
Elsevier required licence: © <2020>. This manuscript version is made available under the CC-BY-NC-
ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
The definitive publisher version is available online at
 [https://linkinghub.elsevier.com/retrieve/pii/S0957417420302025]

http://creativecommons.org/licenses/by-nc-nd/4.0/

1

Marine Predators Algorithm: A Nature-inspired Metaheuristic

Afshin Faramarzi a,*1, Mohammad Heidarinejad a, Seyedali Mirjalili b, Amir H. Gandomic

a Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA

b Institute for Integrated and Intelligent Systems, Griffith University, Nathan, Brisbane, QLD 4111, Australia

c Faculty of Engineering & Information Technology, University of Technology Sydney, Australia

Abstract
This paper presents a nature-inspired metaheuristic called Marine Predators Algorithm (MPA) and

its application in engineering. The main inspiration of MPA is the widespread foraging strategy

namely Lévy and Brownian movements in ocean predators along with optimal encounter rate

policy in biological interaction between predator and prey. MPA follows the rules that naturally

govern in optimal foraging strategy and encounters rate policy between predator and prey in marine

ecosystems. This paper evaluates the MPA’s performance on twenty-nine test functions, test suite

of CEC-BC-2017, three engineering benchmarks, and two real-world engineering design problems

in the areas of ventilation and building energy performance. MPA is compared against three classes

of existing optimization methods, including 1) GA and PSO as the most well-studied

metaheuristics, 2) GSA, CS and SSA as almost recently developed algorithms and 3) CMA-ES,

SHADE and LSHADE-cnEpSin as high performance optimizers and winners of IEEE CEC

competition. Among all methods, MPA gained the second rank and demonstrated very competitive

results compared to LSHADE-cnEpSin as the best performing method and one of the winners of

CEC 2017 competition. The statistical post hoc analysis revealed that MPA can be nominated as

a high-performance optimizer and is a significantly superior algorithm than GA, PSO, GSA, CS,

SSA and CMA-ES while its performance is statistically similar to SHADE and LSHADE-cnEpSin.

Keywords

Marine Predators Algorithm; Metaheuristic; Stochastic Optimization; Global Optimization;

Evolutionary Computation; Swarm Intelligence

1. Introduction
Based on the “survival of the fittest” theory, predators must choose an optimal strategy to maximize

their encounter rates with prey in natural environments (Viswanathan et al., 1999). In general, the

foraging pattern of many animals in nature is effectively a random walk strategy; a stochastic

process in which the next state/position is dependent on the current state and a transition

probability to the next location which can be mathematically modeled (Frederic Bartumeus, da

Luz, Viswanathan, & Catalan, 2005). These optimal strategies have been evolved by the ecosystem

and naturally picked by predators to survive.

1 Corresponding Author
Email: afaramar@hawk.iit.edu

2

One special class of random walks is called Lévy flight/walk, which is based on an optimal search

theory (Humphries et al., 2010). The family of such search strategies describes a movement,

characterized by many small steps associated with longer relocations which are drawn from a

probability distribution with a power-law tail. It is theorized that Lévy flight/walk to be the most

efficient search pattern for patchy prey in low concentrations natural environment (Humphries et

al., 2010). There are studies that show many animals and marine creatures follow a Lévy flight

pattern as their optimal foraging policy (Humphries et al., 2010; Reynolds & Frye, 2007; Sims et

al., 2008; Viswanathan et al., 1996).

Among marine creatures, many species including sharks, tunas, marlines, sunfish and swordfish

exhibits Lévy-like behavior in searching for prey (Humphries et al., 2010). Fundamental

researches have collected marine predators' behavior data to demonstrate that Lévy strategy

evolved as an optimal search policy among predators in response to patchy prey distribution

(Humphries et al., 2010; Sims et al., 2008; Viswanathan, Raposo, & da Luz, 2008). Other studies

simulated the effect of size and velocity ratio of predator to prey to find out in which ratio the

maximum encounter rate between predator and prey will occur (F. Bartumeus, Catalan, Fulco,

Lyra, & Viswanathan, 2002). They showed that the velocity ratio of prey to predator significantly

impacts different strategies. The tradeoff between the Lévy strategy and Brownian provides an

opportunity to find the optimal strategy for an optimization method that is the main inspiration of

the current study. Therefore, this section summarizes the main differences and similarities between

these two methods and specifies opportunities to find the best optimal strategy.

Error! Reference source not found. illustrates an example of influential variables on the

decision-making in Brownian and Levy strategies (F. Bartumeus et al., 2002). In this figure, v is

the velocity ratio of prey to predator, and L is the size interval of a system in which the simulation

is carried out. The parameter 𝛾 indicates the ratio between the encounter rates for the Lévy and

Brownian predators, and 𝛾 > 1 presents an advantage for the predator adopting a Lévy strategy.

This figure shows that in small ratio velocities (v = 0.1) either prey is moving in Brownian or

Lévy, the best strategy for a predator is to have Lévy steps. In the unit velocity ratio (v = 1), if

prey moves in Lévy, predator should move in Brownian with independency of system size. In

high-velocity scenarios (v ≥ 10), again, either prey is moving in Brownian or Lévy the best

strategy for a predator is not choosing Lévy and in its optimal conditions is not moving at all,

because prey will come by itself (F. Bartumeus et al., 2002). Overall, the visualizations inError!

Reference source not found. indicate that an optimal strategy for searching and foraging requires

considering a combination of Lévy and Brownian strategies.

3

Figure 1. 𝛾 vs. v for (a) Brownian prey and (b) Lévy prey (data extracted from (F. Bartumeus et al., 2002) to reproduce this figure)

Humphries et al. (Humphries et al., 2010) show that Lévy strategy is a widespread pattern among

marine predators when searching for the food in a prey-sparse environment, but when it comes to

foraging in a prey-abundant area, the pattern is prevalently switched to Brownian type. Their

research includes the frequency of Lévy/Brownian behavior of open-ocean predators in

frontal/shelf habitats as productive area and off-shelf as a less productive environment in the

northeast Atlantic and Central eastern Pacific. Figure 2 shows the frequency of behavior type in

which verifies the Lévy flight foraging (LFF) hypothesis (Frederic Bartumeus, 2007).

Figure 2. Spatial occurrence of Lévy and Brownian behavior of marine predators in the (a) Northeast Atlantic and (b) Pacific

oceans (data extracted from (Humphries et al., 2010) to reproduce the figure)

Figure 2 is the outcome of recorded data of couple marine predator’s movements such as Sharks,

tunas, billfish and ocean sunfish in the mentioned oceans over 5,700 days, including 12,294,347

steps. Figure 2(a) shows that the behavior of a predator in off-shelf of the Atlantic Ocean is 80%

Lévy and 20% Brownian, but in the frontal shelf, it is precisely opposite with 20% Lévy and 80%

Brownian. During the lifetime of a predator which travels between off-shelf and frontal shelf and

according to this figure, it is possible to conclude that the total behavior of Lévy and Brownian is

exactly 50% on each. Figure 2(b) illustrates the total behavior of a predator in the Pacific Ocean

is about 44% Brownian and 56% Lévy which can be considered as 50%. Therefore, the conclusion

is that a marine predator spends the whole of its life showing almost 50% of Brownian motion and

50% of Lévy movement traversing different habitats in the ocean. This research also reports an

4

anomalous behavior of few predators in the Central Eastern Pacific moving in the convergence

zone stratified water. Although this zone belongs to the prey-abundant environment, predators in

this area exhibit Lévy-like movement with longer vertical jumps. The reason behind this issue is

associated with the formation of a mesoscale eddy that is common in these regions (Zainuddin,

Kiyofuji, Saitoh, & Saitoh, 2006). This kind of long jumps is usually in an effort to find another

spot of patchily distributed prey.

Another similar behavior of silky sharks around drifting Fish Aggregating Device (FAD) (which

are devices to attract ocean fishes for different purposes) is recorded in Western Indian Ocean

where ten silky sharks are equipped with pressure sensors tags for behavioral studies (Filmalter,

Dagorn, Cowley, & Taquet, 2011). It is observed that most sharks spent more than 80% of their

time within 35 m of the surface in the immediate proximity of the FAD associated with the sudden

and long vertical movement. These vertical jumps intrinsically are different from those in Lévy

behavior. In Lévy motion, a predator freely searches the environment without any barrier, while

encountering this kind of environmental issues (eddy formation and FADs) they are somehow

forced to take these longer jumps. Figure 3 shows a recorded vertical movement of two silky sharks

around a FAD in the Indian Ocean. The longer jumps are specified by the red oval. This

observation confirms that these directional changes are most likely occurred to hopefully find a

prey-abundant environment.

Figure 3. Detailed vertical movement of two silky sharks (blue and green lines) around FAD in the Indian ocean (data extracted

from (Filmalter et al., 2011) to reproduce the figure)

There are also some studies which demonstrated that marine predators benefit from cognitive skills

and spatial memory helping them in activities like food retrieval, mate choice, and habitat selection

(Clark, 1959; Dugatkin & Wilson, 1992; Schluessel & Bleckmann, 2012). Clark (Clark, 1959)

reported that Lemon sharks similar to other fishes are talented to quickly learn to return to the

place where they are usually fed. This memory can also help them on how to obtain food which

lasts up to ten weeks.

The following highlights summarize the governing policies for the optimal foraging and

interactions and memories in marine predators:

5

 Marine predators use Lévy strategy for the environment with a low concentration of prey

while employing Brownian movement for the areas with abundant prey;

 They showed the same percentages of Lévy and Brownian movement during their

lifetime of traversing different habitats;

 Due to the environmental effects such as natural (eddy formation) or human-caused

(FADs), they change their behavior to hopefully find areas with a different distribution

of prey;

 In low-velocity ratio (v = 0.1), the best strategy for a predator is Lévy; either prey is

moving in Brownian or Lévy;

 In the unit velocity ratio (v = 1), if prey moves in Lévy, the best strategy for a predator

is Brownian. Other scenarios are dependent on system size;

 In high-velocity ratio (v ≥ 10) the best strategy for a predator is not moving at all. In

this case, either prey is moving Brownian or Lévy; and

 They take advantage of good memory in reminding of their associates as well as the

location of successful foraging.

Overall, based on the extracted rules and points governing the foraging policy of marine predators,

this study establishes a novel optimization algorithm called Marine Predator Algorithm (MPA).

Section 2 discusses related studies. MPA is proposed in Section 3. The results on test functions are

presented and analyzed in Section 4. Sections 5 and 6 summarize the results of engineering design

and real-world problems. Finally, Section 7 concludes the work and suggests a future direction.

2. Literature review
Optimization methods generally fall in two classes of deterministic and stochastic. Deterministic

methods of optimization are either gradient-based or non-gradient based. The type that use gradient

information to find global solution are mathematical programming methods including linear and

non-linear programming (Boyd & Vandenberghe, 2004; Faramarzi & Afshar, 2012, 2014), while

the other type of deterministic approaches use conditions other than the gradient information to

find global solution (Lera & Sergeyev, 2018; Liuzzi, Lucidi, & Piccialli, 2010; Yaroslav D.

Sergeyev & Kvasov, 2006). One inherent drawback of mathematical programming methods is a

high probability of stagnation in local optima during the search of non-linear space. To overcome

the issue, one might try a different initial design, modify the methods and hybridize them with

different algorithms, which sometimes make them unique for that specific problem (Faramarzi &

Afshar, 2014). One of the drawbacks of non-gradient deterministic approaches is that their

implementation is not easy and requires high mathematical preparation to understand and use (Ya

D. Sergeyev, Kvasov, & Mukhametzhanov, 2018).

Another alternative to these issues is applying metaheuristic algorithms that fall under the category

of stochastic optimization. Metaheuristics employ random operators and variables to globally

search the space while avoid trapping in local optima. Their understanding and implementation

are quite easier than the other methods. Although these methods do not guarantee to obtain the

global solution at the last iteration, there are some characteristics which makes them very popular

among all class of optimization methods. The near-global solutions, independence to the problem,

6

flexibility, and gradient-free nature of these methods are highlighted features that can be accounted

as the reason for their widespread use (Mirjalili, Mirjalili, & Lewis, 2014).

Based on the inspiration source, these methods are mainly categorized into three classes of (i)

evolutionary algorithms, (ii) swarm intelligence, and (iii) physics-based methods.

Evolutionary algorithms use the concept of biological evolution which naturally happens in nature.

The most well-known method in this class is Genetic Algorithm (GA) (Holland, 1975) which uses

two concepts of cross-over and mutation to search the domain and improve the results from an

initial random population. There are other well-known evolutionary algorithms such as Evolution

strategy (ES) (Hansen, Müller, & Koumoutsakos, 2003), Genetic programming (GP) (Koza, 1992),

and Differential Evolution (DE) (Storn & Price, 1997).

Swarm intelligence is another class of optimization method. These techniques mimic the intelligent

and collective behavior of swarms, herds, flocks, and schools of different creatures in nature.

Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995) is the most well-known method

in this class. which is inspired by the collective behavior of birds and fish schools. Other methods

in the literature are Ant Colony Optimization (ACO) (Dorigo, Birattari, & Stutzle, 2006), Grey

Wolf Optimizer (Mirjalili, Saremi, Mirjalili, & Coelho, 2016), Krill Herd (KH) (Gandomi & Alavi,

2012), Cuckoo Search (CS) (X.-S. Yang & Deb, 2009), Salp Swarm Algorithm (SSA) (Mirjalili

et al., 2017).

Physics-based methods were inspired by the different physical laws in nature. The interaction of

search agents in these methods is usually governed by rules and laws extracted from physical

phenomena. Perhaps, the most well-known algorithm in this class is Simulated Annealing (SA)

(Kirkpatrick, Gelatt, & Vecchi, 1983). This method employs thermodynamic laws of heating up a

material and then slowly cooling down. Another well-known method in this category is

Gravitational Search Algorithm (GSA) (Rashedi, Nezamabadi-pour, & Saryazdi, 2009) which uses

Newtonian law of gravity and interaction between masses to update the position of search agents

toward the optimum points. Due to the popularity of these methods, there are some books that have

gathered different methods of each category along with literature review and examples on real-

world applications from different engineering disciplines (Mirjalili, Dong, & Lewis, 2020; X.-S.

Yang, Cui, Xiao, Gandomi, & karamanoglu, 2013).

3. Background
Before introducing the steps of the proposed algorithm, there is a need to know a mathematical

model for two main random walks of (i) Brownian and (ii) Lévy motion.

3.1 Brownian motion

The standard Brownian motion is a stochastic process in which their step length is drawn from the

probability function defined by Normal (Gaussian) distribution with zero mean (μ = 0) and unit

variance (σ2 = 1). The governing Probably Density Function (PDF) at point 𝑥 for this motion is

as follows (Einstein, 1956):

7

𝑓𝐵(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎2
exp (−

(𝑥 − 𝜇)2

2𝜎2
) =

1

√2𝜋
exp (−

𝑥2

2
) (1)

3.2 Lévy flight
Lévy flight is a type of random walk which the step sizes are determined from a probability

function defined by Lévy distribution (power-law tail):

𝐿(𝑥𝑗) ≈ |𝑥𝑗|
1−𝛼

 (2)

where 𝑥𝑗 is the flight length, and 1 < 𝛼 ≤ 2 is the power-law exponent (Humphries et al., 2010).

The probability density of Lévy stable process in integral form is defined as (Mantegna, 1994):

𝑓𝐿(𝑥; 𝛼, 𝛾) =
1

𝜋
∫ exp(−γ𝑞𝛼) cos(𝑞𝑥)𝑑𝑞

∞

0

 (3)

Where 𝛼 defines the distribution index and controls the scale properties of the process while 𝛾

selects the scale unit. The integral in Eq. (3) has an analytical solution in just a few cases. When 𝛼

is equal to 2, it represents a Gaussian distribution, and when 𝛼 is equal to 1, it shows a Cauchy

distribution (X. Yang, 2010). The solution for the integral in Eq. (3) generally requires using the

series expansion method only when x owns a huge value as follows:

𝑓𝐿(𝑥; 𝛼, 𝛾) ≈
γΓ(1 + 𝛼) sin (

𝜋𝛼
2

)

𝜋𝑥(1+𝛼)
 , 𝑥 → ∞ (4)

Where Γ stands for Gamma function in which for integer 𝛼 numbers, Γ(1 + 𝛼) is equal to 𝛼!

Mantegna (Mantegna, 1994) proposed an accurate and fast algorithm for generating a Lévy stable

process for an arbitrary value of index distribution (𝛼) ranged in 0.3 and 1.99. This study uses the

Magneta method for generating random numbers based on Lévy distribution as follow:

𝐿𝑒𝑣𝑦(𝛼) = 0.05 ×
𝑥

|𝑦|1 𝛼⁄
 (5)

Where x and y are two normal distribution variables with standard deviations of 𝜎𝑥 and 𝜎𝑦 as

follows:

𝑥 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑥
2)

(6)

𝑦 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑦
2) (7)

In Eq. 6, 𝜎𝑥 is calculated as follows:

𝜎𝑥 = [
Γ(1 + 𝛼) sin (

𝜋𝛼
2)

Γ (
(1 + 𝛼)

2)𝛼 2
(𝛼−1)

2

]

1 𝛼⁄

 𝑎𝑛𝑑 𝜎𝑦 = 1 𝑎𝑛𝑑 𝛼 = 1.5 (8)

8

Figure 4 depicts Lévy and Brownian distribution along with their trajectories in two- and three-

dimensional spaces. Figure 4(a) and Figure 4(d) show the distribution of Lévy and Brownian

motion in a 1-dimensional perspective. Figure 4(b) and Figure 4(e) illustrate 2D trajectories for

the Lévy and Brownian, respectively, drawn from their distributions. Finally, Figure 4(c) and

Figure 4(f) illustrate the 3D version of these trajectories. As the related figures show, walks from

Lévy strategy trace the domain mostly with small steps associated with long jumps while the

Brownian motion can cover areas of the domain with more uniform and controlled steps compared

to Lévy strategy.

Based on the characteristics shown in Figure 4, neither the Lévy flight nor Brownian motion is

solely effective enough to globally and locally search a domain by themselves. However, their

combination and proper use of each strategy can provide a systematic explorer-exploiter

framework which can work more efficient than each strategy by itself. As it is seen in the Figure,

Lévy flight is mostly associated with tiny steps and occasion long jumps. This characteristic can

be employed as improved searchability in optimization literature which shows more efficient

performance compared to uniform random search (X.-S. Yang & Deb, 2013). The figure

demonstrates while the Lévy flight is able to efficiently and deeply search a nearby neighborhood

due to small step lengths and explore other areas of the domain due to its long steps, it cannot

solely cover all areas of a domain. On the other hand, the walks from Brownian motion, which is

clearly observable in the figure, can trace and explore distant areas of the neighborhood but cannot

search as accurate and deep as Lévy strategy. One can notice that taking advantage of the unique

characteristics of each random walk and combining these strategies together how a domain can be

more globally and locally explored and exploited which can be inferred from Figure 4 (b) and

Figure 4 (e). Thus, this study is trying to present an efficient optimization method called Marine

Predators Algorithm (MPA) benefiting from the unique characteristics of Lévy strategy along with

features of Brownian motion which is proven to be more efficient in exploration and exploitation

of a domain in optimization literature.

Figure 4. Lévy flight (a) distribution, (b) 2D trajectory, (c) 3D trajectory vs. Brownian motion (d) distribution, (e) 2D trajectory,
and (f) 3D trajectory

9

4. Marine Predators Algorithm
This section explores the development process of the MPA algorithm as a simple and efficient

metaheuristic optimization method.

4.1 MPA Formulation
Similar to most of the metaheuristics, MPA is a population-based method, in which the initial

solution is uniformly distributed over the search space as the first trial:

𝑋0 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (9)

Where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the lower and upper bound for variables and rand is a uniform

random vector in the range of 0 to 1.

Based on the survival of the fittest theory, it is said that top predators in nature are more talented

in foraging. Thus, the fittest solution is nominated as a top predator to construct a matrix which is

called Elite. Arrays of this matrix oversee searching and finding the prey based on the information

on prey’s positions.

𝐸𝑙𝑖𝑡𝑒 =

[

𝑋1,1

𝐼 𝑋1,2
𝐼 ⋯ 𝑋1,𝑑

𝐼

𝑋2,1
𝐼 𝑋2,2

𝐼 ⋯ 𝑋2,𝑑
𝐼

⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝑋𝑛,1
𝐼 𝑋𝑛,2

𝐼 ⋯ 𝑋𝑛,𝑑
𝐼]

𝑛×𝑑

 (10)

Where 𝑋𝐼⃗⃗⃗⃗ represents the top predator vector, which is replicated n times to construct the Elite

matrix. n is the number of search agents while d is the number of dimensions. It is noted that both

predator and prey are considered as search agents. Because by the time that a predator is looking

for its prey, the prey is looking for its own food. At the end of each iteration, the Elite will be

updated if the top predator is substituted by the better predator.

Another matrix with the same dimension as Elite is called Prey which the predators update their

positions based on it. In a simple word, the initialization creates the initial Prey of which the fittest

one (predator) constructs the Elite. The Prey is shown as follows:

𝑃𝑟𝑒𝑦 =

[

𝑋1,1 𝑋1,2 ⋯ 𝑋1,𝑑

𝑋2,1 𝑋2,2 ⋯ 𝑋2,𝑑

𝑋3,1 𝑋3,2 ⋯ 𝑋3,𝑑

⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝑋𝑛,1 𝑋𝑛,2 ⋯ 𝑋𝑛,𝑑]

𝑛×𝑑

 (11)

In Eq. (11), 𝑋𝑖,𝑗 presents the j-th dimension of i-th prey. It should be noted that the whole process

of the optimization is mainly and directly related to these two matrices.

10

4.2 MPA Optimization Scenarios
MPA optimization process is divided into three main phases of optimization considering different

velocity ratio and at the same time mimicking the entire life of a predator and prey: (1) in high

velocity ratio or when prey is moving faster than predator, (2) in unit velocity ratio or when both

predator and prey are moving at almost same pace, and (3) in low velocity ratio when predator is

moving faster than prey. For each defined phase, a specific period of iteration is specified and

assigned. These steps are defined based on the rules governed on the nature of predator and prey

movement while mimicking the movement of predator and prey in nature. These three phases

include:

Phase 1: In high-velocity ratio or when predator is moving faster than prey. This scenario happens

in the initial iterations of optimization, where the exploration matters. Based on the rules extracted

from Fig. 1, in high-velocity ratio (v ≥ 10), the best strategy for predator is not moving at all. The

mathematical model of this rule is applied as:

While 𝐼𝑡𝑒𝑟 <
1

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖 = 𝑅⃗ 𝐵 ⊗ (𝐸𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 − 𝑅⃗ 𝐵 ⊗ 𝑃𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑖) 𝑖 = 1,…𝑛
(12)

𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑖 + 𝑃. 𝑅⃗ ⊗ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖

where 𝑅𝐵 is a vector containing random numbers based on Normal distribution representing the

Brownian motion. The notation ⊗ shows entry-wise multiplications. The multiplication of 𝑅𝐵 by

prey simulates the movement of prey. P=0.5 is a constant number, and R is a vector of uniform

random numbers in [0,1]. This scenario happens in the first third of iterations when the step size

or the velocity of movement is high for high exploration ability. Iter is the current iteration while

Max_iter is the maximum one.

Phase 2: In unit velocity ratio or when both predator and prey are moving at the same pace. It

mimics that both of them are looking for their prey. This section occurs in the intermediate phase

of optimization where the exploration tries to be transiently converted to exploitation. In this phase,

both exploration and exploitation matters. Consequently, half of the population is designated for

exploration and the other half for exploitations. In this phase, prey is responsible for exploitation

and predator for exploration. Based on the rule, in the unit velocity ratio (v ≈ 1), if prey moves in

Lévy, the best strategy for predator is Brownian. Thus, this study considers prey moves in Lévy

while predator moves in Brownian.

While
1

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 < 𝐼𝑡𝑒𝑟 <

2

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟

For the first half of the population

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖 = 𝑅⃗ 𝐿 ⊗ (𝐸𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 − 𝑅⃗ 𝐿 ⊗ 𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑖) 𝑖 = 1, . . , 𝑛/2
(13)

𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑖 + 𝑃. 𝑅⃗ ⊗ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖

where 𝑅⃗ 𝐿 is a vector of random numbers based on Lévy distribution representing Lévy movement.

The multiplication of 𝑅⃗ 𝐿 and Prey simulates the movement of prey in Lévy manner while adding

11

the step size to prey position simulates the movement of prey. Since most of the Levy distribution

step size is associated with small steps, this section is helping to exploitation. For the second half

of the populations, this study assumes:

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖 = 𝑅⃗ 𝐵 ⊗ (𝑅⃗ 𝐵 ⊗ 𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 − 𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑖) 𝑖 = 𝑛/2, . . , 𝑛
(14)

𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 = 𝐸𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑖 + 𝑃. 𝐶𝐹 ⊗ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖

While CF=(1 −
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)
(2

𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)
 is considered as an adaptive parameter to control the step size

for predator movement. Multiplication of 𝑅⃗ 𝐵 and Elite simulates the movement of predator in

Brownian manner while prey updates its position based on the movement of predators in Brownian

motion.

phase 3: In low-velocity ratio or when predator is moving faster than prey. This scenario happens

in the last phase of the optimization process which is mostly associated with high exploitation

capability. In low-velocity ratio (v = 0.1) the best strategy for predator is Lévy. This phase is

presented as:

While 𝐼𝑡𝑒𝑟 >
2

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖 = 𝑅⃗ 𝐿 ⊗ (𝑅⃗ 𝐿 ⊗ 𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 − 𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑖) 𝑖 = 1, . . , 𝑛
(15)

𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 = 𝐸𝑙𝑖𝑡𝑒⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑖 + 𝑃. 𝐶𝐹 ⊗ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖

Multiplication of 𝑅⃗ 𝐿 and Elite simulates the movement of predator in Lévy strategy while adding

the step size to Elite position simulates the movement of predator to help the update of prey

position.

This study simulates the movement of predators and prey according to what happens in nature

based on the rules and points extracted from different literature. These phases simulate the step

size taken by a predator to catch prey. Based on the rules, it is reasonable to assume the same

percentage of Lévy and Brownian movement during the lifetime of a predator. In the first phase,

predator is not moving at all while in the second phase it is moving in Brownian and finally in the

third phase, it shows Lévy strategy. This scenario also happens to prey because the prey is another

potential predator, e.g. silky sharks and tuna fish. Both of them are considered as marine predators,

but while tuna fish is prey for a silky shark, it is a predator for bony fishes and marine invertebrates.

In the first phase, prey is moving in Brownian and in the second phase, it follows Lévy behavior.

The strategy which one-third of iterations allocated to each phase is experimentally achieved to be

optimized and give slightly better results compared to the strategies which switch between these

stages or cyclically repeat of the stage. Since this is the first version of the method, interested

readers can improve this method by defining other criteria on how and when the algorithm uses

each phase for an update.

4.3 Eddy formation and FADs’ effect
Another point which causes a behavioral change in marine predators is environmental issues such

as the eddy formation or Fish Aggregating Devices (FADs) effects. Based on the study of Filmalter

12

et al. (Filmalter et al., 2011), sharks spend more than 80% of their time in the immediate vicinity

of FADs, and for the rest 20%, they will take a longer jump in different dimensions probably to

find an environment with another prey distribution. The FADs are considered as local optima and

their effect as trapping in these points in search space. Consideration of these longer jumps during

simulation avoids stagnation in local optima. Thus, the FADs effect is mathematically presented

as:

𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 = {

𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 + 𝐶𝐹[𝑋 𝑚𝑖𝑛 + 𝑅 ⃗⃗ ⃗ ⊗ (𝑋 𝑚𝑎𝑥 − 𝑋 𝑚𝑖𝑛)] ⊗ 𝑈⃗⃗ 𝑖𝑓 𝑟 ≤ 𝐹𝐴𝐷𝑠

𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑖 + [𝐹𝐴𝐷𝑠(1 − 𝑟) + 𝑟](𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗

𝑟1 − 𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗
𝑟2) 𝑖𝑓 𝑟 > 𝐹𝐴𝐷𝑠

 (16)

Where 𝐹𝐴𝐷𝑠 = 0.2 is the probability of FADs effect on the optimization process. 𝑈⃗⃗ is the binary

vector with arrays including zero and one. This is constructed by generating a random vector in

[0,1] and changing its array to zero if the array is less than 0.2 and one if it is greater than 0.2. r is

the uniform random number in [0,1]. 𝑋 𝑚𝑖𝑛 and 𝑋 𝑚𝑎𝑥 is the vector containing the lower and upper

bounds of the dimensions. 𝑟1 and 𝑟2 subscripts denote random indexes of prey matrix.

4.4 Marine memory

Based on the highlighted points, marine predators have a good memory in reminding the place

where they have been successful in foraging. This capability is simulated by memory saving in

MPA. After updating the Prey and implementing FADs effect, this matrix is evaluated for fitness

to update the Elite. The fitness of each solution of the current iteration is compared to its equivalent

in prior iteration, and the current one replaces the solution if it is more fitted. This process also

improves the solution quality with the lapse of iteration (Parouha & Das, 2016) and also simulates

the returning of predators to the locations of the prey-abundant area with successful foraging. The

pseudo-code of MPA is presented below.

Initialize search agents (Prey) populations i=1,…,n

While termination criteria are not met

Calculate the fitness and construct the Elite matrix

 If Iter<Max_Iter/3

 Update prey based on Eq. 12

 Else if Max_Iter/3<Iter<2*Max_Iter/3

 For the first half of the populations (i=1,…,n/2)

 Update prey based on Eq. 13

 For the other half of the populations (i=n/2,…,n)

 Update prey based on Eq. 14

 Else if Iter>2*Max_Iter/3

 Update prey based on Eq. 15

 End (if)

 Accomplish memory saving and Elite update

 Applying FADs effect and update based on Eq. 16

 Accomplish memory saving and Elite update

End while

5 MPA phases, exploration and exploitation
The three phases of optimization are schematically presented in Figure 5. In the first phase of

optimization (shown as phase 1 in the figure), prey moves in Brownian motion. Since the preys

13

are uniformly distributed throughout the search domain in initial iterations and the distance

between predator and prey is relatively large, Brownian motion can help preys to explore their

neighborhood separately which results in a good exploration of the domain. Then, the prey with a

new position is evaluated for the fitness, and the position is replaced if it is more fitted than the

previous one. The fitted positions of prey can be interpreted as abundant food areas, and the saving

procedure is equivalent to prey’s memory to remember abundant food areas. If prey is more

successful in foraging for its food, it can be considered as a predator. It means the fitness value of

the prey is calculated and replace the top predator if it is better fitted. Now, it is time for predators

to start foraging while the prey is still looking for their food. This is where the second phase of

optimization starts.

This phase is designed to perform a good transition from exploration to exploitation. So, in order

to take advantage of exploration and exploitation in this phase, both predator and prey search for

their food. In this phase, half of the population is in charge of exploration and the other half is for

exploitations. predator starts searching for its prey in Brownian motion while prey switches to

Lévy strategy to efficiently search its close neighborhood and take a long jump if it could not find

any food. The phase 2 shown in the figure schematically shows this phase of optimization where

predator starts taking Brownian steps in blue trajectory to better search the domain while prey

moves in Lévy strategy shown by green walks. Since the predator and prey locations become close

to each other and the step length is going to be smaller than the previous phase, FADs effect along

with long steps of Lévy strategy greatly helps MPA to avoid from local optima stagnation and

better performance of the method.

As the optimization reaches its final stage, the algorithm needs high exploitation ability. In this

phase, the predator starts switching its behavior from Brownian to Lévy strategy to more efficiently

search a certain neighborhood. The adaptive defined convergence factor (CF) in this phase greatly

helps predators to limit the search areas within a particular neighborhood for exploitation and also

avoid wasting some search effort drawn from the long step sizes of Lévy strategy for non-

promising regions of the domain. The last phase is depicted in the figure as phase 3.

14

Figure 5. The three MPA optimization phases

It is noted that the computational complexity of the proposed method is of 𝑂(𝑡(𝑛𝑑 + 𝐶𝑜𝑓 ∗ 𝑛))

where t is iteration, n is a number of agents, Cof is the cost of function evaluation and d is problem

dimension.

6. Numerical experiment
This study assessed the performance of MPA using different test functions. Two classes of well-

known benchmarks are employed as mathematical and engineering examples. In order to evaluate

the MPA’s ability to explore, exploit, and escape from local minima, the benchmark includes

unimodal, multimodal, fixed dimension multimodal, and composition functions. Unimodal test

functions (TF1-TF6) are designed to challenge the exploitation ability of an algorithm while

multimodal functions (TF6-TF13) are used to experiment the exploration performance. These two

classes of functions are tested in 50 dimensions. The fixed dimension test functions (TF14-TF23)

show the exploration capability of MPA in low dimensions, and finally, composition functions

(TF24-TF29) are applied to test MPA’s ability for escaping from local minima. Since the

complexity of composition functions are similar to real and challenging optimization problems by

having too many local minima, they are designed to challenge the overall performance of an

algorithm. The details of these test functions can be found in (Liang, Suganthan, & Deb, 2005).

Figure 6 shows a two-dimensional representation of some mathematical functions. The

mathematical models of these functions are available in (Rashedi et al., 2009).

15

Figure 6. Two-dimensional view of some mathematical benchmark functions

500 iterations considering a maximum number of 25,000 function evaluations are used to solve

the test functions using MPA and other methods. In order to have meaningful statistical results,

this study ran MPA 30 times, and Error! Reference source not found.toError! Reference

source not found. provide the results, including average and standard deviation values of best-so-

far solutions found in each run. To show the effectiveness superiority of MPA to that of other

methods, the test is carried out for three categories of methods: i) Genetic Algorithm (GA)

(Holland, 1975) and Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995) as the most

well-known optimization methods ii) Gravitational Search Algorithm (GSA) (Rashedi et al.,

2009), Cuckoo search (CS) (X.-S. Yang & Deb, 2009) and Salp Swarm Algorithm (SSA) (Mirjalili

et al., 2017) as recently developed metaheuristics and iii) Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) (Hansen et al., 2003), Success-History Based Parameter Adaptation

Differential Evolution (SHADE) (Tanabe & Fukunaga, 2013) (one of the winners of CEC 2013

competition) and Ensemble Sinusoidal Differential Covariance Matrix Adaptation with Euclidean

Neighborhood (Noor H. Awad, Ali, & Suganthan, 2017) (one of the winners of CEC 2013

competition) as high performance optimizers. Table 1 summarizes the parameter setting for other

methods. These parameters are either exactly recommended by its developers or in the range of

the recommendations to have the best performance for each algorithm (Jain, Singh, & Rani, 2019).

16

Table 1. parameter setting for algorithms
Algorithm Parameter Value

PSO Topology Fully connected

 Cognitive and social constant (C1, C2) 2, 2

Inertia weight Linear reduction from 0.9 to 0.1

 Velocity limit 10% of the dimension range

CS Discovery rate (Pa) 0.25

GA Type Real coded

 Selection Roulette wheel (Proportionate)

Crossover Whole Arithmetic

 Probability=0.8

Mutation Gaussian (Probability=0.05)

GSA Alpha, G0, Rnorm, Rpower 20, 100, 2, 1

SHADE Pbest, Arc rate 0.1, 2

SSA Leader position update probability 0.5

LSHADE-cnEpSin H, NPmin, Pbest rate, Arc rate, ps,pc 5, 4, 0.11, 1.4, 0.5, 0.4

6.1 Exploitation ability of MPA
Since unimodal functions have only one global optimum, they can evaluate the exploitation ability

of an algorithm. Error! Reference source not found.Table 2 shows the results of MPA and other

methods on unimodal test functions (TF1-TF7) using the average and standard deviation values.

Results indicate that MPA was able to outperform the majority of methods in almost all test

functions. These results show the ability of MPA in exploitation, which can help MPA to converge

towards the optimum and exploit it accurately and rapidly. This ability comes from the defined

adaptive CF parameter and small steps of Lévy movements.

Table 2. Results for unimodal, multimodal and composition functions

Function MPA PSO GA GSA CS SSA CMA-ES SHADE
LSHADE-

cnEpSin

U
n

im
o
d
al

TF1 Ave 3.27E-21 0.0409 1.095 0.0034 210.64 0.0037 8.27E-15 1.08E-08 2.19E-04

Std 4.61E-21 0.0416 0.4896 0.0189 81.505 0.00974 5.76E-15 1.17E-08 1.21E-04

TF2 Ave 1.57E-12 0.0659 0.106 0.0806 15.98 5.0487 1.28E-06 0.1226 0.04134

Std 1.42E-12 0.0864 0.0498 0.3802 4.788 2.013 2.92E-06 0.1854 0.02237

TF3 Ave 0.0864 4236.3 25187.3 1313.88 10412.38 4343.27 9.170 265.12 70.118

Std 0.1444 1217.9 5243.43 343.116 2456.305 2136.39 6.533 127.43 34.618

TF4 Ave 2.6E-08 9.335 35.619 6.410 18.507 15.055 1.44E-04 1.644 3.1933

Std 9.25E-09 1.0119 9.4072 1.535 2.463 3.195 7.00E-05 0.535 0.9194

TF5 Ave 46.049 310.39 715.98 76.561 27288.5 434.43 52.11 60.96 59.253

Std 0.4219 430.60 634.71 41.64 15589.9 457.70 23.15 35.535 29.012

TF6 Ave 0.398 0.0589 0.925 2.21E-12 218.17 0.0021 5.98E-15 8.32E-09 2.94E-04

Std 0.1914 0.1217 0.5063 5.91E-13 53.864 0.0030 5.36E-15 1.00E-08 2.71E-04

TF7 Ave 0.0018 0.0665 0.1130 0.0926 0.4055 0.2807 0.0320 0.0294 0.00993

Std 0.0010 0.0123 0.0355 0.0322 0.1313 0.0911 0.0077 0.0100 0.00306

M
u
lt

im
o

d
al

 (
H

ig
h

d
im

en
si

o
n

al
)

TF8 Ave -13594.1 -10815.3 -17911.6 -3570.52 -11942.8 -12232.6 -11670.6 -14832.5 -15928.4

Std 811.3 992.1 343.1 592.0 343.1 1063.0 884.3 418.8 516.8

TF9 Ave 0.000 78.42 35.61 32.36 220.86 78.79 30.91 101.54 76.052

Std 0.000 16.44 8.971 7.055 22.055 25.18 5.383 14.874 9.15

TF10 Ave 9.69E-12 1.204 0.1844 8.94E-07 9.493 3.479 11.019 0.190 0.00363

Std 6.13E-12 0.729 0.1487 1.54E-07 2.0936 0.8281 9.795 0.448 0.00192

TF11 Ave 0.000 0.0128 0.6561 26.479 3.067 0.0905 2.08E-10 0.0027 0.00424

Std 0.000 0.0130 0.1881 5.7472 0.782 0.0407 1.51E-10 0.0051 0.00638

TF12 Ave 0.0085 0.0319 0.0344 1.0151 11.209 8.541 2.99E-13 0.0187 0.00208

Std 0.0052 0.0560 0.0776 0.5386 7.5438 2.556 1.97E-13 0.0635 0.01135

TF13 Ave 0.4901 0.419 0.189 10.25 1306.48 59.895 4.31E-12 0.00183 0.00711

Std 0.1932 0.5814 0.0972 6.335 3931.79 16.745 3.44E-12 0.0041 0.00797

17

M
u

lt
im

o
d

al
 (

F
ix

ed
-d

im
en

si
o

n
al

)
TF14 Ave 0.9980 2.1825 0.9980 3.7182 0.9980 1.0311 8.1094 0.9980 0.9980

Std 2.47E-16 2.0085 8.84E-12 2.678 5.46E-16 0.1815 5.9456 3.38E-16 0.0000

TF15 Ave 3.07E-04 5.61E-04 2.69E-03 2.05E-03 3.97E-04 8.40E-04 1.09E-02 1.76E-03 3.07E-04

Std 4.09E-15 4.38E-04 4.84E-03 6.64E-04 1.05E-04 2.81E-04 1.87E-02 5.06E-03 1.34E-19

TF16 Ave -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316

Std 4.46E-16 6.64E-16 2.39E-08 2.10E-15 4.79E-16 1.48E-14 6.77E-16 0.0000 6.51E-16

TF17 Ave 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

Std 9.12E-15 0.000 1.90E-06 6.14E-16 7.23E-14 5.62E-14 0.0000 1.12E-16 0.0000

TF18 Ave 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 5.7000 3.0000 3.0000

Std 1.95E-15 1.38E-15 2.45E-07 7.00E-14 1.85E-15 2.46E-13 1.48E+01 4.52E-16 1.92E-15

TF19 Ave -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628

Std 2.42E-15 2.68E-15 2.85E-08 9.33E-15 2.48E-15 3.96E-14 2.71E-15 2.71E-15 2.71E-15

TF20 Ave -3.3220 -3.2625 -3.2705 -3.3220 -3.3220 -3.2344 -3.2903 -3.2824 -3.3220

Std 1.14E-11 6.05E-02 5.99E-02 1.56E-13 1.01E-07 5.87E-02 5.35E-02 5.70E-02 1.36E-15

TF21 Ave -10.1532 -5.3010 -6.1531 -6.5834 -10.1532 -9.9837 -6.7946 -9.7358 -10.1532

Std 2.53E-11 2.9288 3.6282 3.6765 7.06E-07 1.3240 3.6860 1.6200 6.39E-15

TF22 Ave -10.4029 -7.0716 -7.9827 -10.4029 -10.4029 -9.3507 -9.2089 -10.1484 -10.1532

Std 2.81E-11 3.6840 3.4924 3.18E-13 1.07E-04 2.569 2.7439 1.3943 6.39E-15

TF23 Ave -10.5364 -7.2467 -7.7652 -10.5364 -10.5364 -9.8704 -9.2797 -10.5364 -10.5364

Std 3.89E-11 3.6582 3.7265 3.07E-13 9.60E-05 2.2936 2.8975 9.03E-15 2.47E-15

C
o
m

p
o
si

ti
o
n

TF24

(CF1)

Ave 6.666 60.000 66.666 13.333 0.9580 26.666 130.000 16.666 5.90E-27

Std 25.370 81.367 75.809 34.574 2.5370 52.083 172.506 37.904 2.39E-26

TF25

(CF2)

Ave 15.263 157.014 108.280 183.443 32.513 29.727 166.666 31.145 26.667

Std 30.442 109.456 97.953 37.658 50.392 38.582 118.418 46.813 44.976

TF26

(CF3)

Ave 149.77 268.849 214.016 103.284 224.57 229.946 261.988 125.690 87.256

Std 24.337 135.343 84.450 60.661 42.268 66.448 241.989 28.322 34.638

TF27

(CF4)

Ave 285.424 434.281 383.928 465.947 351.204 331.424 335.733 288.199 257.605

Std 38.981 131.823 110.505 153.159 30.3975 24.5213 137.596 6.8694 14.736

TF28

(CF5)

Ave 2.658 179.821 47.285 231.462 13.590 27.941 177.053 33.479 3.3333

Std 1.697 230.547 72.106 44.1935 8.7036 41.402 238.234 47.843 18.257

TF29

(CF6)

Ave 523.721 832.199 766.151 799.730 505.055 678.896 838.685 630.822 540.232

Std 90.2975 151.763 191.549 99.727 5.0723 198.244 148.136 188.898 102.759

Friedman mean rank 2.57 6.26 6.83 5.59 6.00 6.36 5.00 3.88 2.52

Rank 2 7 9 5 6 8 4 3 1

6.2 Exploration ability of MPA
Multimodal test functions have many local optima, which increase exponentially with a number

of dimensions (design variables). Having more than one optimum is useful if the aim is to evaluate

the exploration ability of an algorithm. TF8 through TF23 are multimodal functions in high and

fixed (low) dimensions. The results of applying MPA and different algorithms on these functions

are reported in Table 2Error! Reference source not found.Error! Reference source not found..

The table shows that MPA benefits from an outstanding exploration ability compared to other

methods. MPA is able to outperform all algorithms on half of the high dimensional multimodal

functions and for the other half, the results are competitive to high performance optimizers. For

the fixed dimensional functions, MPA has reached to the global optimum in most problems with

accuracy (Std) close to the high-performance optimizers. MPA’s exploration is due to its different

phases of optimization, FADs effect and Brownian motion of predators.

6.3 Local minima avoidance ability of MPA
The composition test functions (TF24-TF29) are constructed by shifting, rotating and hybridizing

of some primitive unimodal and multimodal functions. These functions are designed to challenge

the ability of algorithms to avoid from local optima stagnation as well as having a good ability of

exploration and exploitation. Table 2Error! Reference source not found. shows the performance

of MPA and other methods on this type of function. In all functions of this category except TF24

18

and TF26, the results of MPA is very competitive and sometimes better than LSHADE-cnEpSin.

These results show that MPA has a well-tuned ability between exploration and exploitation while

showing an excellent performance to escape from local optima. The latter characteristic is due to

defined eddy and FAD’s effect along with more extended relocation associated with Lévy

movement.

The exploitation, exploration and local minima avoidance ability of MPA was tested and MPA

proved its capability to extensively explore the domain and exploit the best solution while trying

to escape from local minima stagnation. Friedman mean rank is used to specify the overall rank

among the competitors. As it is clear in the last row of Table 2, MPA ranked 2nd with the very

small difference compared to LSHADE-cnEpSin which ranked first. Overall, based on the results,

it is reasonable to nominate both methods as joint winners which their mean rank is by far better

than the other competitors, even better than SHADE and CMA-ES.

6.4 Convergence analysis of MPA
Figure 7 illustrates qualitative metrics for convergence and performance analysis of MPA in the

mathematical function’s testbed. The first column of the figure depicts the shape of the functions

in two-dimensional view to have insight about the domain’s topology. The second column of the

figure represents the search history as the first metric to be discussed here. This figure shows how

interactional and collective behavior between/of predator and prey helps MPA to reveal a pattern

about the collective search of the agents. This pattern shows a more aggregation of agents around

the optimum points in unimodal functions and more scattered behavior in multimodal and

composition functions. The first characteristic of the pattern aids in exploiting the results which

are desirable in unimodal functions and the latter denotes as exploring the domain which helps

MPA in multimodal and composition functions search entire space.

The second metric is the convergence curve which denotes as the best solution found so far. Based

on each category of function, there is a specific pattern of the convergence curve shown in the

figure. In unimodal functions, this pattern is relatively smooth and shows an improvement of the

results with the lapse of iterations, but for multimodal and composition functions this pattern turns

into a stepwise behavior which is expectable in these functions. It is possible to understand from

each category that in unimodal functions MPA can recognize and encircle the optimum point at

initial iterations and tries to refine the solutions as iterations pass, but in multimodal and

composition functions, the agents try to globally search the domain even in the last iterations in an

effort to always find better solutions. This is why no improvement of results is observed even with

the passage of iterations in some multimodal functions which finally leads to the step-like pattern

in these curves. It is noted that the explorative behavior owes its performance to long steps derived

from the Lévy movements of the agents along with eddy and FAD’s effect.

If we consider the agents (predators and preys) as members of a team, the convergence curve shows

the behavior of the best player in achieving success, but it does not give any idea about the whole

team’s performance. This is why we used another metric to evaluate team performance in the

process of optimization called average fitness history. The overall pattern of this metric is similar

to the convergence curve but emphasizes how this collaborative behavior makes the results

improved from the initial random population. There are some step-like behaviors observable in

19

average fitness history in the functions. This is due to the improvement of all agents’ fitness

resulting from a phase change of the algorithm which yields an overall good performance of the

agents. In unimodal functions, there are mild and smooth slopes of the curve, but in multimodal

and composition functions the slope trends are steep for these types.

Another metric is the trajectory of the agents shown in column 5 of the figure. This metric shows

the topological variations of an agent from the beginning to the end of the optimization process.

Since the agents move in many dimensions, in order to be able to have a clear track of its

coordinate, we picked only the first dimension of an agent to show its trajectory. The figures related

to this metric show abrupt changes having high magnitude and frequency in initial iterations which

are going to be fade out in the last iterations. This trend confirms the explorative behavior in initial

iterations while switching to local search in the last ones which guarantee that an algorithm can

finally converge to a global/local optimum point (van den Bergh & Engelbrecht, 2006). Due to the

nature of multimodal and composition functions, the magnitude and frequency of these changes

are more severe than the unimodal ones and usually last longer.

The last metric is the diversity plot. This curve shows the average distance of the agents during the

process. As it is seen, there is a decreasing trend in all figures presented in the last column of

Figure 7 demonstrating a shift from exploration in initial phases to exploitation in the last ones.

This curve tends to be more and rapidly stable in unimodal functions compared to other types.

20

Figure 7. Search history, convergence curve, average fitness history, trajectory, and diversity

Figure 8 shows the convergence curve of MPA, PSO, GSA, CS, FA, CMA-ES and GA for some

of the test functions. The results of this figure indicate a couple of distinct, recognizable behavioral

patterns for MPA in optimizing the test functions. These behaviors are mainly due to different

phases defined for optimization. The first behavior demonstrates a very fast convergence toward

the near-global optimum point in the first phase and subsequent minor improvements in the second

and third phases which verifies that just one phase could be effective to solve a problem. This

behavior is observed in TF1, TF4, and TF15. Another behavior is like the previous one with no

improvement of solutions in the following phases because the algorithm already reached the global

or near-global point. This trend is observable in TF5, TF11. It is noted that in TF11, MPA could

reach the global point in iteration 158 which is 0. Due to the semilogarithmic scale of the figure,

it was impossible to show the zero in the figure, and therefore the MPA curve in TF11 is

discontinued in iteration 158. The last behavior shows a convergence rate change which is

subsequent to each phase change observable in TF8, TF25, TF27, and TF28. In all these figures

the phase change helps MPA to explore/exploit domain by different mechanisms assigned to each

phase which finally ends up in the better performance of the method. It can also be seen that the

convergence curve of these figures shows a steady behavior at the final iterations of the last phase

indicating the convergence guarantee. It is interesting to know, that the reason behind the definition

of each phase and the effect of these phase changes in the overall performance of the algorithms

is completely evident in challenging multimodal and composition functions such as TF8, TF25,

TF27, and TF28. Hence, the way that MPA is designed can find the global optimum in the first

phase in unimodal functions while the real performance of each defined phase is observable and

effective when the algorithm is applied to challenging multimodal and composition functions.

21

Figure 8. MPA averaged convergence curve on different mathematical test functions

6.5 Sensitivity analysis of MPA
This section focuses on sensitivity analysis of two control parameters employed in MPA. The first

parameter is FADs, which controls the probability of FADs effect and its contribution to the

optimization process and the second one is P which helps in attenuating/magnifying the step sizes

taken by predator or prey. The analysis reveals which parameters are robust and which ones are

sensitive to different inputs. MPA is able to meet a full factorial design with these two parameters

on the first function from each category of unimodal (F1), multimodal (F8), fix-dimensional

multimodal (F14) and composition functions (CF1). The design vector of parameters are defined

as 𝐹𝐴𝐷𝑠 = {0.1, 0.2, 0.5, 0.7, 0.9} 𝑎𝑛𝑑 𝑃 = {0.1, 0.5,1,1.5,2} having a totally 5*5=25

combination of design. Each design is presented as an average fitness function resulted from

25,000 function evaluations and 30 independent runs. Figure 9 shows the analysis with x-axis

representing the values for control parameters while y-axis shows the average fitness as sensitivity.

Figure 9(a) shows the sensitivity in TF1. As it is shown, P has more sensitive behavior than FADs

in this function. FADs=0.2 and P=0.5 show optimal behavior in TF1. In TF8 which is a multimodal

function, FADs shows a good performance to its left boundaries while P having this characteristic

on its right boundaries. Thus, FADs=0.2 and P=2 are the best selection for this function. In F14,

the parameters did not show any sensitivity. This might be associated to the simplicity of the

22

function or large enough number of function evaluations. For CF1 which is a composition function,

FADs=0.5 and P=2 seem a good choice for optimization. Considering all types of functions,

FADs=0.2 can be proposed as a conservative and initial selection when a user has no idea about

the topology of their function. P=0.5 shows a very good behavior in TF1 which is unimodal

function and P=2 shows this performance in multimodal and composition functions. this behavior

is also aligned with the function’s topology. In unimodal functions, there is a need to consider

small step sizes to better exploit the results while in multimodal and composition functions these

step sizes should be large enough for exploration purposes. It is observable in the figure that P

shows more sensitivity in TF1 than TF8 and CF1 meaning that the range of variation of different

selection of P in unimodal function is quite larger than that of in multimodal and composition

functions. Thus, in order to be on the safe side, P=0.5 along with FADs=0.2 can be recommended

as an initial guess of optimization.

Figure 9. Sensitivity analysis of EO’s control parameters with different functions

6.5 MPA performance on the CEC-BC-2017 test suite
To further demonstrate the performance of the proposed method, we selected one of the most

recent and challenging test suites on the numerical optimization competitions called CEC-BC-

2017 (N H Awad, Ali, Suganthan, Liang, & Qu, 2017) containing 30 functions which at least half

of the functions are among the challenging hybrid and composition functions. We tested the MPA

against these functions and compared the results to that of the other most well-known methods.

The dimension is considered as 10 for all functions of this suite. Such as the previous section,

average and standard deviation are presented in Table 3Error! Reference source not found.. It is

noted that each method is run 30 times with 500 iterations limited to 50,000 maximum number of

function evaluations. The Friedman mean rank revealed that MPA could again obtain the 2nd rank

following LSHADE-cnEpSin as the best method and is followed by SHADE as the 3rd one. As it

0.1 0.2 0.5 0.7 0.9

1.0E-20

1.0E-17

1.0E-14

1.0E-11

1.0E-08

1.0E-05

1.0E-02

1.0E+01

0.1 0.5 1 1.5 2

FADs

A
ve

P

TF1 (a)

P FADs

0.1 0.2 0.5 0.7 0.9

-14000

-13800

-13600

-13400

-13200

-13000

-12800

-12600

0.1 0.5 1 1.5 2

FADs

A
ve

P

TF8 (b)

P FADs

0.1 0.2 0.5 0.7 0.9

0.9

0.95

1

1.05

1.1

0.1 0.5 1 1.5 2

FADs

A
ve

P

TF14 (c)

P FADs

0.1 0.2 0.5 0.7 0.9

0

1

2

3

4

5

0.1 0.5 1 1.5 2

FADs

A
ve

P

CF1 (d)

P FADs

23

is observable from the ranks, the performance of LSHADE-cnEpSin, MPA and SHADE are by far

better than the other methods. This fact shows that MPA can be listed as a high performance

optimizer.

Table 3. Results of CEC-BC-2017 test suite

Fcn MPA PSO GA GSA CS SSA CMA-ES SHADE
LSHADE-

cnEpSin

U
n
i

m
o
d
al

 f1 Ave 100.00 3959.66 9799.76 296.08 100.23 3396.25 100.00 100.00 100.00

Std 4.79E-06 4456.66 5942.54 275.24 0.135 3673.07 0.000 0.000 0.000

f3 Ave 300.00 300.00 8721.43 10828.5 300.00 300.00 300.00 300.00 300.00

Std 9.92E-11 1.91E-10 5900.30 1602.00 1.19E-03 9.01E-10 0.000 0.000 0.000

M
u
lt

im
o
d
al

f4 Ave 400.03 405.95 410.72 406.58 400.38 406.27 400.00 400.00 400.00

Std 0.057 3.283 18.512 2.923 0.356 10.073 0.000 0.000 0.000

f5 Ave 510.12 513.07 516.32 556.78 520.67 521.82 530.18 503.77 502.34

Std 3.955 6.543 6.926 8.409 4.742 10.497 58.317 1.006 0.875

f6 Ave 600.00 600.24 600.05 621.67 602.77 609.77 682.07 600.00 600.00

Std 6.16E-04 9.84E-01 6.69E-02 9.015 1.444 8.255 35.432 2.65E-07 2.59E-07

f7 Ave 723.32 718.98 728.32 714.65 732.85 740.88 713.43 713.91 712.23

Std 3.910 5.101 7.290 1.556 5.075 16.618 1.631 1.235 0.605

f8 Ave 809.42 811.40 820.72 820.50 819.99 823.45 828.89 803.81 802.14

Std 3.122 5.475 8.962 4.693 4.698 9.952 52.985 1.278 1.031

f9 Ave 900.00 900.00 910.28 900.00 929.68 944.07 4667.29 900.00 900.00

Std 1.63E-02 5.97E-14 15.154 0.000 45.37 104.65 2062.83 0.000 0.000

f10 Ave 1437.42 1473.35 1723.35 2694.45 1699.23 1858.85 2588.01 1193.56 1070.03

Std 141.08 214.97 252.34 297.63 142.03 294.50 414.47 84.67 56.56

H
y
b
ri

d

f11 Ave 1102.93 1110.48 1125.62 1134.70 1105.73 1180.55 1111.31 1100.83 1100.02

Std 1.27 6.95 23.80 10.48 2.04 59.80 25.44 1.36 0.12

f12 Ave 1247.2 1.4E+04 3.7E+06 7.1E+05 1566.0 1.9E+06 1629.58 1324.45 1332.95

Std 54.3 1.1E+04 3.4E+06 4.2E+05 118.2 1.9E+06 198.11 102.61 86.26

f13 Ave 1305.92 8601.13 10828.4 11053.4 1310.4 16098.6 1323.63 1304.66 1303.74

Std 2.58 5123.46 8928.9 2110.1 2.97 10537.2 78.32 0.71 3.26

f14 Ave 1403.09 1482.09 7048.96 7147.73 1413.38 1508.94 1452.02 1410.85 1400.19

Std 4.06 42.68 8160.08 1489.13 5.19 51.05 35.98 9.21 0.45

f15 Ave 1500.77 1717.88 9296.19 18001.4 1502.30 2236.69 1509.65 1500.33 1500.33

Std 0.52 282.34 8978.19 5498.7 0.60 571.19 16.43 0.36 0.20

f16 Ave 1601.82 1860.07 1786.36 2149.84 1615.87 1726.26 1815.26 1602.50 1600.87

Std 0.99 127.66 129.07 105.88 23.30 126.97 230.11 2.20 0.36

f17 Ave 1714.55 1761.60 1746.54 1857.05 1730.45 1774.57 1830.07 1716.39 1701.37

Std 9.44 47.51 39.78 108.33 4.08 34.23 175.80 5.96 3.84

f18 Ave 1800.95 1.5E+04 1.6E+04 8720.53 1809.81 2.3E+04 1825.94 1809.87 1803.59

Std 0.52 1.2+04 1.3E+04 5060.76 3.02 1.4E+04 13.53 9.47 7.60

f19 Ave 1900.90 2602.84 9686.60 4.5E+04 1902.29 2916.15 1920.54 1900.52 1900.26

Std 0.45 2185.03 6766.32 1.9E+04 0.46 1871.27 28.68 0.28 0.03

f20 Ave 2015.52 2085.03 2056.55 2272.89 2030.97 2089.31 2494.47 2020.00 2000.23

Std 9.67 62.25 60.02 81.73 6.21 49.28 242.65 0.01 0.43

C
o
m

p
o
si

ti
o
n

f21 Ave 2203.72 2281.72 2303.81 2357.41 2214.96 2249.87 2324.76 2282.46 2255.42

Std 20.35 54.02 43.75 28.21 30.48 60.44 67.76 42.64 52.16

f22 Ave 2283.76 2314.80 2304.60 2300.01 2282.84 2301.52 3532.42 2297.27 2300.10

Std 38.10 66.10 2.39 0.07 31.79 11.80 847.37 16.19 0.17

f23 Ave 2611.63 2620.81 2632.89 2736.48 2619.05 2621.73 2728.84 2608.08 2602.30

Std 3.93 9.24 13.42 39.14 3.31 8.69 243.09 1.71 1.42

f24 Ave 2516.88 2692.19 2754.33 2742.17 2536.51 2733.20 2704.39 2728.92 2688.30

Std 38.39 108.21 14.93 5.55 39.02 64.43 73.38 31.74 91.65

f25 Ave 2897.92 2924.04 2947.94 2937.54 2861.00 2923.55 2932.01 2916.36 2923.77

Std 0.49 25.02 19.25 15.31 89.81 23.86 20.87 22.94 21.30

f26 Ave 2849.81 2952.13 3112.11 3440.66 2827.66 2900.96 3457.72 2909.17 2900.00

Std 96.29 249.66 334.66 628.74 80.82 36.56 598.89 34.93 0.00

f27 Ave 3089.37 3116.22 3115.14 3259.34 3090.40 3092.60 3137.46 3071.46 3089.03

Std 0.46 24.99 19.19 41.66 0.95 2.78 210.37 0.78 1.05

f28 Ave 3100.00 3315.89 3320.70 3459.45 3092.80 3210.58 3397.58 3266.65 3154.35

Std 6.34E-05 121.84 126.35 33.84 61.60 113.17 131.30 22.26 110.92

f29 Ave 3146.26 3203.06 3253.51 3449.28 3190.48 3214.18 3213.54 3142.84 3134.92

Std 12.80 52.26 81.99 171.08 23.37 51.69 109.79 12.89 3.87

f30 Ave 3414.92 3.5E+05 5.3E+05 9.4E+05 7038.71 4.2E+05 3.0E+05 3201.06 3418.38

Std 26.81 5.1+05 6.3E+05 3.6E+05 3599.19 5.7E+05 4.4E+05 0.31 22.86

24

Friedman mean rank 2.60 5.74 7.14 7.76 4.03 6.67 6.34 2.71 2.00

Rank 2 5 8 9 4 7 6 3 1

6.6 Statistical Analysis of MPA
This section entails performing multiple statistical analysis, including Friedman, Bonferroni-Dunns and

Holm’s test, of MPA with respect to its other competitors. A simple non-parametric Friedman test showed

that there is a statistically significant difference between the performance of the algorithms. In order to have

a reliable test, this study categorized the benchmark functions into three groups. The first group is composed

of functions shown in Table 2 which includes uni-modal, multimodal and composition functions. The

second group is the class of CEC-BC-2017 functions shown in Table 3 and the third group is the

combination of the first and second groups. After demonstrating significant differences among performance

of different algorithms, there is a need to find out that which algorithms’ performance are significantly

different than MPA. Therefore, this study ran a post hoc statistical analysis of Bonferroni-Dunn. This test

demonstrates that there is a significant difference in performance between two algorithms if the difference

in average ranking of methods is greater than the critical difference (CD). MPA is considered as the control

algorithm. Error! Reference source not found. shows the average ranking of each method in three groups

of functions with two significance level of 0.1, 0.05. MPA is able to significantly outperform those

algorithms whose average ranking is above the threshold line depicted in the figure. The threshold line of

each group is identified by its color. As it is observable from the figure, MPA is ranked second with a very

small difference in ranking following LSHADE-cnEpSin. It is possible to nominate both algorithms as a

joint winner in this group, but strictly speaking, MPA ranked second in this group and could significantly

outperform PSO, GA, GSA, CS, SSA and CMA-ES for both significance level of 0.1 and 0.05. For Group

2, EO was again ranked as second after LSHADE-cnEpSin and could significantly outperform PSO, GA,

GSA, SSA, and CMA-ES. Finally, in group three, evaluating the performance of all functions, MPA ranked

as the second-best performing algorithm among all its competitors with an average ranking of 2.59. The

first rank in this class is achieved by LSHADE- cnEpSin with average ranking of 2.25. Again, in this class,

MPA were able to show significantly better performance than all algorithms except SHADE and LSHADE-

cnEpSin. Unfortunately, Bonferroni-Dunns test cannot specify the difference among the algorithms which

their average ranks are below the threshold line. So, we tried another advanced post hoc analysis of Holm’s

test to first distinguished if there is a significant difference among the methods which placed below the

threshold line and second confirms the Bonferroni-Dunns test results. Holm’s method starts with sorting

all algorithms based on their p-value and then compare it with the index of 𝛼 𝑘 − 𝑖⁄ , where 𝛼 is significance

level, k is the degree of freedom and i is the algorithm number. The method sequentially rejects null

hypothesis starting from the most significant p-value as long as 𝑝𝑖 < 𝛼 𝑘 − 𝑖⁄ . The algorithm stops as soon

as the condition is not satisfied while considering all the remaining hypotheses as accepted. The results for

group 1 in Table 4 confirm the Bonferroni-Dunns test results for both significance levels and also shows

that there is no significance difference among the performance of MPA, SHADE, and LSHADE-cnEpSin.

For group 2 functions, Table 5 confirms that MPA has significantly superior performance than PSO, GA,

GSA, SSA, CMA-ES at both levels while its performance is similar to CS, SHADE, and LSHADE-

cnEpSin. And finally, for all functions in group 3, shown in Table 6, Holm’s test showed that MPA’s

performance is significantly better than PSO, GA, GSA, CS, SSA, CMA-ES while its performance is

similar to SHADE and LSHADE- cnEpSin at both levels. To summarize this section, based on Figure 9 we

can clearly observe that how MPA shows a reliable and confident behavior in all three groups of functions

compared to other methods even high performance optimizer. The average ranking of MPA in all three

groups is very close to each other demonstrating a reliable performing while other methods have unstable

behavior in different groups of functions in terms of ranking.

25

Figure 10. Bonferroni-Dunn’s test for different methods and groups with 𝛼 = 0.05 and 𝛼 = 0.1

Table 4. Holm’s statistical test for group 1 of functions (Control algorithm: MPA)
MPA vs. rank 𝓏-value p-value 𝛼/𝑘 − 𝑖 (0.05) 𝛼/𝑘 − 𝑖 (0.1)

GA 6.82758 5.92137 3.86E-08 0.00625 0.0125

SSA 6.36206 5.27409 1.45E-06 0.00714 0.0142

PSO 6.25862 5.13025 3.08E-06 0.00833 0.0166

CS 6.00000 4.77066 1.83E-05 0.01 0.02

GSA 5.58620 4.19530 3.37E-05 0.0125 0.025

CMA-ES 5.00000 3.38021 7.24E-04 0.0166 0.0333

SHADE 3.87931 1.82196 6.85E-02 0.025 0.05

LSHADE-cnEpSin 2.51724 -0.07192 9.42E-02 0.05 0.1

Table 5. Holm’s statistical test for group 2 of functions (Control algorithm: MPA)
MPA vs. rank 𝓏-value p-value 𝛼/𝑘 − 𝑖 (0.05) 𝛼/𝑘 − 𝑖 (0.1)

GSA 7.75862 7.16797 1.09E-11 0.00625 0.0125

GA 7.13793 6.30494 3.68E-09 0.00714 0.0142

SSA 6.67241 5.65766 1.78E-07 0.00833 0.0166

CMA-ES 6.34482 5.20217 2.12E-06 0.01 0.02

PSO 5.74137 4.36311 1.62E-05 0.0125 0.025

CS 4.03448 1.98977 4.66E-02 0.0166 0.0333

LSHADE-cnEpSin 2.00000 -0.83906 4.01E-01 0.025 0.05

SHADE 2.70689 0.14383 8.86E-01 0.05 0.1

Table 6. Holm’s statistical test for group 3 of functions (Control algorithm: MPA)
MPA vs. rank 𝓏-value p-value 𝛼/𝑘 − 𝑖 (0.05) 𝛼/𝑘 − 𝑖 (0.1)

GA 6.98275 6.10117 1.31E-08 0.00625 0.0125

GSA 6.67241 5.66965 1.66E-07 0.00714 0.0142

SSA 6.51724 5.45389 5.54E-07 0.00833 0.0166

PSO 6.00000 4.73470 2.17E-05 0.01 0.02

CMA-ES 5.67241 4.27921 2.35E-05 0.0125 0.025

CS 5.01724 3.36823 7.56E-04 0.0166 0.0333

SHADE 3.29310 0.97091 3.32E-01 0.025 0.05

LSHADE-cnEpSin 2.25000 -0.47946 6.32E-01 0.05 0.1

2.57 6.26 6.83 5.59 6.00 6.36 5.00 3.88 2.52

2.60

5.74

7.14
7.76

4.03

6.67 6.34

2.71
2.00

2.59

6.00

6.98
6.67

5.02

6.52

5.67

3.29

2.25

0

1

2

3

4

5

6

7

8

9
A

ve
ra

ge
 r

an
k

Control Algorithm: MPA

Group 1

Group 2

Group 3

CD=1.79 (α=0.1)
CD=1.96 (α=0.05)

CD=1.79 (α=0.1)
CD=1.96 (α=0.05)

CD=1.27 (α=0.1)
CD=1.39 (α=0.05)

26

6.7 Scalability analysis of MPA
This section evaluates the performance of the proposed MPA method in high dimensional

problems using scalability analysis with respect to other methods. In order to have a concise and

efficient comparison, the test is conducted with two functions from group of 1 and two functions

from group 2. The first functions from each category of unimodal (TF1) and multimodal (TF8) of

group 1 is selected for the test. Since the fix-dimensional and composition test functions from

group 1 are specifically designed for a fix dimension, we cannot use them for scalability analysis.

For group 1 of functions, the algorithm starts from 100 to 500 dimensions with step size of 100.

From group 2 we selected the first functions of hybrid (f11) and composition function (f21). The

group 2 functions are only designed for the dimension of 10, 20, 30, 50 and 100 so we are only

able to conduct the analysis in these dimensions. The maximum number of function evaluations is

considered fixed for each group similar to their original test conditions; 25,000 for group 1 and

50,000 for group 2 with 30 independent runs.

Figure 11 shows the performance of methods as the dimension increase. X-axis shows the

dimension and Y-axis shows the average fitness calculated from different runs. In Figure 11 (a),

MPA showed the best performance in TF1 compared to others with achieving the lowest average

fitness as the dimension increase. In TF8 Figure 11 (b), all methods followed an almost linear

pattern with different slopes. As it is observable, MPA ranked third in most dimensions following

CMAES and GA. In Figure 11 (c), f11, most methods have almost similar behavior till dimension

50 except GA and GSA, but in the last dimension of 100, the performance of each method became

more obvious. In this dimension, EO ranked as the third-best performing method following the

best methods as LSHADE-cnEpSin and SHADE. In the last function, f21, MPA again get the third

place after CMAES and LSHADE-cnEpSin which ranked first and second respectively. It is

interesting to know that these ranks are more or less similar to what MPA could obtain compared

to other methods in its numerical evaluation. This behavior clearly demonstrates that MPA is a

reliable algorithm and its performance remains high and very competitive to CEC competition

winners dealing the high dimensional problems with a limited budget.

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

8.0E+04

9.0E+04

100 200 300 400 500

A
ve

ra
ge

 f
it

n
es

s

Dimension

TF1 (a)
MPA

PSO

GA

GSA

CS

SSA

CMAES

SHADE

LSHADE-cnEpSin

-1.2E+05

-1.0E+05

-8.0E+04

-6.0E+04

-4.0E+04

-2.0E+04

0.0E+00

100 200 300 400 500

A
ve

ra
ge

 f
it

n
es

s

Dimension

TF8 (b)

MPA
PSO
GA
GSA
CS
SSA
CMAES
SHADE
LSHADE-cnEpSin

27

Figure 11. Scalability analysis of different methods

7. Engineering design problems
This section assesses the performance of MPA in real-world problems using constrained

engineering benchmarks. The engineering problem includes pressure vessel design, welded beam

design, and tension/compression spring design along with a practical engineering example. A

simple method of death penalty is employed here to convert the constrained problems into the

unconstrained ones. Similar to the mathematical test functions, during the solution of the

engineering design problems, MPA uses the same number of iteration (500), maximum function

evaluation (25,000) and run (30) unless it is reported differently. The mathematical formulation of

the problem can be found in (Mirjalili et al., 2014).

7.1 Pressure vessel design
This problem is one of the widely used mixed-integer design problems. The objective is to

minimize the total cost of welding, material, and forming of the pressure vessel shown in Figure

12. The design variables include the thickness of the shell (Ts), the thickness of the head (Th), the

inner radius (R), and the length of the cylindrical section of the vessel (L). Based on the ASME

boiler code requirement, the available thickness for the shell (Ts) and head (Th) are integer

multiples of 0.0625 inch. It should be noted that some literature reported the results in continuous

optimization.

Figure 12. Pressure vessel

Existing researchers have investigated this problem with various metaheuristic algorithms such as

GA (Bernardino, Barbosa, Lemonge, & Fonseca, 2008), PSO (Q. He & Wang, 2007), ES (Efrén

Mezura-Montes & Coello, 2008), HS (Lee & Geem, 2005), and DE (Huang, Wang, & He, 2007).

Table 7 shows the optimum results achieved by MPA and its comparison to those of other methods

1.0E+03

1.0E+04

1.0E+05

10 30 50 100

A
ve

ra
ge

 f
it

n
es

s

Dimension

f11 (c)
MPA

PSO

GA

GSA

CS

SSA

CMAES

SHADE

LSHADE-cnEpSin

2.1E+03

2.6E+03

3.1E+03

3.6E+03

4.1E+03

4.6E+03

5.1E+03

10 30 50 100

A
ve

ra
ge

 f
it

n
es

s

Dimension

f21 (d)

MPA

PSO

GA

GSA

CS

SSA

CMAES

SHADE

LSHADE-cnEpSin

28

while Table 8 includes the associated statistical results. Since a couple of studies have considered

the problem as continuous, the results achieved by MPA are shown in both mixed-integer and

continuous. Inspecting the results in Table 7, it is evident that MPA is able to outperform other

methods by achieving the lowest total cost among others. Interestingly, while MPA terminated the

optimization in 25,000 function evaluation, the statistical results reported in Table 8 is better

compared to other methods. Overall, the results of this study show the effectiveness and efficiency

of MPA to solve this problem.

Table 7. Optimum results of pressure vessel problem by different algorithms

Algorithm 𝑇𝑠(𝑥1) 𝑇ℎ(𝑥2) 𝑅(𝑥3) 𝐿(𝑥4) 𝑓𝑐𝑜𝑠𝑡

GSA 1.1250000 0.625000 55.9886598 84 .4542025 8538 .8359

HS (Lee & Geem,

2005)

1.125 0.625 58.2789 43.7549 7198.433

HGA(2) (Bernardino

et al., 2008)

1.1250 0.5625 58.1267 44.5941 6832.583

GeneAS (Deb, 1997) 0.9375000 0.500000 48.329000 112.679000 6410.3811

T-Cell (Aragón,

Esquivel, & Coello,

2010)

0.8125 0.4375 42.098429 190.787695 6390.554

SBM (Akhtar, Tai, &

Ray, 2002)

0.8125 0.4375 41.9768 182.2845 6171.000

HGA(1) (Bernardino

et al., 2008)

0.8125 0.4375 42.0492 177.2522 6065.821

CPSO (Q. He &

Wang, 2007)

0.8125 0.4375 42.091266 176.746500 6061.0777

BFOA (Montes &

Ocana, 2008)

0.8125 0.4375 42.096394 176.683231 6060.460

HAIS-GA (C. A. C.

Coello & Cortés,

2004)

0.8125 0.4375 42.0931 176.7031 6060.367

DTS-GA (C. Coello &

Montes, n.d.)

0.8125 0.4375 42.097398 176.654047 6059.9463

ES (Efrén Mezura-

Montes & Coello,

2008)

0.8125 0.4375 42.098087 176.640518 6059.745

CDE (Huang et al.,

2007)

0.8125 0.4375 42.098411 176.637690 6059.7340

MPA (Mixed-integer) 0.8125 0.4375 42.098445 176.636607 6059.7144

MPA (Continuous) 0.77816876 0.38464966 40.31962084 199.9999935 5885.3353

Table 8. Statistical results of pressure vessel problem by different algorithms

Algorithm Best Mean Worst Std Eval, No

HGA(2) (Bernardino

et al., 2008)

6832.584 7187.314 8012.615 276 80,000

T-Cell (Aragón et al.,

2010)

6390.554 6737.065 7694.066 357 80,000

SBM (Akhtar et al.,

2002)

6171.00 6335.05 6453.65 N.A 12,630

HGA(1) (Bernardino

et al., 2008)

6065.821 6632.376 8248.003 515 80,000

CPSO (Q. He &

Wang, 2007)

6061.0777 6147.1332 6363.8041 86.4545 200,000

BFOA (Montes &

Ocana, 2008)

6060.460 6074.625 N.A 156 48,000

HAIS-GA (C. A. C.

Coello & Cortés,

2004)

6061.1229 6743.0848 7368.0602 457.99 150,000

DTS-GA (C. Coello &

Montes, n.d.)

6059.9463 6177.2532 6469.322 130.92 80,000

ES (Efrén Mezura-

Montes & Coello,

2008)

6059.746 6850.00 7332.87 426 25,000

29

CDE (Huang et al.,

2007)

6059.7340 6085.2303 6371.0455 43.013 240,000

MPA 6059.7144 6102.8271 6410.0929 106.61 25,000

7.2 Welded beam design
The second example to evaluate the performance of MPA in the engineering domain is a well-

known welded beam design shown in Figure 13. The objective is to find the best design variables

to minimize the total fabrication cost of a welded beam subject to shear stress(𝜏), bending

stress(𝜎), buckling load(𝑃𝑐), deflection (𝛿) and other constraints. Considering 𝑥1 = ℎ, 𝑥2 = 𝑙,
𝑥3 = 𝑡, 𝑥4 = 𝑏, as design variables, the mathematical formulation is expressed as follows:

Figure 13. Welded beam

Existing studies have investigated this problem: (i) Atiqullah and Rao (Atiqullah & Rao, 2000)

utilized SA; (iii) He and Prempain (S. He, Prempain, & Wu, 2004) deployed PSO method; (iv)

Zhang et al. (M. Zhang, Luo, & Wang, 2008) used DE. Table 9 compares the optimum results by

MPA with those obtained by different algorithms documented in the literature. It is seen that the

best solution achieved by MPA is better than those quoted for other methods. The corresponding

statistical results reported in Table 10 also validate the extensive exploration ability of MPA in

which the best, mean, worst and standard deviation (Std) of MPA are reported far better than other

literature. The significantly low standard deviation achieved by MPA proves that the proposed

algorithm is more robust than other optimization methods.

Table 9. Optimum results of welded beam problem by different algorithms
Algorithm ℎ(𝑥1) 𝑙(𝑥2) 𝑡(𝑥3) 𝑏(𝑥4) 𝑓𝑐𝑜𝑠𝑡

SBM (Akhtar et al.,

2002)

0.2407 6.4851 8.2399 0.2497 2.4426

SA (Atiqullah &

Rao, 2000)

0.2471 6.1451 8.2721 0.2495 2.4148

BFOA (Montes &

Ocana, 2008)

0.2057 3.4711 9.0367 0.2057 2.3868

SCA (Ray & Liew,

2003)

0.2444 6.2380 8.2886 0.2446 2.3854

EA (J. Zhang,

Liang, Huang, Wu,

& Yang, 2009)

0.2443 6.2201 8.2940 0.2444 2.3816

T-Cell (Aragón et

al., 2010)

0.2444 6.1286 8.2915 0.2444 2.3811

FSA (Hedar &

Fukushima, 2006)

0.2444 6.1258 8.2939 0.2444 2.3811

IPSO (S. He et al.,

2004)

0.2444 6.2175 8.2915 0.2444 2.3810

30

DSS-DE (M. Zhang

et al., 2008)

0.2444 6.1275 8.2915 0.2444 2.3810

HS (Lee & Geem,

2005)

0.2442 6.2231 8.2915 0.2443 2.3807

HSA-GA (Hwang &

He, 2006)

0.2231 1.5815 12.8468 0.2245 2.2500

GSA 0.182129 3.856979 10.0000 0.202376 1.879952

RO (A. Kaveh &

Khayatazad, 2012)

0.203687 3.528467 9.004233 0.207241 1.735344

CDE (Huang et al.,

2007)

0.203137 3.542998 9.033498 0.206179 1.733462

CPSO (Q. He &

Wang, 2007)

0.202369 3.544214 9.048210 0.205723 1.728024

MPA 0.205728 3.470509 9.036624 0.205730 1.724853

Table 10. Statistical results of welded beam problem by different algorithms
Algorithm Best Mean Worst Std Eval, No

SBM (Akhtar et al.,

2002)

2.4426 2.5215 2.6315 N.A 19,259

BFOA (Montes &

Ocana, 2008)

2.3868 2.4040 N.A 0.016 48,000

SCA (Ray & Liew,

2003)

2.3854 3.2551 6.3996 0.9590 33,095

EA (J. Zhang et al.,

2009)

2.3816 N.A 2.38297 0.00034 28,897

T-Cell (Aragón et

al., 2010)

2.3811 2.4398 2.7104 0.09314 320,000

FSA (Hedar &

Fukushima, 2006)

2.3811 2.4041 2.4889 N.A 56,243

IPSO (S. He et al.,

2004)

2.3810 2.3819 N.A 0.00523 30,000

HSA-GA (Hwang &

He, 2006)

2.2500 2.26 2.28 0.0078 26,466

RO (A. Kaveh &

Khayatazad, 2012)

1.735344 1.9083 N.A 0.173744 8,000

CDE (Huang et al.,

2007)

1.733461 1.768158 1.824105 0.022194 240,000

CPSO (Q. He &

Wang, 2007)

1.728024 1.748831 1.782143 0.012926 200,000

MPA 1.724853 1.724861 1.724873 6.41E-06 25,000

7.3 Tension/compression spring design
The objective of this problem is to find the minimum weight of a tension/compression spring

illustrated in Figure 14. The optimization constraints are defined as minimum deflection, shear

stress and surge frequency along with design variables including wire diameter(𝑑), mean coil

diameter (𝐷) and number of active coils(𝑁). The mathematical formulation of the problem is as

follows:

Figure 14. Tension/compression spring design

31

This problem has been solved by GA (Coello Coello, 2000), Evolution Strategy (ES) (E. Mezura-

Montes & Coello, 2005), PSO (Q. He & Wang, 2007) and Differential Evolution (DE) (Huang et

al., 2007). Table 11 presents the optimum design and corresponding cost function (weight)

obtained by MPA and other algorithms. It can be seen that again MPA was able to get the best

results among other methods.

Table 11. Optimum results of spring design problem by different algorithms
Algorithm 𝑑(𝑥1) 𝐷(𝑥2) 𝑁(𝑥3) 𝑓𝑐𝑜𝑠𝑡

GA(1) (Coello Coello,

2000)

0.051480 0.351661 11.632201 0.012704

CA (C. A. C. Coello &

Becerra, 2004)

0.050000 0.317395 14.031795 0.012721

GSA 0.050276 0.323680 13.525410 0.012702

GA(2) (Coello Coello &

Mezura Montes, 2002)

0.051989 0.363965 10.890522 0.012681

ES (E. Mezura-Montes &

Coello, 2005)

0.051643 0.355360 11.397926 0.012698

CPSO (Q. He & Wang,

2007)

0.051728 0.357644 11.244543 0.012674

BFOA (Montes & Ocana,

2008)

0.051825 0.359935 11.107103 0.012671

CDE (Huang et al., 2007) 0.051609 0.354714 11.410831 0.012670

SCA (Ray & Liew, 2003) 0.052160 0.368159 10.648442 0.012669

HGA (Bernardino,

Barbosa, & Lemonge,

2007)

0.051302 0.347475 11.852177 0.012668

PFA (Yapici &

Cetinkaya, 2019)

0.051726 0.357629 11.235724 0.012665

T-Cell (Aragón et al.,

2010)

0.051622 0.355105 11.384534 0.012665

MPA 0.051724477 0.35757003 11.2391955 0.012665

The statistical information regarding the design process of each method is illustrated in Table 12.

Based on the table, MPA again outperformed other methods regarding best, mean, worst and

standard deviation. MPA required only 25,000 function evaluations to accomplish the optimization

which highlights the high efficiency of the proposed algorithm.

Table 12. Statistical results of spring design problem by different algorithms
Algorithm Best Mean Worst Std Eval, No

GA(1) (Coello

Coello, 2000)

0.012704 0.012769 0.012822 3.93E-05 N/A

CA (C. A. C. Coello

& Becerra, 2004)

0.012721 0.013568 0.0151156 8.4E-04 50,000

GA(2) (Coello

Coello & Mezura

Montes, 2002)

0.012681 0.012742 0.012973 9.5E-05 80,000

CPSO (Q. He &

Wang, 2007)

0.012674 0.012730 0.012924 5.19E-05 200,000

BFOA (Montes &

Ocana, 2008)

0.012671 0.012759 N/A 1.36E-04 48,000

CDE (Huang et al.,

2007)

0.012670 0.012703 0.012790 2.07E-05 240,000

SCA (Ray & Liew,

2003)

0.012669 0.012922 0.016717 5.92E-04 25,167

HGA (Bernardino et

al., 2007)

0.012668 0.013481 0.016155 N/A 36,000

T-Cell (Aragón et

al., 2010)

0.012665 0.013309 0.012732 9.4E-05 36,000

MPA 0.012665 0.012665 0.012665 5.55E-08 25,000

32

7.4 Operating fan schedule for demand-controlled ventilation
This section considers a practical example of a two-zone retail store equipped with supply and

exhaust fan for ventilation purposes to further challenge the MPA performance in real-world

optimization. The objective is to minimize the fan energy consumption using demand control

ventilation under the constraints of airflow and zone CO2 concentration. Based on the affinity law

in ventilation studies, the power draw of a fan is proportional to the cube of its flow rate. The fans

are actuated based on a signal received from Variable Frequency Drives (VFDs) to regulate the

airflow while keeping the CO2 concentration under the defined threshold. Error! Reference

source not found. shows the schematic of a small store and its associated occupancy schedule.

Two zones are considered here as “enter” and “exit” zones having a dimension of 5m length, 5m

width, and 3m height.

(a) (b)

Figure 15. Retail store schematic (a) and its occupancy schedule (b)

The objective function of the problem is defined as the energy consumption of operating fans for

the period of one hour. Q (𝑚3 min)⁄ and W (Watt) are the airflow and power draw. There is a

reference condition for operating fans of which the power draw is calculated for other magnitudes

of airflows. This reference condition is considered as the airflow and its associated power draw at

full motor capacity; 𝑄𝑟𝑒𝑓 = 6 (𝑚3 min)⁄ and 𝑊𝑟𝑒𝑓 = 46 (𝑊𝑎𝑡𝑡). CO2 concentration in each zone

is calculated using the mass-balance equation presented by a simple ODE.

𝑑𝐶

𝑑𝑡
=

𝑄

𝑉
(𝐶𝑜𝑢𝑡 − 𝐶) +

𝐸

𝑉
 (17)

C stands for concentration (𝑚𝑔/𝑚3), t is a time in minute, V is the volume of each zone, 𝐶𝑜𝑢𝑡 is

outdoor CO2 concentration considered as 775(𝑚𝑔/𝑚3), E is the emission rate of CO2 due to

occupancy which is 𝐸 = 569.2 (𝑚𝑔 𝑚𝑖𝑛/𝑝𝑒𝑟𝑠𝑜𝑛)⁄ . Initial conditions for CO2 concentration are

assumed as 𝐶0 = 980 and 𝐶0 = 1,000 (𝑚𝑔/𝑚3) for exit and enter zones, respectively.

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑄⃗ = [𝑄1𝑄2 …𝑄60]

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑐𝑜𝑠𝑡(𝑄⃗) =
1

60
∑ ∑𝑊𝑟𝑒𝑓 (

𝑄

𝑄𝑟𝑒𝑓
)

3

 (18)

60

𝑖=1

𝐸𝑥ℎ𝑎𝑢𝑠𝑡

𝑠𝑢𝑝𝑝𝑙𝑦

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔1(𝑥) = 0 < 𝐶𝑒𝑛𝑡𝑒𝑟 , 𝐶𝑒𝑥𝑖𝑡 < 1960 (𝑚𝑔/𝑚3)

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 0 ≤ 𝑄1, … , 𝑄60 ≤ 6 𝑚3 𝑚𝑖𝑛⁄

33

Error! Reference source not found. presents the optimal operating fan schedule derived by MPA,

PSO, and GA. It is observable that in the optimal schedule achieved by GA and PSO, there are a

handful of abrupt changes in airflow during the operating period. These sudden changes in fan

motor speed will lead to structural problems, e.g., fatigue and failure, and will reduce the

performance of the fans in the long run. As Error! Reference source not found.(a) shows, MPA

proposes a smooth yet efficient schedule by increasing the motor speed uniformly compared to

PSO and GA methods illustrated in Error! Reference source not found.(b) and Error!

Reference source not found.(c).

(a) (b) (c)

Figure 16. Optimal operating fan schedule for MPA (a) PSO (b) and GA (c)

Table 13 shows the statistical results for fan energy consumption in Watt-hour. MPA could

outperform other methods by achieving a better energy efficient schedule while presenting more

reliable solutions by achieving a lower standard deviation.

Table 13. Statistical results for fan energy consumption in Watt-hour obtained by different methods
Algorithm Best Mean Worst Std Eval, No

MPA 49.29 50.11 52.00 0.66 15,000

PSO 52.10 55.75 58.97 2.21 15,000

GA 53.45 55.46 58.34 1.83 15,000

7.5 Building energy performance
This example deploys MPA in one of the common building science engineering problems to

minimize the total annual energy consumption of an office building. The energy consumption of a

blue shaded thermal zone is considered as a representative of an elongated office building located

in Chicago, IL. There are east and west windows associated with an external shading device which

is activated during summer when total solar irradiation exceeds 200 (𝑊 𝑚2)⁄ . Dimension and

geometry of office, windows and shading are shown in the figure. The zone has daylighting control

with illuminance set-point of 500 lux. Ideal load air systems as selected for the Heating,

Ventilation, and Air-Conditioning (HVAC) system meaning that the loads (heating and cooling)

are assumed to be met in each time step of the simulation. Heating and cooling set-points are

adjusted as 20°C and 25°C, respectively. Exterior walls have a U-value of 0.25 (𝑊 𝑚2⁄ 𝑘) with

10 cm of foam insulation defined for the baseline case. Detailed information about the construction

and materials can be found in (Wetter, 2004).

34

Figure 17. Schematic of the office building

The objective function is considered as annual source energy consumption of the typical office

room presented as:

 𝑓𝑐𝑜𝑠𝑡(𝑥) =
𝑄ℎ(𝑥)

𝜂ℎ
+

𝑄𝑐(𝑥)

𝜂𝑐
+ 𝛼𝐸𝑙(𝑥) (19)

𝑄ℎ , 𝑄𝑐 are the annual heating, cooling load and 𝐸𝑙 is the electricity consumption for the zone under

study. 𝜂ℎ = 0.44, 𝜂𝑐 = 0.77 are typical plant efficiencies. 𝛼 = 3 is the factor that converts the site

electricity to fuel energy consumption. The design variables and lower and upper bounds are

shown in Table 14. The optimization was accomplished with 10 search agents and 100 iterations

due to high computational run time the average results are achieved by 10 runs.

Table 14. Building energy performance optimization variables and their related thresholds
Variables Units (SI) Notations Lower bound Upper bound

Orientation degree 𝑥1 0 360
Shading solar transmittance dimensionless 𝑥2 0 0.9

West window length meter 𝑥3 0 5.9

East window length meter 𝑥4 0 5.9

Insulation thickness meter 𝑥5 0.01 0.5

Insulation conductivity watts/(meter-kelvin) 𝑥6 0.01 1

Glazing solar transmittance dimensionless 𝑥7 0 0.28

Table 15 presents the annual source energy consumption for the office building achieved by MPA,

PSO, and GA. Comparing the best, mean and standard deviation results shows that MPA and GA

reach almost the same results in this example, which is better than that of PSO.

Table 15. Source energy consumption (Joule) and its statistical results obtained by different methods
Algorithm Best Mean Worst Std Eval, No

MPA 4.48E10 4.49E10 4.51E10 8.92E07 1000

PSO 4.64E10 4.95E10 5.38E10 2.51E09 1000

GA 4.48E10 4.48E10 4.51E10 9.92E07 1000

The solution associated with the best design for each optimization method is brought in Table 16.

Since MPA and GA reached almost the same energy consumption, the optimal design variables

should be close to each other as well. Referring to Table 16, the MPA and GA design parameters

are the same with 180° difference in orientation in which the west window in MPA’s design can

be considered as the east window in GA’s design.

35

Table 16. Optimal solutions for building energy performance example obtained by different methods
Variables MPA PSO GA

Orientation 85.96 258.3 265.9
Shading solar transmittance 0 0.3 0

West window length 5.9 4.26 4.49
East window length 4.51 5.08 5.9

Insulation thickness 0.45 0.48 0.5
Insulation conductivity 0.01 0.11 0.01

Glazing solar transmittance 0.28 0.18 0.28

It is important to note that EnergyPlus (EnergyPlus, 2015) and jEplus (Y. Zhang, 2009) are

employed as a simulation engine and interface. The simplified client-server architecture for this

example is shown in Figure 18. Summarily, jEplus acts as a middleware platform which uses

EnergyPlus engine for simulation. Optimizer receives output file containing energy consumption

as objective function and design variables from EnergyPlus, then it optimizes the solution, and

write different inputs files for jEplus. The loop is continued until the optimizer terminates the

process based on its defined criterion. The results of this engineering optimization co-simulation

have implications for the future design of energy-efficient buildings.

Figure 18. Client-server architecture of co-simulation for building energy performance

8. Conclusion
This paper proposed a novel and real nature-inspired optimization method, called Marine Predator

Algorithm (MPA). The source of inspiration was based on different foraging strategy among ocean

predators and optimal encounter rates policy in biological interaction. Lévy and Brownian motion

are two types of strategies chosen by marine predators for optimal foraging. Based on the

movement type and velocity of prey there is an optimal movement policy for a predator (Lévy or

Brownian) in a way that maximizes its encounter rate with prey. From the movement point of view

and in MPA, the lifetime of a predator with respect to prey was divided into three phases of (i)

when the predator was moving faster than prey, (ii) when prey was moving faster than predator,

and (iii) when both were moving at almost the same pace. In each phase, the optimal movement

policy was attributed to predator to specify the step size taken to reach prey. The design of MPA

mimics the rules and behavior of marine predator’s foraging strategy to possibly present a real

nature-inspired metaheuristic which its mathematical model is as close as to its natural model.

MPA’s performance was evaluated against exploration, exploitation and local minima avoidance

with 58 mathematical benchmark functions and the results were compared to those of three classes

of optimization methods. i) GA and PSO as the most well-known and traditional optimization

methods ii) GSA, CS and SSA as an almost recently developed metaheuristics and iii) CMA-ES,

36

SHADE, and LSHADE-cnEpSin as the high performance optimizers. The comprehensive post hoc

analysis revealed that MPA is a significantly better optimizer than PSO, GA, GSA, CS, SSA and

CMEAS, and its performance is statistically similar to SHADE and LSHADE-cnEpSin. To further

challenge the performance of the proposed algorithm, MPA was also applied to three engineering

benchmarks and two real-world design tasks. In engineering benchmarks, MPA obtained better or

equal solutions with low computational cost compared to other methods. Thus, MPA proves its

ability to present the most effective design and efficient statistical results compared to other

methods.

The simplicity, ease of application along with its effective and efficient results can highlight the

MPA as an alternative optimization algorithm to classical methods. Solving other optimization

problems in different disciplines is recommended for more evaluation of MPA. Since MPA is a

velocity-based algorithm developing a binary and multi-objective version of MPA would be a

valuable contribution.

References
Akhtar, S., Tai, K., & Ray, T. (2002). A socio-behavioural simulation model for engineering

design optimization. Engineering Optimization, 34(4), 341–354.

https://doi.org/10.1080/03052150212723

Aragón, V. S., Esquivel, S. C., & Coello, C. A. C. (2010). A modified version of a T-Cell

Algorithm for constrained optimization problems. International Journal for Numerical

Methods in Engineering, 84(3), 351–378. https://doi.org/10.1002/nme.2904

Atiqullah, M. M., & Rao, S. S. (2000). Simulated Annealing and Parallel Processing: An

Implementation for Constrained Global Design Optimization. Engineering Optimization,

32(5), 659–685. https://doi.org/10.1080/03052150008941317

Awad, N H, Ali, M. Z., Suganthan, P. N., Liang, J. J., & Qu, B. Y. (2017). Problem Definitions

and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single

Objective Real-Parameter Numerical Optimization. 2017 IEEE Congress on

Evolutionary Computation (CEC).

Awad, Noor H., Ali, M. Z., & Suganthan, P. N. (2017). Ensemble sinusoidal differential

covariance matrix adaptation with Euclidean neighborhood for solving CEC2017

benchmark problems. 2017 IEEE Congress on Evolutionary Computation (CEC), 372–

379. https://doi.org/10.1109/CEC.2017.7969336

Bartumeus, F., Catalan, J., Fulco, U. L., Lyra, M. L., & Viswanathan, G. M. (2002). Optimizing

the encounter rate in biological interactions: Lévy versus Brownian strategies. Physical

Review Letters, 88(9), 097901. https://doi.org/10.1103/PhysRevLett.88.097901

37

Bartumeus, Frederic. (2007). Lévy processes in animal movement: an evolutionary hypothesis.

Fractals, 15(02), 151–162. https://doi.org/10.1142/S0218348X07003460

Bartumeus, Frederic, da Luz, M. G. E., Viswanathan, G. M., & Catalan, J. (2005). Animal

Search Strategies: A Quantitative Random-Walk Analysis. Ecology, 86(11), 3078–3087.

https://doi.org/10.1890/04-1806

Bernardino, H. S., Barbosa, H. J. C., & Lemonge, A. C. C. (2007). A hybrid genetic algorithm

for constrained optimization problems in mechanical engineering. 2007 IEEE Congress

on Evolutionary Computation, 646–653. https://doi.org/10.1109/CEC.2007.4424532

Bernardino, H. S., Barbosa, H. J. C., Lemonge, A. C. C., & Fonseca, L. G. (2008). A new hybrid

AIS-GA for constrained optimization problems in mechanical engineering. 2008 IEEE

Congress on Evolutionary Computation (IEEE World Congress on Computational

Intelligence), 1455–1462. https://doi.org/10.1109/CEC.2008.4630985

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge, U.K.: Cambridge

University Press.

Clark, E. (1959). Instrumental Conditioning of Lemon Sharks. Science, 130(3369), 217–218.

https://doi.org/10.1126/science.130.3369.217-a

Coello, C. A. C., & Becerra, R. L. (2004). Efficient evolutionary optimization through the use of

a cultural algorithm. Engineering Optimization, 36(2), 219–236.

https://doi.org/10.1080/03052150410001647966

Coello, C. A. C., & Cortés, N. C. (2004). Hybridizing a genetic algorithm with an artificial

immune system for global optimization. Engineering Optimization, 36(5), 607–634.

https://doi.org/10.1080/03052150410001704845

Coello, C., & Montes, E. (n.d.). Use of dominance-based tournament selection to handle

constraints in genetic algorithms. Intelligent Engineering Systems through Artificial

Neural Networks (ANNIE2001), 11, 177–182. St. Louis, Missouri: ASME press.

Coello Coello, C. A. (2000). Use of a self-adaptive penalty approach for engineering

optimization problems. Computers in Industry, 41(2), 113–127.

https://doi.org/10.1016/S0166-3615(99)00046-9

Coello Coello, C. A., & Mezura Montes, E. (2002). Constraint-handling in genetic algorithms

through the use of dominance-based tournament selection. Advanced Engineering

Informatics, 16(3), 193–203. https://doi.org/10.1016/S1474-0346(02)00011-3

38

Deb, K. (1997). GeneAS: A Robust Optimal Design Technique for Mechanical Component

Design. In Evolutionary Algorithms in Engineering Applications (pp. 497–514).

https://doi.org/10.1007/978-3-662-03423-1_27

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational

Intelligence Magazine, 1(4), 28–39. https://doi.org/10.1109/MCI.2006.329691

Dugatkin, L. A., & Wilson, D. S. (1992). The prerequisites for strategic behaviour in bluegill

sunfish, Lepomis macrochirus. Animal Behaviour, 44(Part 2), 223–230.

https://doi.org/10.1016/0003-3472(92)90028-8

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. , Proceedings

of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS

’95, 39–43. https://doi.org/10.1109/MHS.1995.494215

Einstein, A. (1956). Investigations on the Theory of the Brownian Movement. New York: Dover.

EnergyPlus (Version 8.0.1). (2015). U.S. Department of Energy (DOE).

Faramarzi, A., & Afshar, M. H. (2012). Application of cellular automata to size and topology

optimization of truss structures. Scientia Iranica, 19(3), 373–380.

https://doi.org/10.1016/j.scient.2012.04.009

Faramarzi, A., & Afshar, M. H. (2014). A novel hybrid cellular automata–linear programming

approach for the optimal sizing of planar truss structures. Civil Engineering and

Environmental Systems, 31(3), 209–228. https://doi.org/10.1080/10286608.2013.820280

Filmalter, J. D., Dagorn, L., Cowley, P. D., & Taquet, M. (2011). First Descriptions of the

Behavior of Silky Sharks, Carcharhinus Falciformis, Around Drifting Fish Aggregating

Devices in the Indian Ocean. Bulletin of Marine Science, 87(3), 325–337.

https://doi.org/10.5343/bms.2010.1057

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm.

Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.

https://doi.org/10.1016/j.cnsns.2012.05.010

Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003). Reducing the Time Complexity of the

Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evol.

Comput., 11(1), 1–18. https://doi.org/10.1162/106365603321828970

39

He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for

constrained engineering design problems. Engineering Applications of Artificial

Intelligence, 20(1), 89–99. https://doi.org/10.1016/j.engappai.2006.03.003

He, S., Prempain, E., & Wu, Q. H. (2004). An improved particle swarm optimizer for

mechanical design optimization problems. Engineering Optimization, 36(5), 585–605.

https://doi.org/10.1080/03052150410001704854

Hedar, A.-R., & Fukushima, M. (2006). Derivative-Free Filter Simulated Annealing Method for

Constrained Continuous Global Optimization. Journal of Global Optimization, 35(4),

521–549. https://doi.org/10.1007/s10898-005-3693-z

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of

Michigan Press.

Huang, F., Wang, L., & He, Q. (2007). An effective co-evolutionary differential evolution for

constrained optimization. Applied Mathematics and Computation, 186(1), 340–356.

https://doi.org/10.1016/j.amc.2006.07.105

Humphries, N. E., Queiroz, N., Dyer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., …

Sims, D. W. (2010). Environmental context explains Lévy and Brownian movement

patterns of marine predators. Nature, 465(7301), 1066.

https://doi.org/10.1038/nature09116

Hwang, S. F., & He, R. S. (2006). A hybrid real-parameter genetic algorithm for function

optimization. Advanced Engineering Informatics, 20(1), 7–21.

https://doi.org/10.1016/j.aei.2005.09.001

Jain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for optimization:

Squirrel search algorithm. Swarm and Evolutionary Computation, 44, 148–175.

https://doi.org/10.1016/j.swevo.2018.02.013

Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray Optimization.

Computers & Structures, 112–113(Supplement C), 283–294.

https://doi.org/10.1016/j.compstruc.2012.09.003

Kaveh, Ali, & Bakhshipour, T. (2019). Metaheuristics: Outlines, MATLAB Codes and Examples

(1st ed.). Springer International Publishing.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.

Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671

40

Koza, J. R. (1992). Genetic Programming : On the programming of computers by means of

natural selection. MIT Press.

Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering

optimization: harmony search theory and practice. Computer Methods in Applied

Mechanics and Engineering, 194(36), 3902–3933.

https://doi.org/10.1016/j.cma.2004.09.007

Lera, D., & Sergeyev, Y. D. (2018). GOSH: derivative-free global optimization using multi-

dimensional space-filling curves. Journal of Global Optimization, 71(1), 193–211.

https://doi.org/10.1007/s10898-017-0589-7

Liang, J. J., Suganthan, P. N., & Deb, K. (2005). Novel composition test functions for numerical

global optimization. Swarm Intelligence Symposium, 68–75.

Liuzzi, G., Lucidi, S., & Piccialli, V. (2010). A partition-based global optimization algorithm.

Journal of Global Optimization, 48(1), 113–128. https://doi.org/10.1007/s10898-009-

9515-y

Mantegna, R. N. (1994). Fast, accurate algorithm for numerical simulation of L\’evy stable

stochastic processes. Physical Review E, 49(5), 4677–4683.

https://doi.org/10.1103/PhysRevE.49.4677

Mezura-Montes, E., & Coello, C. A. C. (2005). A simple multimembered evolution strategy to

solve constrained optimization problems. IEEE Transactions on Evolutionary

Computation, 9(1), 1–17. https://doi.org/10.1109/TEVC.2004.836819

Mezura-Montes, Efrén, & Coello, C. A. C. (2008). An empirical study about the usefulness of

evolution strategies to solve constrained optimization problems. International Journal of

General Systems, 37(4), 443–473. https://doi.org/10.1080/03081070701303470

Mirjalili, S., Dong, J. S., & Lewis, A. (2020). Nature-Inspired Optimizers; Theories, Literature

Reviews and Applications. Springer, Cham.

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017).

Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems.

Advances in Engineering Software, 114, 163–191.

https://doi.org/10.1016/j.advengsoft.2017.07.002

41

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in

Engineering Software, 69(Supplement C), 46–61.

https://doi.org/10.1016/j.advengsoft.2013.12.007

Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. dos S. (2016). Multi-objective grey wolf

optimizer: A novel algorithm for multi-criterion optimization. Expert Systems with

Applications, 47, 106–119. https://doi.org/10.1016/j.eswa.2015.10.039

Montes, E., & Ocana, B. (2008). Bacterial foraging for engineering design problems: preliminary

results. 4th Mexican Congress on Evolutionary Computation (COMCEV’2008), 33–38.

Mexico.

Parouha, R. P., & Das, K. N. (2016). A memory based differential evolution algorithm for

unconstrained optimization. Applied Soft Computing, 38(Supplement C), 501–517.

https://doi.org/10.1016/j.asoc.2015.10.022

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search

Algorithm. Information Sciences, 179(13), 2232–2248.

https://doi.org/10.1016/j.ins.2009.03.004

Ray, T., & Liew, K. M. (2003). Society and civilization: An optimization algorithm based on the

simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7(4),

386–396. https://doi.org/10.1109/TEVC.2003.814902

Reynolds, A. M., & Frye, M. A. (2007). Free-Flight Odor Tracking in Drosophila Is Consistent

with an Optimal Intermittent Scale-Free Search. PLOS ONE, 2(4), e354.

https://doi.org/10.1371/journal.pone.0000354

Schluessel, V., & Bleckmann, H. (2012). Spatial learning and memory retention in the grey

bamboo shark (Chiloscyllium griseum). Zoology, 115(6), 346–353.

https://doi.org/10.1016/j.zool.2012.05.001

Sergeyev, Ya D., Kvasov, D. E., & Mukhametzhanov, M. S. (2018). On the efficiency of nature-

inspired metaheuristics in expensive global optimization with limited budget. Scientific

Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-017-18940-4

Sergeyev, Yaroslav D., & Kvasov, D. E. (2006). Global Search Based on Efficient Diagonal

Partitions and a Set of Lipschitz Constants. SIAM Journal on Optimization, 16(3), 910–

937. https://doi.org/10.1137/040621132

42

Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J. A., Pitchford, J. W.,

… Metcalfe, J. D. (2008). Scaling laws of marine predator search behaviour. Nature,

451(7182), 1098. https://doi.org/10.1038/nature06518

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for

global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4),

341–359. https://doi.org/10.1023/A:1008202821328

Tanabe, R., & Fukunaga, A. (2013). Success-history based parameter adaptation for Differential

Evolution. 2013 IEEE Congress on Evolutionary Computation, 71–78.

https://doi.org/10.1109/CEC.2013.6557555

van den Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle

trajectories. Information Sciences, 176(8), 937–971.

https://doi.org/10.1016/j.ins.2005.02.003

Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., & Stanley, H.

E. (1996). Lévy flight search patterns of wandering albatrosses. Nature, 381(6581), 413.

https://doi.org/10.1038/381413a0

Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G., Raposo, E. P., & Stanley, H. E.

(1999). Optimizing the success of random searches. Nature, 401(6756), 911–914.

https://doi.org/10.1038/44831

Viswanathan, G. M., Raposo, E. P., & da Luz, M. G. E. (2008). Lévy flights and superdiffusion

in the context of biological encounters and random searches. Physics of Life Reviews,

5(3), 133–150. https://doi.org/10.1016/j.plrev.2008.03.002

Wetter, M. (2004). Simulation-based building energy optimization (PhD thesis). University of

California : Berkeley.

Yang, X. (2010). Engineering optimisation: an introduction with metaheuristic applications.

John Wiley and Sons.

Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A. H., & karamanoglu, M. (2013). Swarm Intelligence

and Bio-Inspired Computation; Theory and Applications (1st ed.). Elsevier.

Yang, X.-S., & Deb, S. (2009). Cuckoo search via Lévy flights. Nature & Biologically Inspired

Computing (NaBIC 2009), 210–214.

Yang, X.-S., & Deb, S. (2013). Multiobjective cuckoo search for design optimization. Computers

& Operations Research, 40(6), 1616–1624. https://doi.org/10.1016/j.cor.2011.09.026

43

Yapici, H., & Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder algorithm.

Applied Soft Computing, 78, 545–568. https://doi.org/10.1016/j.asoc.2019.03.012

Zainuddin, M., Kiyofuji, H., Saitoh, K., & Saitoh, S.-I. (2006). Using multi-sensor satellite

remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga)

in the northwestern North Pacific. Deep Sea Research Part II: Topical Studies in

Oceanography, 53(3), 419–431. https://doi.org/10.1016/j.dsr2.2006.01.007

Zhang, J., Liang, C., Huang, Y., Wu, J., & Yang, S. (2009). An effective multiagent evolutionary

algorithm integrating a novel roulette inversion operator for engineering optimization.

Applied Mathematics and Computation, 211(2), 392–416.

https://doi.org/10.1016/j.amc.2009.01.048

Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic

selection for constrained optimization. Information Sciences, 178(15), 3043–3074.

https://doi.org/10.1016/j.ins.2008.02.014

Zhang, Y. (2009). Parallel EnergyPlus and the development of a parametric analysis tool.

Proceedings of the 11th International IBPSA Conference. Presented at the Scotland.

Scotland.

	Elsevier required licence
	Marine Predators Algorithm-MH

