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Abstract 
When a vehicle moves over the bridge, the vehicle-bridge interaction(VBI) leads to the time-varying 
modal parameters of the system. The identification of non-stationary characteristics of bridge responses 
due to moving vehicle load is important and remains a challenging task.  A new method based on the 
improved empirical wavelet transform (EWT) along with ridge detection of signals in time-frequency 
representation (TFR) is proposed to estimate the instantaneous frequencies (IFs). Numerical studies are 
conducted using a vehicle-bridge interaction model to investigate the time-varying characteristics of the 
system. The effects of the measurement noise, road surface roughness and structural damage, on the 
bridge IFs are investigated. Finally, the dynamic responses of an in-situ cable-stayed bridge subjected to 
a passing vehicle are analyzed to further explore the time varying characteristics of the VBI system. 
Numerical and experimental studies demonstrate the feasibility and effectiveness of the proposed method 
on the IF estimation. The identified IFs reveal important time-varying characteristics of the bridge 
dynamic that is significant to evaluate the actual performance of operational bridge and may be used for 
the structural health assessment.      
 
Keywords: vehicle-bridge interaction, instantaneous modal frequencies, empirical wavelet transform, 
time-frequency representation, ridge detection 
 
1. Introduction 

The investigation on the bridge dynamic characteristics under operational traffic load is a significant 
part of the bridge structural health monitoring. Extensive study on the bridge dynamic characteristics has 
been conducted in a VBI framework1-4. Research shows that the VBI is a time-varying process that the 
dynamic responses of the bridge are non-stationary5,6. Li et al.7 theoretically studied the natural frequency 
of railway girder bridges under vehicular load. The bridge frequency was found varying periodically 
with the passage of the vehicle. Kim et al.8 experimentally studied the effect of vehicle weight on the 
bridge natural frequencies under traffic-induced excitation. A non-negligible change 5.4% was noted in 
the natural frequencies of a short span bridge when the mass ratio between the vehicle and the bridge 
was 3.8%. Chang et al.9 conducted theoretical and experimental studies to estimate the variability of 
bridge frequency due to a vehicle parked on top. Cantero et al.10 assessed the non-stationary and non-
linear features of a scaled vehicle-bridge interaction test bed experimentally. The identification of the 
time-varying dynamic characteristics is critical to accurately assess the structural performance and 
condition of target structure11. The time-varying parameter identification of bridges under moving 
vehicle loads is still a big challenge. 

Non-parametric based time-frequency analysis techniques, i.e. short time Fourier transform (STFT), 
Winger-Ville distribution (WVD), Empirical Mode Decomposition (EMD) and wavelet transform, are 
extensively used to study dynamic characteristics of nonstationary structural responses12,13. Yang et al.14 

briefly reviewed these methods and their engineering applications. For fixed-window STFT, the obtained 
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time-frequency are determined by the window function and the resolutions are fixed that may fail to 
extract high accuracy time-frequency characteristics from nonstationary signals. The time-frequency 
representation based on continuous wavelet transform is a trade-off between time-frequency resolutions, 
while the results of WVD are affected by the cross-terms in the instantaneous auto-correlation function. 
EMD and the ensemble EMD become one of the most popular techniques to analyze non-stationary and 
non-linear dynamic response signals. It decomposes a signal into a finite sum of Intrinsic Mode Functions 
(IMFs) and Hilbert transform (HT) is used to extract the instantaneous modal frequencies from IMFs. 
However, the main issue of the EMD approach is its lack of mathematical theory. The EMD suffers from 
the problems of mode mixture and pseudo-IMFs, etc. The synchrosqueezing transform (SST), an EMD-
like tool, was recently proposed to analyze the non-stationary signals15,16. SST based methods have been 
developed for the time-frequency analysis and IF estimation and presents better estimation results over 
EMD17,18. However, the SST method was a smart utilization of the output of a classic wavelet analysis 
instead of a full adaptive wavelet transform.  

Gills19 developed the Empirical Wavelet Transform (EWT) based on wavelet decomposition. EWT 
is an adaptive approach for conveniently extracting the different modes of a signal by constructing a 
wavelet filter bank. The results have shown the its feasibility and effectiveness compared to the classic 
EMD. It has been successfully applied to machinery fault diagnosis20-22. Kedadouche et al.23 compared 
the EWT and EMD methods in the application to the bearing effect diagnosis. The results showed that 
the EWT was much efficient compared to EMD and Ensemble EMD on mode estimates and computation 
time. Recently, EWT was applied to identify modal parameters of civil structures24. Xia and Zhou25 

adopted EWT to obtain the mono-component of structural response and employed Hilbert transform to 
extract the time-varying features for condition assessment of civil structures. The EWT approach is to 
extract the different modes by designing the appropriate wavelet filter bank and provides a 
consistent decomposition. To authors’ best knowledge, there is a little research on using or 
improving EWT method for time-varying parameter identification, especially for vehicle-bridge 
interaction systems. Xin et al.26 proposed an improved EWT approach for structural operational modal 
identification. The Fourier spectrum was replaced with a standardized autoregression (AR) power 
spectrum to determine the spectrum boundaries associated with EWT analysis. Hilbert transform and 
RDT were then performed to identify the structural modal parameters. The approach has been 
successfully applied for operational modal identification of linear structures. This method is enhanced 
using the time-frequency analysis based on Synchroextracting transform to determine the filtering 
boundaries of EWT [27]. The results showed that the EWT is more reliable and accurate to identify 
the time-varying components of the signal than that by the variational mode decomposition [28]. 
The experimental results showed the potential application to track the passage of the heavy vehicles 
on the bridge [27]. There is no detail study for time-varying characteristics of bridges subjected 
moving vehicles.  

This paper proposes a hybrid framework based on an improved EWT for the analysis of non-
stationary bridge responses under operational vehicle load and extract instantaneous frequencies. Two 
steps are involved in the framework. In the first step, an improved EWT is used to decompose the 
measured bridge responses into a number of IMFs. The second step is to extract instantaneous 
frequencies from the time-frequency represents (TFR) of IMFs by ridge detection. The rest of this paper 
is organized as follows: Section 2 presents the formulation of the 2-D VBI model for analysis and road 
surface roughness is included. In Section 3, the background of the EWT is brief introduced and the 
proposed hybrid method for the estimation of time-dependent characteristic is described. Section 4 
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conducts numerical analysis on the estimation of instantaneous modal frequencies to verify the feasibility 
of proposed framework. Experimental analysis on an actual cable-stayed bridge are conducted in Section 
5. Section 6 summaries the conclusions.  

 
2. Formulation of the VBI model 
2.1 Equation of motion of a bridge subjected to a moving vehicle 

 

Figure 1 Vehicle-bridge interaction model 
A VBI model as shown in Figure 1 is considered. The vehicle is modelled as a 2-DoF quarter car 

and the bridge as a simply-supported beam with length L. The vehicle parameters 	𝑚! and 𝑚" are the 
masses of vehicle body and axle, respectively. 𝑘# and 𝑐#	are the stiffness and damping of suspension 
spring and damper, respectively. 𝑘$ is the stiffness of the tire. The vehicle is assumed to move along the 
bridge deck at a constant velocity v. The equation of motion for the vehicle can be expressed as 

%𝑚! 0
0 𝑚"

'	(�̈�!�̈�"
+ 	+ -

𝑐# −𝑐#
−𝑐# 𝑐# /	(

�̇�!
�̇�"
+ + % 𝑘# −𝑘#

−𝑘# 𝑘#
'	1
𝑦!
𝑦"2 = ( 0

(𝑚! +𝑚")g − 𝑃%&$(𝑡)
+  (1) 

where 𝑦!  and 𝑦"  are the displacement responses of the vehicle body and axle, respectively. The 
interaction force between the bridge and the vehicle 𝑃%&$(𝑡) = (𝑚! +𝑚")g + 𝑘$(𝑦" − 𝑦9𝑥(𝑡); −
𝑟(𝑥(𝑡))) . 𝑦9𝑥(𝑡);  is the displacement response of the bridge, and 𝑟(𝑥(𝑡))  is the road surface 
roughness of the bridge deck at the location 𝑥(𝑡) = 𝑣𝑡. Eq. (1) is rewritten as 

𝐌!�̈�!(𝑡) + 𝐂!�̇�!(𝑡) + 𝐊!𝐝!(𝑡) = 𝐃(𝐹! − 𝑃%&$)                (2) 
As shown in Figure 1, the planar Euler-Bernoulli beam bridge can be modelled with n finite 

elements. The equation of motion of the bridge can be expressed as28:  
𝐌'�̈�'(𝑡) + 𝐂'�̇�'(𝑡) + 𝐊'𝐝'(𝑡) = 𝐇((𝑡)𝑃%&$(𝑡)                (3) 

where 𝐝' denotes the vertical displacement vector of the bridge. 𝐌', 𝐂', 𝐊'  are the mass, damping 
and stiffness matrices of the bridge, respectively. 𝐇((𝑡) = {0, 0… ,𝑯%(𝑡), … ,0}) is a function of time 
and 𝑯%(𝑡) is the vector of shape function in the ith element on which the moving vehicle is located at 
time instant t, and it can be expressed as 𝑯%(𝑡) = {1 − 3𝜉* + 2𝜉, (𝜉 − 2𝜉* + 𝜉+)𝑙, , 3𝜉* − 2𝜉+, (−𝜉* +
𝜉+)𝑙,}, with 𝜉 = (𝑥(𝑡) − 𝑥%)/𝑙,, 𝑥% = (𝑖 − 1)𝑙, where 𝑙, is the length of the element. 

Combining Eqs. (2) and (3), the coupled VBI system can be obtained as 
𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝑫(𝑡) = 𝐅(𝑡)                     (4) 
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interaction system in Eq. (4) are noted time-dependent according to the location of the interacting force 
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and the frequencies of the system is time-varying. 
 
3. Theoretical background of the hybrid analysis method for IF estimations 
3.1 The empirical wavelet transform 

A dynamic response signal of a bridge 𝑠(𝑡) can be assumed to consist of N mono-components 
{𝑠%(𝑡), 𝑖 = 1,2, … ,𝑁)},			which correspond to modes centered on a specific frequency of the spectrum. 
The EWT separate the different modes mainly in three steps. First, the frequency spectrum of the signal 
𝑠(𝑡) is obtained with the frequency rang [0, 𝜋] by using Fourier transform. Second, the spectrum along 
the Fourier axis is segmented into N number of contiguous portions according to the local maxima of 
spectrum. The individual segments correspond to different modes that are centered around each local 
maximum.  

The boundary between each segment is denoted as 𝜔& and each segment is filtered by an interval 
[𝜔&.", 	𝜔&] with (𝜔/ = 0	and	𝜔0 = 𝜋). A transition phase 	𝑇& of width 2	𝜏& is defined for each 𝜔&. 
The 	𝜏& can be defined as 

	𝜏& = 𝛾𝜔&                                     (5) 

and 𝛾 is chosen by 0 < 𝛾 < min&
1!"#.1!
1!"#21!

. At last, the filter bank for each segment is defined by the 

empirical scaling function and the empirical wavelets expressed as: 

𝜙i&(𝜔) =

⎩
⎨

⎧
1 if	|𝜔| ≤ 	 (1 − 𝛾)𝜔&

cos s3
*
𝛽 u "

*41!
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0 otherwise,

  (6) 
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(7) 
in which the function 𝛽(𝑥) is an arbitrary function defined on [0,1] that can be expressed as  

𝛽(𝑥) = S
0 if	𝑥 ≤ 0
𝛽(𝑥) + 𝛽(1 − 𝑥) = 1 ∀𝑥 ∈ [0, 1]
1 if	𝑥 ≥ 1

                     (8) 

and the most used one in the literatures19,29 is: 
𝛽(𝑥) = 𝑥5(35 − 84𝑥 + 70𝑥* − 20𝑥+)                 (9) 

After the scaling function and empirical wavelets are derived, the detail coefficients are given by the 
inner products with the empirical wavelets 𝜓i& : 

𝑊#(𝑛, 𝑡) = 〈𝑠(𝑡), 𝜓i&〉 = �𝑠(𝜔)𝜓i&(𝜔)���������
∨
                 (10) 

and the approximation coefficients are given by the inner product with the scaling function: 

𝑊#(0, 𝑡) = 〈𝑠(𝑡), 𝜙i"〉 = �𝑠(𝜔)𝜙i"(𝜔)���������
∨
                (11) 

where 		∙		����  denotes the complex conjugate, (. )∨  denotes the inverse Fourier transform, and 〈. , . 〉 
denotes the inner product.  
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The empirical mode 𝑠& is given by 
𝑠/(𝑡) = 𝑊#(0, 𝑡) ∗ 𝜙"(𝑡)                     (12a) 
𝑠&(𝑡) = 𝑊#(𝑛, 𝑡) ∗ 𝜓&(𝑡)                     (12b) 

where ∗ denotes a convolution. 
 
3.2 The improved EWT approach   

Using Fourier spectrum for determining the boundaries associated with EWT analysis of noisy and 
nonstationary signals may be challenging or lead to false modes26. The AR power spectrum is smoothed 
with a lower level variance compared with Fourier spectrum. So, it can better define the boundaries of 
EWT than using Fourier spectrum. Therefore, the AR power spectrum is employed to improve the 
effectiveness in defining the boundaries for using EWT to perform the signal decomposition. The most 
common form of parametric spectral density estimate uses an autoregressive model AR(p) of order p. 
The signal sequence 𝑠(𝑡) obeying a zero mean AR(p) process can be expressed as30: 

𝑠(𝑡) = 𝜙"𝑠(𝑡 − 1) + 𝜙*𝑠(𝑡 − 2) +⋯+ 𝜙7𝑠(𝑡 − 𝑝) + 𝜖(𝑡)   (13) 
where p denotes the order of the AR model; the 𝜙", … , 𝜙7 are the model coefficients and 𝜖(𝑡) is a 
white noise process with zero mean and innovation variance 𝜎7*. The power spectrum of the process 
𝑃89(𝑒:;)	is  

𝑃89(𝑒:;) =
<$%

=".∑ ?&,'()&
$
&*# =

%       (14) 

There are a number of approaches to determine the order q, i.e., Singular Value Decomposition, Akaika 
Information Criterion, and Final Prediction Error Criterion31. The Akaike's Final Prediction Error is used 
to get the optimal q of AR model. When the optimal order is identified, the model parameters and thus 
the spectral density can be estimated. The Burg algorithm is used to calculate the AR power spectrum in 
this study.  
 
3.3 IFs estimation of the decomposed modes  

Once the component is extracted by EWT, the instantaneous frequency can be estimated. In this 
study, the technique for the extraction of IFs from ridges in TFR of signals32 is adopted. First, wavelet 
transform (WT) is used to obtain the time-frequency representation of the response component33, and the 
obtained TFR is 𝐻#(𝜔, 𝑡). Second, the fast path optimization approach employing a support function is 
developed to optimally extract the ridge of the TFR corresponding to the IFs. If the ridge frequencies at 
each time is denoted as 𝑣@(𝑡), TFR amplitudes as 𝑄@(𝑡), and their numbers as 𝑁7(𝑡), the following 
relation can be obtained: 

𝑣@(𝑡): �
[𝜕1|𝐻#(𝜔, 𝑡)|]1A!+($) = 0,
[𝜕1* |𝐻#(𝜔, 𝑡)|]1A!+($) < 0,                   (15a) 

𝑄@(𝑡) ≡ |𝐻#(𝑣@(𝑡), 𝑡)|                         (15b) 
Since the 𝐻#(𝜔, 𝑡)  has a time span 𝑡& = (𝑛 − 1)∆𝑡	for	𝑛 = 1,… ,𝑁 , the path optimization can be 
described as 

{𝑚((𝑡"), … ,𝑚((𝑡0)} =
					arg 		max 					
{𝑚"… ,𝑚0}

𝐹[𝑡&, 𝑄@(𝑡&), 𝑣@(𝑡&), {𝑣@"(𝑡"), … , 𝑣@0(𝑡0)}	]  (16) 

where 𝑚((𝑡&) is the sequence of peak indices to be extracted as the ridge at 𝑡&, and 𝐹 is the chosen 
support function for the optimization. Last, an adaptive support function is constructed, and the 
optimization problem is solved with the fast path optimization. The detailed procedure of the scheme can 
be referred to literature32,34.  
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Based on the above analysis procedures, the flowchart of the proposed IF estimation method is shown in 
Figure 2.    

 
Figure 2. Flowchart of the IF estimation approach 

 
4. Numerical study on time-varying parameter identification of the bridge subject to a moving 

vehicular load 
The VBI system as shown in Figure 1 is studied. The select properties of the bridge are: 	𝐿 =

30m, 𝜌 = 6000kg m⁄ , 𝐸𝐼 = 2.3𝑒10Nm . Rayleigh damping is assumed with Cb=a1Mb+a2Kb and 
a1=0.344, a2=0.0002, where Mb, Cb and Kb are the mass, damping and stiffness matrices of the bridge 
respectively. The first three theoretical bridge modal frequencies are 3.42, 13.68 and 30.77Hz, 
respectively.  
4.1 Moving mass case 

A vehicle moving over the bridge is simplified as a moving mass in this case. The mass can be 
viewed as extra weight to the bridge system that would change the mass property of the bridge structure. 
Since the location of the extra mass on the bridge is time varying, the physical property of the bridge 
system is also time dependent. As a result, the modal frequencies of the bridge system, are time varying. 
Therefore, the IFs, instead of the fixed modal frequencies, are more suitable to describe the operational 
dynamic performance of the bridge system. A mass of 6000kg is assumed to move over the bridge with 
a speed of 5m/s. The dynamic response measured at the 3/8 span of the bridge is analyzed using the 
proposed method to get the IFs under the moving mass. Figure 3(a) shows the AR spectrum of the signal 
and the identified boundaries. The first three bridge modal frequencies are identified. The EWT is used 
to decompose the response and the obtained three modes corresponding to the bridge vibration are shown 
in Figure 3(b). The TFR of each mode is calculated and the 3-dimensional plotting of the results are 

Dynamic response

AR power spectrum
Eq. (14)

Detect modes and define the 
boundaries in frequency domain

Fourier spectrum 
using FFT

Segmenting 
Fourier spectrum

Construct filter bank
Eqs. (6) & (7)

Coefficients after filtering
Eqs.(10) &(11) 

Extracted Empirical modes
Eq. (12)

TFR by WT for the modes

Rigid detection
Eqs. (15) and (16)

IFs for each mode
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shown in Figure 4. The final results of the analysis are the ridge point of the TFR in Figure 4 
corresponding to the IFs of bridge vibration mode. In order to evaluate the accuracy of the proposed 
method on the identification, the identified IFs are compared to the theoretical values which are obtained 
via eigenvalue analysis of M-1K. M and K are the mass and stiffness matrices in Eq. (4), respectively. 
The damping has not been considered in the theoretical values. The comparison of the results is given in 
Figure 5. It can be seen that the variation trend of the frequencies identified are consistent to the 
theoretical values. The IF of the first vibration mode identified using the proposed method are very close 
to the theoretical values. The obvious difference at the beginning and the end of the results are due to the 
very small dynamic amplitude of the bridge when the mass is close to the supports and the end effect of 
the TFR. The values of the second and third modes are a bit smaller than the theoretical values. This is 
due to the damping has not been considered in the theoretical values. The identified results using the 
proposed method are obtained from the bridge responses based on Eq. (4) and the damping is included. 
Besides, some local fluctuations of the IFs are observed for those two modes. The reason can be due to 

that the system frequencies is modulated by the driving frequency 𝑛 3!
D

, where 𝑛 is the mode order, v is 

the moving speed of vehicle and L is the bridge length37. 

 
(a) The obtained AR spectrum and identified boundaries 
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(b) Extracted first three components 

Figure 3 Application of the improved EWT 
 

 

(a) TFR of 1st mode 
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(b) TFR of 2nd mode 

 

 
(c) TFR of 3rd mode 

Figure 4 TFR of obtained vibration mode 
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Figure 5 Comparison between the identified IFs and theoretical values 

 
4.2 Moving vehicle case 

For more practical study, a vehicle model with parameters	𝑚! = 4500kg, 	𝑚" = 1500kg, 𝑘$ =
2.00𝑒4N/m , 𝑘# = 5𝑒5N/m  and 𝑐# = 5000	N/m/s  is adopted. The bounce frequency of vehicle 
body vibration is 0.33Hz and 2.96Hz is for the axle mass vibration. The moving speed is 10m/s with 
sampling frequency 200Hz. The dynamic response of the bridge is calculated using Newmark-ß method 
and 10% white noise is added to simulate the measurement. The dynamic measurement is simulated as 
follows, 

 
 

4.2.1 Comparison of IF estimation using different methods 
The dynamic response of the bridge under a moving vehicle is analyzed when the bridge road 

surface is smooth. The instantaneous frequencies are extracted from the bridge response using the 
proposed method and compared with that by SST and HT. Figure 6 shows the signal decomposition 
results using EWT. In Figure 6(a), three dominant peaks in the spectrum are corresponding to the bridge 
modal frequencies, while the vehicle-related frequency is invisible. The local maxima in the spectrum 
can successfully detect the boundary. The signal is decomposed by EWT and the bridge dynamic related 
three components are extracted as shown in Figure 6(b). The IFs identified for the moving vehicle case 
are shown in Figure 7 and the results are compared with those of moving mass case. It can be seen that 
the amplitude of bridge frequency variation under moving vehicle is smaller than that of moving mass. 
Figure 8 compares the identified IFs using the proposed method with that by SST and HT. For 
comparison, only the identified 1st and 2nd bridge modal frequencies are presented in Figure 8. From the 
results, it can be seen that the identified IFs from three different methods present a similar variation trend 
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and the proposed method outperforms the other two methods in regarding to the resolution. The rest of 
the study focuses on the identified IFs results.  

  
(a) Spectrum of the response and identified boundaries 

 

  
(b) First three components 

Figure 6 Signal decomposition using EWT 
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Figure 7 Signal decomposition using EWT 

 

(a) IFs of first mode 
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(b) IFs of second mode 
Figure 8 Estimated IFs of bridge response using three different methods 

 
4.2.2 Effect of measurement noise 

The effects of measurement noise on the identification of the IFs using the proposed method are 
studied. Another two additional noise levels, i.e. 15% and 20% are included to the calculated bridge 
responses. The IF trajectories identified from the responses are given in Figure 9. In this figure, it can be 
seen that the identified IF trajectories related to vehicle frequency and 1st bridge modal frequency are 
very close for different noise levels. For the IF trajectory of the 2nd bridge modal frequency, there is an 
obvious difference in the identified results. The difference can be due to the effect of the driving 
frequency. Thus, the modal frequency of higher modes may present higher difference due to the effect of 
noise. 
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Figure 9 Estimated IFs considering different measurement noise 

 
4.2.3 Effect of bridge surface roughness 

A Class A bridge road surface roughness38 as shown in Figure 10 is introduced in the numerical 
model and the bridge response is calculated. The proposed method is used to extract the IFs of the 
response and the identified results are given in Figure 11. It can be seen that the bridge surface roughness 
changes the variation trend of the response and amplifies the variation amplitude. Therefore, for the VBI 
based bridge health monitoring, the effects of the roughness should be considered carefully. By 
considering the case when 20% measurement is included, it can be seen that the effect of road surface 
roughness on the IFs results is more prominent than that of measurement noise.   
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Figure 10 The class A bridge surface roughness 

  
Figure 11 IFs estimation when bridge surface roughness is considered 

 
4.3 Beam with crack damage 

A crack is introduced to the bridge model to simulate the bridge structural damage. According to 
Sinha et al.39, the crack damage causes a linearly varying decrease in flexural stiffness in its vicinity. The 
crack is assumed at the 1/3 span of the bridge with the crack level 10% and 20% of the overall bridge 
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cross-section depth, respectively. Bridge response is analyzed to extract the IFs. From the results as 
shown in Figure 12, the bridge frequencies decrease due to the crack damage. The results confirmed that 
the change of the frequency can be used for damage detection. However, the identified IFs do not give 
information on the damage location. 

  
Figure 12 IFs estimation when bridge is damaged 

 
5.  IF estimation of the response of an actual bridge 

A long-term monitoring system has been installed on a cable-stayed bridge as shown in Figure 13(a). 
It is a single lane highway bridge with a span of 46m and a width of 5m. The bridge connects the South 
and North campuses of the Western Sydney University. There are 24 accelerometers installed on the 
bridge deck, and Figures 13(b) indicates the sensor locations. A data acquisition system continuously 
records the data from sensors with a sampling rate of 600Hz. Sun et al.40 conducted modal identification 
using a series of bridge responses under ambient excitation. The identified first eight modal frequencies 
are summarized in Table 1.  

 

 
(a) The cable-stayed bridge 
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(b) Sensor location 

Figure 13 Long-term monitoring of a cable-stayed bridge 
 

The vehicle-induced response of the bridge is studied in this section. Figure 14 shows the 
acceleration response at sensor A10 and its spectrum when a vehicle is passing over the bridge. Both the 
wavelet SST and the proposed methods are used to analyze the signal. Figure 15(a) shows the AR power 
spectrum and the identified boundaries. The identified IFs using the proposed method are shown in 
Figure 15(b) and the IFs extracted using SST are given in Figure 15(c). For comparison, the estimated 
IFs results from a recent study36 is also presented given in Figure 15(d). As Sown in Figure 15(b), the 
first five IFs are estimated by the proposed method. The associated bridge vibration mode of the IFs is 
indicated in the figure. The IFs of first vertical bending mode and the coupled Mode 2 and 3 are very 
similar to the results from SST and reference as shown in Figures 15(c) and (d), respectively. The 
identified IFs of coupled 6 and 7 mode from three methods are also comparable. Moreover, the results 
of the proposed method and that from the reference give the time-varying dynamic information related 
to the coupled Mode 4 and 5. It can also be seen that the proposed method successfully reveals more 
time-varying characteristics related to the vehicle-induced bridge response than that from the other 
methods. 
 

 
Table 1 The identified bridge modal frequencies via modal analysis  

Mode number Frequency (Hz) Vibration mode 
1 2.032 First vertical bending mode of the deck 
2 3.548 Double mode that corresponds to the second vertical 

bending mode 3 3.649 
4 5.584 Third bending mode 
5 6.136 A mixture of torsion and bending modes 
6 8.044 A mixture of torsion and bending modes 
7 8.671 A mixture of the fourth bending mode and torsion 
8 11.561 A mixture of the fourth bending mode and torsion 
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Figure 14 A set of acceleration response and the response spectrum 

 
 

 
(a) AR spectrum and identified boundaries 
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(b) IFs estimation using proposed method 

 

 
 

(c) IFs estimation using SST 
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(d) IFs estimation from reference36 
Figure 15 The estimation of IFs of bridge response 

 
6. Conclusions 

The identification of time-varying characteristics of vehicle-induced bridge dynamic response is a 
complex yet important task. This paper focuses on the vehicle-bridge interaction system and proposed a 
hybrid method for the analysis of the nonstationary bridge responses. The method combines the improved 
empirical wavelet transform and a TFR ridge detection technique to extract the IFs. Numerical and 
experimental are conducted and the results verified the feasibility and effectiveness of the proposed 
method by comparing with some commonly used methods. The implementation of the proposed method 
to the response of an in-situ bridge reveals the important time-dependent evolution information of the 
bridge dynamic characteristics due to the moving operational vehicle load. Further study is needed for 
practical applications, such as including the 3-D vehicle-bridge interaction model. 
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