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ABSTRACT This study proposes a new landslide detection technique that is semi-automated and based
on a saliency enhancement approach. Unlike most of the landslide detection techniques, the approach
presented in this paper is simple yet effective and does not require landslide inventory data for training
purposes. It comprises several steps. First, it enhances potential landslide pixels. Then, it removes the image
background using slope information derived from a very high-resolution LiDAR-based (light detection and
ranging) digital elevation model (DEM). After that, morphological analysis was applied to remove small
objects, separate landslide objects from each other, and fill the gaps between large bare soil objects and
urban objects. Finally, landslide scars were detected using the Fuzzy C-means (FCM) clustering algorithm.
The proposed method was developed based on datasets acquired over the Kinta Valley area in Malaysia
and tested on another area with a different environment and topography (i.e., Cameron Highlands). The
results showed that the proposed landslide detection technique could detect landslides in the training area
with a Prediction Accuracy, Kappa index, and Mean Intersection-Over-Union (mIOU) of 71.12%, 0.81, and
68.52%, respectively. The Prediction Accuracy, Kappa index, and mIOU of the method based on the test
dataset were 65.78%, 0.68, and 56.14%, respectively. These results show that the proposed method can be
used for landslide inventory mapping and risk assessments.

INDEX TERMS Landslide detection, saliency feature enhancement, remote sensing, GIS, LiDAR.

I. INTRODUCTION
Landslide is a destructive natural geohazard that poses
significant damage to human life and property every year
worldwide, for instance, 187 casualties were recorded by
landslide events in Iran, imposing US$ 12,700,000 up to
September 2007 [1]. A landslide in Northern Iran caused a
huge loss in infrastructure estimated to be US$ 5,000,000 in
January 2007 [2]. In Malaysia, from 1973 to 2007, landslides
caused losses of approximately one BillionUS$ for the period
from 1973 to 2007 with over 100 deaths [3]. It is defined as

The associate editor coordinating the review of this manuscript and

approving it for publication was Weimin Huang .

a mass movement under of gravity of earth, debris, or rock
down a slope [4]–[6]. Even though preventing natural disas-
ters is impossible, great efforts have been put into reducing
their impact on society [7]. The preparation of landslide
inventory maps is the basic step for landslide susceptibility
mapping, hazard and risk assessment [8]. Landslide inven-
tory maps show locations, along with attribute information,
of landslides that occurred in a particular area [9]. Never-
theless, these sorts of complete inventory data do not always
exist (i.e. impacts of landslides). A complete landslide inven-
tory database contains precise locations, type, and volume of
mobilized materials, date of occurrence, and the impacts of
past landslides. In contrast, an incomplete landslide inventory
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database shows only the location of past landslides that have
occurred in an area. The traditional way of landslide mapping
is the interpretation of aerial photographs and field surveys.
However, with the advancement of remote sensing systems
such as very high-resolution satellite sensors and laser scan-
ning systems, landslide mapping has been changed to include
automated procedures and a large area mapping in relatively
short times [8], [10]–[12].

The current approach consists of (i) Enhancement of poten-
tial landslide pixels, (ii) Removing image backgrounds using
slope information, (iii) Removing small objects and separat-
ing landslide objects from non-landslide objects via morpho-
logical analysis, and (iv) Identifying landslide scars by Fuzzy
C means (FCM) clustering method. The main contribution of
this research is to evaluate the integration of the above meth-
ods in a framework that can detect landslides with limited or
no inventories data.

The remainder of this article is organized as follows:
Section II summarizes the related studies. Section III explains
the proposed framework and methodology. Sections IV
describes the experimental results. Section V provides the
discussion. Lastly, section VI includes the conclusion and
suggested future works.

II. RELATED STUDIES
In recent years, several techniques and algorithms have been
proposed for landslide mapping using remotely sensed data.
The most popular methods are based on object-based image
analysis (OBIA) and pixel-based change detection [13]. The
basic concept of OBIA methods is the delineation of colour,
space, texture, and context at the object level and uses
them for the detection of landslide scarps. Reference [14]
presented an OBIA-based method for landslide detection
in high-resolution, Resourcesat-1 Linear Imaging, and Self
Scanning Sensor IV (5.8 m) multispectral image. The method
accurately detected five types of landslides with an overall
recognition accuracy of 76.9%. Reference [15] proposed a
semi-automatic OBIA approach for landslide detection using
SPOT images and a digital elevation model (DEM). The
method was validated by Persistent Scatterer Interferometry
and their results were promising. Moreover, [16] developed
an object-oriented landslide detection approach using high-
resolution satellite images. They showed that their method
could be effectively applied to areas with similar environ-
ments. Reference [17] presented an automatic case-based
reasoning approach for landslide detection. In their method,
OBIA concepts and genetic optimization were integrated to
achieve their goal. In their work, the integrated method out-
performed the traditional OBIA method reaching from 75%
to 87%. Although OBIA methods can achieve reasonable
accuracies in landslide mapping, they have some limitations
such as segmentation optimization [14], transferability, and
scale dependency [14], criteria for the optimal selection of
remote sensing data [18] and shadow shortcoming in visual
interpretation using NDVI (normalized difference vegetation
index) and 3D digital stereoscopy for mapping [19].

Besides, landslide mapping by change detection methods
requires multi-temporal remotely sensed data. For instance,
[11] improved the landslide classification based on change
detection in landslide events using a semi-automatic tech-
nique. They implemented a maximum likelihood probabil-
ity task and a multi-threshold strategy using an automatic
histogram division. The evaluation of the EI (Error Index)
for three approximations, namely T-global, T-grid, and T-SU
(Slope Unit) was carried out with metrics of 0.512, 0.510 and
0.487, respectively. The result showed that SU outperformed
the regular grid results. The strategy improved the pre-
sentation of the landslide characterization with constrained
training samples. However, the transferability of the tech-
nique was required. In another study, [20] developed a land-
slide inventory mapping method using change detection and
image fusion technique. They used SPOT and IKONOS
images to detect landslides at the regional scale. Their
results indicated that the proposed method could achieve
70% accuracy. Furthermore, [21] proposed an object-based
change detection method for landslide inventory mapping;
the method achieved an accuracy of 81.8% applied to very
high-resolution optical images. Reference [22] developed a
local similarity measure for landslide detection and compared
the results with the image differencing method; the method
showed to be more reliable than the simple image differ-
encing method. These methods required bitemporal satellite
images, which are difficult to obtain in some areas such as
tropical regions or require multi-scans of point clouds (e.g.
multi-view), which are often very expensive and not prac-
tical. Subsequently, [23] developed a new technique based
on saliency enhancement and morphological operations for
landslide detection in large areas; the method was carried
out using Landsat images acquired over Central Nepal and
it performed reasonably well by detecting 99.1% of the land-
slides in the image; however, the authors indicated that more
statistical methods should be developed to accurately separate
background objects from landslide regions.

In another study, [24] developed a rule-based semi-
automated approach for detection of landslides in Himalaya.
The authors used IRS LISS3 satellite images by implement-
ing decision tree methods; the results showed that the overall
accuracy of the training and test areas were 76% and 75%,
respectively. In another work [11], separating the riverbank
from the background object to avoid misclassification of the
riverbank was carried out. Authors in another research [25]
classified shallow landslides from a high-resolution multi-
spectral image and topographic data using a Bayesian frame-
work; the framework was employed to enhance landslide
mapping in Southern Taiwan, showing some advantages com-
pared to other semi-auto and automatic approaches [8]. In the
last decade, optical images, DEM, and LiDAR data have been
used extensively in developing reliable algorithms for land-
slide detection. However, in recent years, LiDARdata is being
more attractive due to its advantages over other data sources.
Reference [26] compared LiDAR and aerial photographs for
landslide detection. Their analysis showed that LiDAR is
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highly effective for accurate landslide delineation, is easier to
interpret than aerial photographs, and is highly manipulatable
concerning shadows and vertical exaggeration [27] evaluated
the suitability of an aerial laser scanner for generating an
optimal DTM for mapping landslides in the Cameron High-
lands, Malaysia. Authors in [28] reviewed the use of LiDAR
for landslide investigations. They discussed the feasibility of
using accurate DEMs in landslide applications and inven-
tory mapping. They pointed out that LiDAR data provides
promising information for landslide scarps and displaced
materials. Accordingly, geomorphological features derived
from LiDAR-based DEM (scarps, mobilized materials and
foot) can improve the mapping of landslide locations and
characteristics.

In tropical areas, several methods based on LiDAR data
were proposed for landslide detection. Authors in [29] devel-
oped an automated method for detecting landslides using
LiDAR data and geomorphological indicators. They used
the surface roughness index, the vegetation index, and break
lines as indicators for landslide scarps in the study area;
their results showed that the best spatial resolution of DEM
is 2 and 3 m. Reference [30] presented an expert-based
semi-automated method for geomorphological mapping in
a mountainous area using LiDAR-based DEM. The authors
found that high-resolution DEM is useful for extracting fea-
tures that are important for landslide mapping in tropical
areas. Reference [31] presented a data fusion technique using
wavelet transform and Taguchi optimization for landslide
detection in a tropical area. Weitao Chen et al. [32] developed
a framework for landslide detection in Three Gorges, China
utilising features derived from LiDAR such as mean aspect,
DTM, slope textures, standard division filter of aspect. The
features were combined with the Random Forest algorithm,
causing a reduction in features set by 74% and improving the
overall accuracy of the model by 0.44%. Tao Chen et al. [33],
used the same reduction strategy, identifying significant land-
slide features (26 out of 124 features) and then integrated
the model with mathematical morphology analysis to map
the landslide locations; however, some uncertainties in the
segmentation process and tuning parameters were reported.
More recently, [34]–[36] used optimization techniques to
detect landslides in dense vegetation regions using very high-
resolution LiDAR data. The LiDAR data and QuickBird
satellite images were fused to detect landslides using the
OBIA. The method achieved an overall accuracy of 90.06%,
with 65.65% accuracy before fusion.

Despite the success of the landslide detection methods
above, they have limitations such as (1) the need of a complete
inventory data, which are not always accessible, and (2) they
are an expensive and time-consuming process. 2) landslide
types and their triggering factors vary from one area to
another and different environment achieves relatively lower
accuracy in most cases. 3) For accurate landslide detection,
segmentation optimization [14] and transferable rules are
necessary. 4) Refinement of OBIA rule-sets and other super-
vised landslide detection methods often require an adequate

number of training landslides to avoid the problem of over-
fitting and to improve the generalization capacity of the
method [37]–[40].

The current study attempts to develop a quick and practical
technique for landslide detection, especially when inventories
are scarce or not available. The proposed technique does not
require landslide inventory data in the training process and
is computationally more efficient than the presented methods
especially in emergency cases [23]. Thus, the main aim of
this paper is to introduce the efficiency of the presented
landslide detection technique and evaluate its performance
with different datasets.

FIGURE 1. The location of the study area used (a) to develop the
landslide detection technique and (b) test is used to validate the
proposed technique. Besides, red dots represent the landslide locations
for both areas.

III. METHODOLOGY
A. STUDY AREA
In this research, the training area was selected in Kinta Valley,
located in Perak state, East of Malaysia (Fig.1). It is about
200 km north of Kuala Lumpur. Geographically, it is bounded
between 103◦ 3′ 5′′ E and 101◦ 5′ 47′′ E latitudes and 4◦

39′ 11′′ N and 4◦ 41′53′′ N longitudes. The area is classified
as the tropical rainforest and the temperature is the same
with little variations throughout the year with an average
temperature of 28 ◦C (Meteorological Service Department of
Malaysia). The area sees high rainfall throughout the year
with an average of 200 mm each month and the average
annual rain is 2428 mm. The region is susceptible to land-
slides and rockfall because of the loose sands and soft clays in
themining areas [41]. The land usemap of the area shows that
it includes residential, commercial, and industrial buildings,
forest, mixed-grass, and open lands, as well as other infras-
tructures such as roads, power stations, and drainage sewers.

The test area was selected in the Cameron Highlands,
which is 90 km away from the training area. Approximately
80% of the area is forest land, and it has an undulating topog-
raphy, which makes it effective for performance assessment
of the landslide detection models. The average altitude of the
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TABLE 1. The details of the data acquisition for the training and test
areas.

test area is 1,200 m above the mean sea level, and the total
land area is 2.65 km2 (Fig. 1). The geology of the Kinta Valley
consists of a high percentage of igneous rocks, sedimentary
(limestone) and metamorphic rocks (marble).

B. DATASET USED
This research used LiDAR data as the main source for deriv-
ing the digital elevation models and slope angle parameters
for the training and test area. The details of the data acquisi-
tion for both areas are given in Table 1. Additionally, the land-
slide inventories which are needed for validation purposes
were obtained and implemented through remote sensing tech-
niques and technical researches according to previous studies
for Kinta Valley and entire Malaysia. The data was collected
from archive data of the Mineral and Geoscience Department
of Malaysia [42]–[44]. A total of 13 and 21 landslides were
identified in the training and test areas, respectively.

C. THE PROPOSED LANDSLIDE DETECTION TECHNIQUE
The proposed landslide detection technique and its perfor-
mance evaluation and transferability assessment consist of
three steps of data processing, as shown in Fig. 2. The first
step included data acquisition. The second step was data pre-
processing where the input data were prepared for analysis.
In this step, LiDAR point clouds, orthophotos and the land-
slide inventories were geometrically corrected based on the
Malaysian GDM 2000 coordinate system to ensure a proper
analysis and validation task. Then, a very high-resolution
DEM (0.5 m) was produced from the point clouds using the
multi-scale curvature algorithm of ESRI’s ArcGIS 10.2 soft-
ware [45]. In the last step of data pre-processing, a raster
map that contains the terrain slope angle, pixel-by-pixel was
derived from the LiDAR-DEM with the same spatial resolu-
tion. The third step (landslide detection) method consists of
four main steps including (1) image saliency enhancement,
(2) image background removal, (3) morphology analysis, and
(4) Fuzzy C-means (FCM) clustering. None of these steps
needs supervision, thus no landslide inventories were used
directly in training and developing the model. The avail-
able inventory data was only used for validation purposes.
The first stage (image saliency enhancement) converted the
orthophotos into a new image where the landslide features

FIGURE 2. The overall flowchart of the proposed landslide detection
based on feature saliency enhancement.

were enhanced using the symmetric surrounding regions [46].
The second stage removed the image backgrounds (non-
landslide regions) using slope information of the study area
as an auxiliary step for the detection process. In this step, the
slope map was reclassified into two classes, with slope either
above or below 25◦.This indicator (threshold) was selected
based on practical research in the same study area which
referred that a slope above 25 degrees triggers landslides in
the region [47]. The value of this threshold is region depen-
dent, so it is expected that the transferability over the new test
area may affect the validation accuracy.

In addition, the morphology analysis included a three-time
iteration of dilating operation to remove small features and fill
the gaps in the large non-landslide regions [48]. Dilating and
eroding are two essential tasks of mathematics morphology
to structure some compound activities and bring some viable
morphology calculation [49]. After that, the FCM unsuper-
vised clustering method was applied to classify the result into
landslides and non-landslides where the label of the classes
was determined based on orthophoto interpretation. There
are two key parameters used in FCM clustering: the fuzzy
exponent (m), which defines the fuzziness among each clus-
ter; and (C) which is the number of clusters, which specifies
the total number of clusters to be used. The combination
of the two parameters affects the results of FCM clustering.
The values of FCMclustering parameters were selected based
on preliminary examination and previous landslide studies
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[50], [51] these parameters were selected as m = 1.9 and
C = 3. Nevertheless, sometimes there are no optimal values
for these parameters [50], [50]. Finally, the landslide detec-
tion technique was evaluated based on some statistical evalu-
ations and its transferability to another area was investigated.

D. IMAGE SALIENCY ENHANCEMENT
Within the existence of urban features, it is difficult to sep-
arate between uncovered soil and urban highlights utilizing
just spectral details. Also, the pixel-based examination fre-
quently cannot precisely recognize landslide zones in the
image. Notwithstanding, since particular landslides happen
in uncovered (bare) soil areas, it can boost this area over
urban features so that the identification process may succeed
more efficiently via the pixel-based approach. This exami-
nation received a saliency improvement approach dependent
on the most extreme symmetric surround which is devel-
oped by [50]. This method is mainly used to enhance non-
vegetation regions, in particular, the bare soil areas of the
current study area. The key advantage of this method is
that it retains well-defined boundaries by preserving more
frequent content from the original image. Other advantages
involve in the implementation, simplicity and computational
efficiency, particularly at emergency conditions that need a
quick response [23], [50].

This saliency algorithm uses surround regions that are
symmetric in pixels for which saliency needs to be computed.
The advantage of doing so is that each pixel is treated to be
at the centre of its sub-image (Fig. 3).

FIGURE 3. Symmetric surround saliency computation concept (red colour:
pixel at the centre, blue colour: the kernel which can be elsewhere in the
image).

For the orthophotos, the symmetric surround saliency value
for a given pixel Sss(x, y) is obtained from the (1) as per the
reference [46]:

Sss (x, y) =
∥∥Iµ (x, y)− If (x, y)

∥∥ (1)

where Iµ (x, y) is the average value of the CIELAB vector
of the sub-image and If (x, y) is the corresponding CIELAB
image pixel vector in the Gaussian filtered version of the
original image computed using (2):

Note: CIELAB is a popular colour space to measure
numerical changes in values of transitive and reflective

TABLE 2. The slope statistics of the inventory data of the training and
test areas.

objects.

Iµ (x, y) =
1
A

x+xo∑
i=x−xo

y+yo∑
j=y−yo

I (i, j) (2)

where xo, yo, and A, are the offsets and area of the sub-image
and computed using the following expressions:

xo = min (x,w− x)

yo = min (y, h− y)

A = (2xo + 1) (2yo + 1) (3)

where w and h are the image width and height, respectively.
Further details about the algorithm can be realized withing
reference [46].

E. SLOPE-BASED IMAGE BACKGROUND REMOVAL
Each geographical location has particular predominant fac-
tors causing instability such as curvature, type of soil, man-
made activities, etc. [52]. The significance of each factor
(e.g. slope) varies with the other factors [2], [7], [53]. The
slope of prone areas often plays an essential role in landslides
occurrence. Accordingly, the slope rastermap can be involved
as an indicator to separate the landslide region from other bare
soil regions. Several studies on the same study area suggested
that regions with a slope higher than 25◦ are highly prone
to landslides [47], [54], [55]. Therefore, the current study
reclassified the slope map into a binary raster (0, 1) using
the slope indicator of 25◦ as high prone-landslide areas;
0 indicates the other bare soil regions and 1 indicates the
landslide regions. Subsequently, the non-landslide regions
were removed as much as possible. Additional information
about slope statistics in the training and test areas such as
mean, standard deviation (SD), minimum, maximum, and
range are provided in Table 2. Moreover, Fig.4 shows the
slope distribution in both training and test areas.

F. LANDSLIDE DETECTION WITH MORPHOLOGICAL AND
FCM CLUSTERING
In the two previous steps, we attempted to separate landslide
regions from other bare soil and urban regions. However,
there are still many objects that are not of interest, and they
should be removed. This step requires geoscience expertise
about landslide objects so that they visually can be differenti-
ated from other non-landslide objects. In other words, bare
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FIGURE 4. Slope distribution in the training (Kinta Valley) and test
(Cameron Highlands) areas.

soil and urban objects have relatively large areas, whereas
landslides are often small in area, in which these two objects
could be distinguishable from each other. Considering this
fact, a three-time iteration of a dilating operation with a
structural element of 11 × 11 pixels was applied to further
remove non-landslide regions from the result. After that,
the generated raster was segmented using the mean shift algo-
rithm [56] and the attributes (i.e. colour, standard deviation,
compactness, area) of each object were calculated.

The mean shift technique is a nonparametric technique
originally presented by [57] for the calculation of modes in
a multivariate of the likelihood function. It was extended to a
mode estimation of the joint spatial and spectral domain [58].
In this technique, the Gaussian kernels are usually chosen
in most applications [59]. In this stage, this algorithm was
selected due to its popularity and main advantages over other
algorithms including well-performing with different remote
sensing data including medium to very-high-resolution, mul-
tivariate nature, simplicity of the filtering steps, flexibility
and availability in different implementations [60], [61]. At the
end of the process, each pixel is assigned the estimated spec-
tral signature and spatial location of the local mode of the
probability density function it belongs to. Finally, the objects
were automatically classified into two classes using the FCM
clustering method [62], [63]. The landslide objects were
labelled using the visual interpretation of LiDAR imageries.

G. PERFORMANCE EVALUATION
The detection accuracy of the proposedmethodwasmeasured
based on four commonly used statistical measures, namely,
Overall Accuracy (OA), Prediction Accuracy (PA), Kappa
Index, and Mean Intersection-Over-Union (mIOU).

The OA measures the accuracy of the method by com-
paring the number of landslides or the number of landslides

pixels in the map produced by the proposed method and the
number of landslides or the number of landslides pixels in
the ground truth data [64]. This measure is a rough accuracy
estimate, as it does not account for false detections or spatial
agreement. OA was calculated based on (4).

OA =
[
1−

(
No. Method− No. Inventory

No. Inventory

)]
× 100% (4)

where No. The method is the number of landslides or the
number of landslide pixels in the result of the proposed
method and No. Inventory is the number of landslides or the
number of landslide pixels in the inventory data.

The PA and Kappa index are the measures that account
for incorrect predictions, and they are a form of reliability
measure. A value of PA = 1, Kappa index = 1 indicates a
perfect performance for the landslide detection method.

The PA and Kappa Index were calculated using the follow-
ing expression:

PA =
TP+ TN

TP+ TN+ FP+ FN
(5)

where the TP (true positive) value is the number of pixels
that have been predicted correctly as ‘‘landslide’’, the FP
(false positive) value is the number of pixels that have been
predicted incorrectly as ‘‘landslide’’, the TN (true negative)
value is the number of pixels that have been predicted cor-
rectly as ‘‘non-landslide’’, and the FN (false negative) value
is the number of pixels that have been predicted incorrectly
as ‘‘non-landslide’’.

Kappa =
Pp − Pexp
1− Pexp

(6)

where, Pp is the proportion of pixels that have been clas-
sified correctly as landslide or non-landslide, and Pexp
means the expected agreements [65]. Furthermore, while
none of the methods above measures the spatial agreement
between the detection map and the ground truth, this research
also used the mean intersection-over-union (mIOU) approach
which is widely used in segmentation studies to further assess
the performance of the proposedmethod. ThemIOU= 1 indi-
cates a perfect prediction and greater than 0.5 is normally
considered a ‘‘good’’ prediction [66]. mIOU was computed
using (7) [67].

mIOU =
1

k+ 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(7)

where k+ 1 (k = 1 in this research) is the number of classes,
i is the label of the ground truth, and the j is the label of the
prediction. The pij is the total number of pixels labelled as j
but predicted as i.

IV. EXPERIMENTAL RESULTS
A. RESULTS OF LANDSLIDE DETECTION
Fig. 5 shows the result of an initial image saliency enhance-
ment process (Fig. 5a) and after classifying the enhanced
image into two classes (Fig. 5b) indicating the initial
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FIGURE 5. Enhanced landslide regions using saliency enhancement
applied on orthophotos, (a) after the saliency enhancement process, and
(b) after classifying into two classes with the selected threshold.

landslide regions. It can be seen that in orthophotos, after
application of saliency enhancement, the contrast of the bare
soil and urban regions was enhanced, whereas for vege-
tated land the contrast was subdued (muted). To separate the
potential landslide regions from other regions, the result of
image saliency enhancement was classified into two classes
with the threshold of 0.54 - 1.75% selected by the quan-
tile classification scheme (which is suitable for ordinal data
or ranking) utilising Arc GIS software addressed by [34]
(Fig. 5b). This threshold may differ in other areas and data
sets; however, it can be automatically selected using common
classification algorithms such as quantile, natural breaks, or
others [68]. With additional geoscience knowledge about the
landslide in the study area, this threshold can be further opti-
mized to reduce the miss-classification between the landslide
regions and other bare soil and urban regions. The initial
landslide region contained many objects belonging to the
bare soil and urban areas from where they needed to be
removed.

To remove the misclassified bare soil and urban objects
as landslides, the slope raster layer was used. As it was
referred previously, in the study area of this research objects
with a slope of less than 25◦ were removed as there is a
very low possibility for these to be subject to the landslide
event; this was addressed by a recent study for the same area
by [47]. The results of this process are shown in Fig. 6. The
slope of the study area ranged from 0 to ∼83◦ where the
highest slopes were found in the northwest part of the area.
These areas are mostly forest and cliffs. After removing the
regions with a slope of less than 25◦, the result showed that
potential landslides were mostly in the south and northwest
parts of the study area (Fig. 6). However, the resulting map
contained many small objects distributed over the study area
and needed further processing, which is discussed in the
following section. The values of this slope threshold con-
tributed to separating landslides from other land cover classes
such as bare soil. It can be credited to the characteristics of
a landslide in the area under consideration. This indicates

FIGURE 6. The identified landslide regions after removing image
background by the reclassified slope map, (a) slope map, (b) slope map
after reclassification, and (c) result of identified landslides after
slope-based enhancement.

that the LiDAR-derived data and orthophotos are efficiently
operative in revealing the location of landslide.

The dilate operation with a structural element of
11 × 11 pixels as a morphological processing step was
employed to refine the landslide detection result. The land-
slide regions detected after morphological processing are
shown in Fig. 7a. Overall, 120358.82 m2 (0.97% of total
area) were detected as landslides (shown in red colour). After
that, the generated raster was segmented using the mean
shift algorithm [55] and the optimal segmentation parameters
(i.e. scale, shape, and compactness) were calculated. The
general goal of this segmentation is to partition an image
into semantically meaningful regions. This can be accom-
plished by clustering the pixels in the image using a Gaussian
kernel [59] (Fig. 7).

Considering the great diversity of landslides,
environmental settings and accessible images, feature selec-
tion in high-dimensional datasets is a significant task
which was recommended by previous landslide detec-
tion researches to target a better performance of data
classification [33], [69], [70].

To obtain the optimum features [32], [70], correlation-
based feature selection was used to select the most important
features for identifying landslide locations with 20 itera-
tions. The total input features contained 82 features derived
from LiDAR data (height, slope, and intensity), texture fea-
tures (GLCM homogeneity and GLCM StdDev), and the
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FIGURE 7. Results of landslide detection, (a) detected landslide regions
after the dilate operation, (b) result of mean-shift segmentation, and
(c) result of landslide detection of the training area.

TABLE 3. Results of selected features used in this study.

visible band. The highest accuracy was achieved when the
features were reduced to 10 features (most important fea-
tures). Table 3 represents the most important features selected
for this study. The values of these features were contributed
to separate landslides from other land cover classes.

The result was further refined using the FCM clustering
method, where the objects were automatically classified into
two classes using spectral and spatial attributes. The result is
shown in Fig. 7c. The overall area of landslide regions was
64780.95 m2, which was only 0.52% of the study area. Also,
the number of detected landslides was 17. The minimum
and maximum areas of the detected landslides were 111 and
11147.29 m2, respectively.

B. PERFORMANCE EVALUATION
The comparison of the number of landslides and the number
of landslide pixels between the inventory data and the result
of the proposed technique is shown in Table 4. The landslide

TABLE 4. Comparison between the number of landslides and landslide
pixels between the inventory data and the result of the proposed
technique.

inventory data of the training area had 13 landslide locations.
The number of landslides detected by the proposed method
was 17. Therefore, the accuracy was calculated as 69.23%.

With a simple but computationally efficient method,
an accuracy of 69.23% in terms of detecting the number
of landslides seems acceptable, given that no inventory data
were used for the detection process compared to traditional
and other methods proposed in the literature. Additionally,
the number of landslide pixels in the inventory data of the
training area was calculated as 85067 for 13 landslide objects,
whereas for the detected landslides the number of landslide
pixels was 98125. This resulted in an accuracy of 84.64%
for the proposed technique using the training area. On the
other hand, the test area contained 21 landslide locations
and 604911 landslide pixels. The number of landslides and
landslide pixels detected in the test area by the proposed
method was 37 and 858973, respectively. Thus, the calculated
accuracy for the detection of the number of landslides and
landslide pixels was 28% and 58%, respectively.

In addition, Table 5 shows the accuracy assessment using a
landslide inventory data containing 13 landslide locations of
the training area and 21 of the test area and statistical eval-
uation indices. The performance of the landslide detection
technique was evaluated using PA, Kappa index, and mIOU.
For the training area, the PA, Kappa index, and mIOU are
71.12%, 0.81, and 68.52% respectively. However, the PA,
Kappa index, and mIOU of the method in the test area are
65.78%, 0.68, and 56.14%, respectively. The lower accuracy
of the method on the test area is mainly because the terrain
(topography and geomorphology) of the Cameron Highlands
area is much more complicated. Additional factors that con-
tributed to lowering the accuracy of landslide detection in the
test area included the presence of man-made slopes, which
are very similar to natural landslides in terms of spectral and
spatial characteristics. Considering prior knowledge about
these man-made slopes, more undesirable objects can further
be removed from the image, accordingly, and results of the
landslide detection might be improved.

Results of the landslide detection for the test area are
shown in Fig. 8. The use of the proposed technique promises
positive progress in the detection accuracy of landslides,
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FIGURE 8. Result of landslide detection technique applied to the test
area.

TABLE 5. The PA, Kappa index, and mIOU of the proposed technique for
the training and the test areas.

especially when inventory data are limited and not available.
Moreover, high-resolution LiDAR and visible bands con-
tributed to the simplification in the development of the current
research.

V. DISCUSSION
Landslide inventory mapping is an important task in haz-
ard and risk assessments. This study proposed a simple but
effective landslide detection technique using the saliency fea-
ture enhancement and some other traditional algorithms such
as morphological operations, mean shift segmentation, and
FCM classification. The main data used are LiDAR-derived
slope map and orthophotos and the proposed landslide detec-
tion technique could be a useful tool for landslide mapping
and monitoring specifically when inventories are scarce as
well as there is a need of quick response time.

FIGURE 9. Example of a detected landslide by the proposed technique,
(a) the manually digitized landslide, (b) the calculated slope for the
landslide scar area, (c) the salient landslide objects, and (d) the detected
landslide.

Fig. 9 shows one of the landslides detected in the train-
ing area (Kinta Valley). The manually digitized landslide
and the calculated slope for the landslide body are shown
in Fig. 9a and Fig.9b. Also, the salient objects resulting
from the saliency enhancement for the area and the final
detected landslide by the proposed technique are shown
respectively in (Fig. 9c, d). The area of the shown landslide
was 295.72 m2 surrounded by a highway and dense veg-
etation. The low slopes can be observed at the top of the
landslide (initial source) and the boundary of the landslide
scar. In contrast, Fig. 9c shows the enhanced image using the
symmetric surround saliency enhancement technique. It can
be seen that a large part of the landslide region has gained the
highest brightness values (>200) while the surrounding areas
had low values with some high values for the unpaved road
in the east part of the area. Furthermore, Fig. 9d shows the
detected landslide by the proposedmethod. It can be observed
that some pixels have not been detected as landslides because
of their low slope value, as shown in Fig. 9b. The overall
accuracy of this landslide detection was 87%. This example
shows the efficiency of the proposed techniques for landslide
mapping and monitoring. However, to improve the accuracy
of landslide boundary delineation, further processing and
enhancement of the technique are needed.

Different objects of similar spectral characteristics of land-
slides would largely weaken the detection rate making it
hard to meet the requirements for further landslide analy-
sis. In the proposed approach, as most bare soil and urban
zones are not of our interest (background/ unwanted objects),
the morphology analysis was employed to further remove
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and refine these unwanted objects. Using the morphological
analysis, the detection process was further improved so that
the non-landslide regions were refined (decreased) reaching
0.120 Km2, which comprised 0.97% of the total area (Fig 10).

FIGURE 10. Effect of removing the morphological operation to landslide
detection, (a) before morphology operation, and (b) after morphology
operation.

To evaluate the advantages of this morphology, we further
examined the landslide detection by removing the morpho-
logical analysis from the main process. It was noticed that by
eliminating this step, the presence of unwanted objects was
raised by nearly two-fold. Fig. 10a clearly shows that the non-
landslides objects were increasingly presented in the analysis,
indicating a negative impact on the entire process. This is
because the morphological operation provides the value of
each pixel in the output image based on a comparison of
the matching pixel in the input image with its neighbours
to enhance the analysis. Furthermore, the combination of
dilation and erosion tasks in the same structuring element pro-
vides functions to remove the unwanted/ small objects from
an image and smooth the boundary of large objects. It can be
inferred that involving the morphology step (Fig. 10b) was a
successful strategy taken to separate the landslide and non-
landslide regions. This was agreed with suggested studies in
[23], [33]. Nevertheless, careful selection of scales and mask
dimensions is vital in the design of comprehensive algorithms
for all these tasks.

There are numerous features such as spectral, LiDAR-
factors, spatial and textural that can be used in OBIA meth-
ods, however, when the number of features is more than
the number of training samples, over-fitting is more likely
to happen [71]. Nevertheless, with many landslide inventory
locations, OBIA-methods can be more robust for the follow-
ing reasons. Data from various sources and scales can be
effectively integrated at the object level. They capture the
complexity of the natural phenomenon and geomorphologic
processes such as landslides better than pixel-based methods.
Also, results produced by the OBIA methods contain much
less ‘‘salt and pepper’’ noise than pixel-based methods [63].
In general, instead of using landslide inventory data for model
training, general knowledge about the study area is often
used.

In the current research, the landslide events could be
detected using both geomorphological characteristics (i.e.,

slope), as well as assisting the expert’s advice regarding the
study area [43], [47], [54], [55], [72]. Even though knowledge
representation in computer programming is not an easy task
of modelling, the result of this technique could be more
generalizable than data-driven techniques.

Despite the advancement of the spatial resolution of DEM
and orthophotos, reliable landslide detection from remote
sensing data is still challenging. The proposed method
resulted in a promising performance, given that no invento-
ries were used in the training process (unlike the traditional
methods). It could statistically achieve average accuracies
of 68.45% PA, 0.745 Kappa index, and 62.33% mIOU. Com-
pared with other unsupervised detectionmethods, the average
reliability accuracy obtained in this study scored a Kappa
index of 0.745, which was higher than [23]. Scientists in a
previous study [23] utilized the Landsat 8 image by employ-
ing the saliency and morphological analysis, for which the
highest Kappa index of 0.42 for training and 0.25 for tests was
obtained. In comparison with another unsupervised detection
using K-means clustering via slope feature extraction [73],
the accuracy of 54.54 for two clusters, and 85. 47 for five
clusters were obtained; however, misclassification in some
landslide locations was reported.

Machine learning methods have a core disadvantage that
they need the spatial distribution of the test data to be similar
to that of the training data [74]. In data science generally,
by having more training data (landslide inventories), better
accuracy can be achieved. But because the main contribution
of the proposed study is exclusively not to use inventory data
in the training processes, the result indicates a convincing
prediction ratio, unlike most of the existing methods [16].
This can be considered a justifiable advantage over the tradi-
tional methods, especially when the disaster’s response time
is the dominant issue, providing a faster way to map regional
hazards. Only a few studies have tried to detect landslides
without inventory data, similar accuracies were obtained;
however, some uncertainties were reported [17].

VI. CONCLUSION
This study introduced a semi-automated landslide detection
technique that does not require landslide inventory data for
the training purpose and provides a quick practical solution
for landslide mapping and monitoring, particularly for emer-
gency conditions and monitoring. The technique used sym-
metric surround saliency enhancement, morphological oper-
ations, mean shift segmentation, and fuzzy-based clustering
methods. The experimental results showed that the proposed
technique is simple and effective and its average accuracy
can reach 71% for areas with complicated topography and
geomorphology. The technique performed well both in the
training area (Kinta Valley) and the test area (Cameron High-
lands) located in a high landslide-prone region in Malaysia.

Overall, the proposed solution of landslide detection using
LiDAR-DEM and orthophotos is promising for landslide
inventory mapping and landslide monitoring, especially in
areas where data is scarce. Despite the acceptable accuracies
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achieved for landslide detection by the proposed method,
some points need to be improved in futurework. First, an opti-
mized combination of RGB and additional bands such as near
and shortwave infrared could be used to enhance the geologic
features before the saliency enhancement process. Moreover,
a combination of landslide factors (e.g slope, altitude, curva-
ture, type of soil) could be utilized as an indicator/threshold
to further enhance the background removing process.
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