can be derived as

S21 = −S31 =
x3y− xyz2

− xy3

z2(z2 + y2)
(2)

Ideally balanced output ports P2 and P3 should be of equal magnitude and exactly 180◦ out of
phase. The plot of the insertion loss S21 as a function of electrical length θ, for different values of
coupling coefficient k, is shown in Figure 3. It is observed that the insertion loss initially decreases
as k increases; further increasing k beyond 0.7 will increase the insertion loss at the center frequency
θ = π/2, while the flattest frequency response occurs for k between 0.6 and 0.7. Based on the above
observation, the balun insertion loss can be minimized through optimizing the coupling coefficient
k, as presented in this work. Figure 4 shows the schematic of the designed Marchand balun with a
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capacitor C1 added to connect the open circuit (O.C.) port to ground, so as to reduce the coupled
transmission line length, as well as achieve good in-band matching.
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Meander lines with a 45◦ bend have been used to save chip area. To reduce the insertion loss,
the top two thick metal layers, TM1 and TM2, with low sheet resistance and low parasitic capacitances
to substrate are used. A Metal 1 to TM2 guard-ring surrounding the balun is drawn and shorted by
internal Vias to ground and is connected to the substrate through contact Vias, as shown in Figure 5a.
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2.3. Proposed Balun

The proposed balun structure is shown in Figure 5. Broadside-coupling between TM1 and TM2
layers and edge-coupling in both TM1 and TM2 layers is formed between primary and secondary signals.
Further optimization using Keysight Advanced Design System’s (ADS) Momentum Electromagnetic
(EM) simulator was performed to obtain the optimum metal width and spacing, with a 6 µm metal
width and a 6 µm metal spacing obtained for both TM1 and TM2 layers, as shown in Figure 5a. Detailed
analysis for the proposed balun is given in Figure 6 with the cross-sectional view shown in Figure 6a,
where CS1 and CS2 are the TM1 and TM2 conductor capacitance to ground, respectively. Cm1 and
Cm2 are the mutual capacitances for the edge-coupled TM1 and TM2, respectively, and Cm12 is the
mutual capacitance between the broadside-coupled TM1 and TM2. Figure 6b shows the equivalent
simplified model of the balun, and the corresponding even/odd mode models are given in Figure 6c,
Figure 6d, respectively.
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Then from [13], the coupling coefficient k can be expressed as

k =
Cm

√
Ca + Cm

√
Cb + Cm

(3)

where Cm = 2(Cm1 + Cm2 + 2Cm12), and Ca = Cb = Cs1 + Cs2. Therefore, k increases as Cm increases.
Compared with the edge-coupled structure, where either Cm1 or Cm2 exists, or the broadside-coupled
structure with only mutual capacitance Cm12, using the proposed edge- and broadside-coupled hybrid
configuration, a higher Cm can be obtained, hence maximizing coupling k.

Using 6 µm metal width for both primary and secondary coupled lines, for the edge-coupled
structure, the coupling k is limited by the minimum metal spacing rule defined by the foundry process,
with a highest simulated k of 0.57; for the broadside-coupled structure, it is limited by the vertical
distance between TM1 and TM2, with a highest simulated k of 0.61. With the proposed edge- and
broadside-coupled hybrid structure, a coupling k of 0.62 is achieved. Further optimizing the capacitive
termination, C1 capacitance in Figure 4 with 30 fF for both edge- and broadside-coupled structures and
74 fF for the proposed hybrid balun, the simulated insertion loss is shown in Figure 7. It can be seen
that the proposed balun has achieved the lowest minimum insertion loss among all the designs.
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Figure 7. Plot of insertion loss.

By transforming the three-port balun into a two-port network, the minimum insertion loss
ILmin [14] can be calculated by Equations (4) and (5), and the calculated ILmin is shown in Table 1.
Simulation and calculation results correlate well, showing that the proposed hybrid structure gives the
minimum insertion loss.

ILmin =
1

1 + 2
(
x−
√

x2 + x
) (4)

x =
Re(Z11)·Re(Z22) − [Re(Z12)]

2

[Im(Z12)]
2 + [Re(Z12)]

2 (5)

Table 1. Simulated and calculated ILmin *.

Topology Edge Coupled Broadside Coupled Proposed

Simulated ILmin (dB) 1.616 1.190 0.816
Calculated ILmin (dB) 1.212 1.046 0.791

* Excluding the balun theoretical 3 dB loss.

From [13], the equivalent even/odd mode characteristic impedance Z0e and Z0o can be expressed as

Z0e =

√
R + jωL
G + jωC

=

√
R + jω(L0 + Lm)

G + jωC0
(6)

Z0o =

√
R + jωL
G + jωC

=

√
R + jω(L0 − Lm)

G + jω(C0 + 2Cm)
(7)

where Lm is the mutual inductance, and Cm is the mutual capacitance and is equal to
2(Cm1 + Cm2 + 2Cm12) in the proposed balun.

Then from [15], the amplitude imbalance of the balun can be written as

Amplitude Imbalance = dB(|S21|/|S31|) = dB
(

Z0e −Z0o

Z0e + Z0o

)
(8)

From Equations (6)–(8), it can be seen that, as the coupling coefficient k increases, both the mutual
inductance, Lm and mutucal capacitance, Cm increase, and thus, Z0o decreases, Z0e increases, and the
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amplitude imbalance shifts towards the ideal 0 dB. Figure 8 shows the simulated amplitude and phase
imbalance, where phase imbalance is defined as

Phase Imbalance = abs(∠S21 − ∠S31) − 180
◦

(9)
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From Figure 8, it can be seen that the proposed balun shows significant improvement over the
conventional edge-coupled and broadside-coupled structures in terms of amplitude/phase balance,
where the amplitude and phase imbalance are −0.18 dB to 0.20 dB and −3.23◦ to 0.81◦, respectively
across a 1-dB frequency bandwidth.

3. Experiment Results

The proposed balun is fabricated using the IHP 0.13-µm SiGe BiCMOS process with a core size
of 270 µm × 280 µm. The on-wafer measurement is carried out using the Keysight PNA-X network
analyzer N5247A (Keysight, Santa Rosa, CA, USA) with a four-port Hybrid Line–Reflect–Reflect–Match
(LRRM) and Short–Open–Load–Thru (SOLR) calibration. The measurement setup and die photo
is shown in Figure 9. A minimum insertion loss of 1.02 dB with a 1-dB bandwidth of 29.0 GHz to
46.0 GHz is measured, as shown in Figure 10.

Figure 11 shows the simulated and measured amplitude and phase imbalances. A ±0.83 dB
amplitude imbalance and −3.8◦ to −7.3◦ phase imbalance is measured across the band from 29.0 GHz
to 46.0 GHz. The small difference between the simulated and measured data is primarily due to the
imbalance introduced between the output differential ports during the calibration phase. In addition,
the measured frequency shift is due to the process variation of the capacitor C1.
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Common mode rejection ratio (CMRR), defined as the ratio between the differential-mode insertion
loss over the common-mode insertion loss as shown in Equation (10), is plotted in Figure 12. CMRR
more than 25 dB has been measured for the proposed hybrid structure. The difference between
simulated and measured data is due to higher amplitude and phase imbalance, as the CMRR is
dependent on the amplitude and phase balance of the balun. Poor amplitude or phase balance will
result in higher common-mode signal pass through and, thus, low CMRR.

CMRR = dB
(

S21 − S31

S21 + S31

)
(10)
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Finally, Table 2 shows the measured performance comparison with the reported SiGe baluns.
Compared with the reported standalone broadside-coupled baluns, the proposed hybrid structure has
achieved a lowest insertion loss of 1.02 dB.

Table 2. Performance comparison with reported baluns.

Reference [11] [12] [16] Proposed

Process 0.13-µm SiGe BiCMOS 0.13-µm SiGe BiCMOS 0.18-µm SiGe BiCMOS 0.13-µm SiGe BiCMOS
Topology Broadside coupled Broadside coupled Broadside coupled Broadside and edge coupled

Frequency (GHz) 30.0–60.0 6.5–28.5 40.0–60.0 29.0–46.0
Insertion loss * (dB) <3 <3 1.9 1.02

Amplitude Imbalance (dB) <0.14 <±1.0 <0.2 <±0.83
Phase Imbalance (deg.) <1 <±1.65 <2.7 −3.8 to −7.3

Chip area (µm2) 200 × 145 360 × 150 200 × 180 270 × 280

* Excluding the balun theoretical 3 dB loss.

4. Conclusions

In this article, the influence of the coupling coefficient k on the Marchand balun insertion loss has
been studied. As coupling k for the stand-alone edge-coupled and broadside-coupled structures has
reached the process limitation, a new structure combining both edge-coupled and broadside-coupled
configurations is proposed to enhance the coupling and therefore increase k to minimize the insertion
loss. With that, a good amplitude imbalance of ±0.83 dB and measured insertion loss of 1.02 dB has
been obtained across a 1-dB bandwidth from 29.0 GHz to 46.0 GHz.
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