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Purpose: Despite the significant advances in modeling of biomechanical aspects of cell 
microenvironment, it remains a major challenge to precisely mimic the physiological condi
tion of the particular cell niche. Here, the metal–organic frameworks (MOFs) have been 
introduced as a feasible platform for multifactorial control of cell-substrate interaction, given 
the wide range of physical and mechanical properties of MOF materials and their structural 
flexibility.
Results: In situ crystallization of zeolitic imidazolate framework-8 (ZIF-8) on the poly
dopamine (PDA)-modified membrane significantly raised surface energy, wettability, rough
ness, and stiffness of the substrate. This modulation led to an almost twofold increment in the 
primary attachment of dental pulp stem cells (DPSCs) compare to conventional plastic 
culture dishes. The findings indicate that polypropylene (PP) membrane modified by PDA/ 
ZIF-8 coating effectively supports the growth and proliferation of DPSCs at a substantial 
rate. Further analysis also displayed the exaggerated multilineage differentiation of DPSCs 
with amplified level of autocrine cell fate determination signals, like BSP1, BMP2, PPARG, 
FABP4, ACAN, and COL2A. Notably, osteogenic markers were dramatically overexpressed 
(more than 100-folds rather than tissue culture plate) in response to biomechanical char
acteristics of the ZIF-8 layer.
Conclusion: Hence, surface modification of cell culture platforms with MOF nanostructures 
proposed as a powerful nanomedical approach for selectively guiding stem cells for tissue 
regeneration. In particular, PP/PDA/ZIF-8 membrane presented ideal characteristics for using 
as a barrier membrane for guided bone regeneration (GBR) in periodontal tissue 
engineering.
Keywords: metal–organic framework, mesenchymal stem cell, ZIF-8, cell culture platform, 
barrier membrane

Introduction
Since the first cell clinical trial on adult mesenchymal stem cells (MSCs) in 1995, 
these cells have been applied to a wide array of defects, primarily including 
neurodegenerative diseases,1 eye disorders,2 cardiovascular diseases,3 cartilage 
and intervertebral disc destruction,4 bone loss,5,6 autoimmune disorders,7 and oral 
and maxillofacial reconstruction.8 Dental-related stem cells (like dental pulp stem 
cells (DPSCs), stem cells from exfoliated deciduous teeth (SHEDs), stem cells from 
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apical papilla (SCAPs) and periodontal ligament stem cells 
(PDLSCs)) are considered as promising stem cell sources, 
thanks to their accessibility, noninvasive harvesting, neural 
crest origin, and exceptional plasticity.9 Human DPSCs are 
reported to have a capability to contribute to the regenera
tion of a large array of tissues ranging from oral and 
maxillofacial defects,10 to corneal disease,11 and pancrea
tic islet.12 Despite remarkable progress toward the biome
dical application of stem cells,13,14 isolation, expansion, 
and differentiation of MSCs under clinical conditions are 
still challenging.15

Conventional regenerative procedures are typically 
associated with the use of biological components that 
causes serious concerns for translating basic scientific 
reports from the bench to patient care. Predominantly, 
batch-to-batch variability, xenogenic contaminants, and 
costly manufacturing on a large scale currently present 
challenges to the use of existing regenerative protocols 
(as reviewed by Adam D. et al16 and Tan and Barker).17 

Moreover, typical tissue engineering strategies rely on the 
use of proper scaffolds to support critical behavior of the 
cells and provide essential mechanical parameters of nat
ural tissues.

Accordingly, there has recently been a tendency toward 
the regulation of physical and biological behaviors of stem 
cells by controlling the properties of the substrate materials 
that interact with the cells.18–20 In contrast to conventional 
plastic or glass culture substrates, tailored biomaterials pre
sent the ability to mimic different physical and mechanical 
properties of tissue microenvironments.21–23 They can 
directly/indirectly activate different transcriptional pro
grams and trigger specific responses in associated cells.24 

In fact, this occurs in a dynamic interaction between cells 
and the substrate through which cells sense substrate signals 
and redefine their surrounding environment overtime via 
secretion of a wide range of matrix components and growth 
factors.25–27

Therefore, a broad range of biomaterials has been 
exploited, which commonly include natural or synthetic 
hydrogels,28 electrospun polymeric fibers,29 and patterned 
plastic or glass-based substrates. In particular, paper-based 
cell culture platforms have become increasingly popular 
for in vitro expansion of cells as well as biomedical 
applications, like designing anti-biofouling membranes,30 

biosensors,31,32 tissue regeneration, drug screening, and 
disease modeling.33 The biocompatibility, porous and flex
ible structure, low-cost, and easy high-throughput manu
facturing make paper scaffolds the ideal subjects for 

construction of complex tissues. For instance, resorbable/ 
non-resorbable bioactive barrier membranes are exten
sively utilized in guided bone regeneration (GBR), for 
preventing invasion of non-osteogenic cells to defect 
site.34,35 Some recent clinical and preclinical studies 
reported reasonable improvement in cell adhesion, prolif
eration and osteopromotion by use of polypropylene (PP) 
membrane for alveolar defects.36–39 The PP membrane is 
an impermeable porous platform with high rigidity and 
elastic memory.40 Owing to its hydrophobic nature, PP 
membrane could provide isolated spaces for regeneration 
of damaged tissues through minimizing infiltration of cells 
and biomolecules. However, the pristine PP membrane is 
not favorable for adhesion, organization, and proper activ
ity of proteins/cells, underline the importance of surface 
modification approaches for expanding its biomedical 
application.41,42

Besides the inherent chemical properties of biomaterials, 
various physical and mechanical parameters, such as 
stiffness,43–45 topography,46–48 viscosity,49 density,33,50 cel
lular internalization,51 degradation rate,52 and biomaterial 
groups53–55 have been applied to control stem cell behaviors 
including viability, proliferation, motility, spreading and dif
ferentiation capacity (extensively reviewed in Ref).20,56–58 

For example, it is now clear that the gradient of substrate 
stiffness in physiological condition effectively regulates the 
essential activity of cells and has a profound influence on 
their fate.28,59–61 Moreover, micro- and nano-scale roughness 
can directly affect the cellular behavior of MSCs, such that 
various structural features of the materials regulate the pro
liferation or differentiation potential of the cells.62–64 In 
addition, the level of surface hydrophilicity selectively con
trols the tendency of cells to attach and spread on the sub
strate, which alters cellular activities by interfering with 
integrin-related signaling pathways.65–67

It is of paramount importance to note that the existing 
approaches usually target cell microenvironment via alter
ing a single key factor, rather than reconstitution of 
a whole-cell niche (reviewed by Tewary et al).68 

Although some more recent studies gained higher effi
ciency and more specificity via a combination of two 
distinct approaches,69–72 there is still a big gap to compre
hensive mimicry of the natural physical and mechanical 
condition of cells.

Metal-organic frameworks (MOFs) have been used in 
wide-ranging applications, such as gas storage and 
separation,73–76 molecular sieving,77,78 sensing,79–82 and 
catalysis.83–85 Because of their impressive capacities, 
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MOFs have emerged as a promising material type for 
various biomedical applications, especially in drug deliv
ery and biosensing platforms (reviewed in Ref).35,86,87 

Moreover, recent progress in designing and manufacturing 
of MOF nanostructures leading to their novel biomedical 
applications, such as osteogenesis promotion,88–90 

photosensitizer,91 biomolecule vehicle,92 Intracellular 
sensing,93,94 bioimaging,95 and biocatalysis.96 They are 
highly ordered porous materials composed of metal coor
dination centers connected by organic linkers.97 Among 
them, zeolitic imidazolate frameworks (ZIFs) have 
attracted intense interest due to their impressive stability 
along with their high porosity and surface area. They are 
generally composed of tetrahedrally coordinated metal 
ions (M= Zn2+, Co2+, Cd2+, Mg2+, etc.) and imidazolate 
derivatives (Im).

MOFs are porous structures, which typically have exhib
ited considerable stability in physiological conditions and 
possess a good potential for in situ- and post-synthetic func
tionalization with certain biomolecules, either on metals or 
organic ligands.98–100 Namely, Immobilization of enzyme- 
MOF composites on porous and flexible membranes intro
duces an effective approach for designing bioactive 
substrates.101,102 Moreover, MOFs serve as an ideal host for 
adsorption and conjunction of short peptides, antibodies, and 
nucleic acids (reviewed by Kempahanumakkagari et al).103 

These merits make the MOF layers well suitable for support
ing the cellular behaviors through both in vitro and natural 
conditions.

Additionally, using various metal groups and numerous 
organic molecules, MOFs form a wide range of structures 
with a highly tunable pore size (usually 0.4–6 nm) and 
surface area (500–4500 m2/g).104,105 Different configura
tion, porosity, and functionality of MOFs can be achieved 
by controlling framework interpenetration.106 Also, size of 
particles could be precisely adjusted by controlling effec
tive parameters in synthesis procedures or applying differ
ent mechanisms.107,108 They are composed of a permanent 
pore space which can adsorb guest molecules via changing 
in unit cell volume or subnetwork displacement. For 
example, ZIF-8 can absorb larger guest molecules by 
linker rotation109 or present modified porous nature under 
reasonable pressure.51 These intriguing chemical and 
structural properties of MOFs make these materials an 
ideal candidate for mimicking the physical and mechanical 
characteristics of natural tissue.

Although various strategies have been reported for fab
rication of MOF thin layers, in situ crystallization and 

growth on chemically modified supports is of great 
interest.110 Polydopamine (PDA) is a mussel-inspired adhe
sive polymer, which gives numerous unshared electron pairs 
for secondary reactions.111 Recently, PDA-based sticky plat
forms have been used to attach MOF nutrients on a wide 
range of organic and inorganic supporting materials.82,112

Although MOFs are increasingly set to become useful 
tools in the biomedical area, their potential to form cell 
culture substrates is not fully explored yet. In conse
quence, this paper takes a new look at the capability of 
the ZIF-8 thin layer to support essential activities of dental 
pulp stem cells (DPSCs) under in vitro condition. 
Following the characterization of specific mechanical 
properties of the PP/PDA/ZIF-8 membrane, we evaluated 
primary cellular attachment, proliferation rate, and multi
lineage differentiation of cells on this platform. 
Fundamental behaviors of DPSCs were compared to tissue 
culture plates (TCP), as the gold standard for cell culture 
substrates. The ZIF-8 nano structure point to new oppor
tunities for surface functionalization of PP membranes as 
a nanomedicine with significant advantages for using in 
GBR therapies.

Materials and Methods
Preparation and Characterization of 
Modified Membranes
A thin film layer of ZIF-8 was fabricated on a PP sub
strate, as we documented earlier.82 In brief, the membranes 
were cleaned carefully with absolute ethanol and 
immersed in a fresh solution of polydopamine/poly(ethy
lene imine) (PDA/PEI, 2mg/mL of each) for 4 hours. 
Following rinsing with deionized water, the samples 
were incubated in an aqueous solution of 2.74 mg/mL of 
Zn(NO3)2 and 56.6 mg/mL of 2-methylimidazole for 
2 hours (Scheme 1).

The physical and mechanical properties of the ZIF-8 
modified substrates then were assessed in comparison to 
PDA/PEI coated and intact PP membranes, to character
ize the substrates. For this, the surface chemistry of the 
ZIF-8 layer was evaluated using a Fourier transform 
infrared spectrometer (Alpha II FT-IR, Bruker, 
Massachusetts, USA) at a resolution of 4 cm−1 in the 
range of 4000–400 cm−1. X-ray diffraction (XRD) was 
done using Empyrean Thin-Film XRD Xpert Materials 
Research Diffractometer (MRD) with the 2-theta method 
(range 5

ͦ 
−40

ͦ
, step size 0.025

ͦ
, 100 s/step) was used to 

study the crystalline structure of ZIF8 thin layer. High 

International Journal of Nanomedicine 2020:15                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                      
10031

Dovepress                                                                                                                                                            Ejeian et al

http://www.dovepress.com
http://www.dovepress.com


Score Plus software was applied for XRD analysis, and 
peaks were compared with ZIF-8 Database peaks from 
Powder Diffraction File 4 (PDF-4) organic database 
(reference ID: 00–062-1030).113 The morphological and 
topological characteristics of membranes were also ana
lyzed by scanning electron microscopy (SEM, Zeiss 
EVO 15LS, Germany). Analysis of surface topography 
of coated and uncoated specimens was performed in 
contact mode by using Atomic force microscopy 
(AFM, JPK NanoWizard 2, Germany).

Furthermore, the static water contact angle was assessed 
using a Theta optical tensiometer (Biolin Scientific, Sweden) 
paired with OneAttention software. The surface free energy 
(SFE) of the membranes was determined by measuring the 
contact angles of three types of liquids (ie, water, glycerol, 
di-iodomethane) according to the acid-base Van Oss method. 
The elastic modulus (stiffness) of the substrates was deter
mined using Bruker Dimension ICON SPM (Bruker 
Corporation, USA) equipped with an OTESPA-R3 cantile
ver operated in the PeakForce Tapping mode. The scan size 
was set to 150 nm with a scan rate of 0.4 Hz, and the 
resolution of the images was set to 256 samples/line.

Culture and Expansion of DPSCs
Human dental pulp stem cells were obtained and charac
terized from extracted third molar teeth, as previously 
described.114 The experiments were performed under 
approval of the Ethics Committee of the Royan Institute 
(NO. IR.ACECR.ROYAN.REC.1397.290), in accordance 
with the Declaration of Helsinki. Written informed consent 

was obtained from all volunteers to participate in the 
study. Isolated cells were cultured and expanded under 
standard culture condition, using DMEM medium supple
mented with 10% fetal bovine serum (FBS), 1% glutamax, 
and 1% penicillin/streptomycin (all from Gibco, Paisley, 
UK). For further experiments, DPSCs (passages 4–6) were 
seeded with 2.5x104/cm2 density on substrates, following 
UV sterilization. Membranes were pre-incubated in com
plete culture media for overnight, before cell seeding.

Cell Metabolic Activity Assay
To evaluate the viability and proliferation of DPSCs on 
substrates, the MTS assay was carried out applying cell 
titer 96 aqueous one solution (Promega, WI, USA) after 
8 hours, 1, 3, 5 and 7 days, according to the manufac
turer’s instruction. Briefly, cultured cells at each time point 
were incubated with MTS/PMS solution for 3.5 hours. 
Therefore, the absorbance of produced formazan crystals 
was measured at 450 nm using a microplate reader 
(Fluostar Optima, BMG Lab Technologies, Germany) 
and normalized to the cell-free solution.

Cell Viability Assay
Carboxyfluorescein diacetate succinimidyl ester (CFSE; 
Sigma, Munich, Germany) was used to evaluate the viability 
of cultured cells on the ZIF-8 substrate. After one day, the 
attached cells were incubated with serum-reduced (1% FBS) 
medium contained five µM CFSE for 30 minutes. Next, the 
esterase reaction was quenched by adding serum- 
supplemented (10%) medium, and dead cells were stained 

Scheme 1 Schematic presentation of substrate preparation workflow.
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by five µg/mL propidium iodide (PI) for one minute. 
Imaging by fluorescence microscopy (Olympus, BX51, 
Japan) showed live DPSCs as green CFSE labeled cells, 
while dead cells were counterstained with PI.

Morphological and Cytoskeletal Analysis 
of DPSCs
Cultured substrates were examined by SEM on day 1, to 
monitor the morphological features of DPSCs. Before 
imaging, cells were fixed in 2.5% glutaraldehyde and 
dehydrated with increasing concentration of ethanol.

To visualize the cells’ cytoskeleton, F-actin microfila
ments were stained at day one and seven post-seeding, by 
using phalloidin-TRITC; following fixation with 4% par
aformaldehyde and permeabilization by 0.2% Triton 
X-100 (all from Sigma, Munich, Germany). Cell nuclei 
were counterstained with DAPI (Sigma, Munich, 
Germany), and monitored under fluorescence microscopy 
(Olympus, BX51, Japan). The number of cells was quan
tified by counting the DAPI-stained nuclei from five ran
dom low-magnification fields. Cell spread area was also 
measured in images by applying Image J software (Version 
1.42q, National Institutes of Health, USA).

Evaluation of Differentiation Potential
To gain more insights on the ability of DPSCs to differ
entiate into different lineages on the substrate of ZIF-8, 
a confluent monolayer of cells was maintained with spe
cific induction media. Briefly, osteogenesis was promoted 
by facing cells with normal culture medium containing 
50 mg/mL ascorbic acid, 10 mM β-glycerophosphate, 
and 10 nM dexamethasone. Adipogenic induction was 
also carried out using growth medium supplemented with 
100 nM dexamethasone, 50 µg/mL β-glycerophosphate, 
and 50 µg/mL indomethacin. Further, chondrogenesis 
was induced via DMEM medium enriched with 10 ng/ 
mL TGFB1, 100 nM dexamethasone, 50 µg/mL ascorbic 
acid, 100 µg/mL sodium pyruvate, 40 µg/mL L-proline, 
1% ITS and 1% FBS.

Following three weeks induction, the level of differentia
tion was quantified using qRT-PCR for lineage-specific mar
kers (osteogenesis: osteopontin (OPN/BSP1) and bone 
morphogenetic protein 2 (BMP2), adipogenesis: peroxisome 
proliferator-activated receptor gamma (PPARG) and fatty 
acid binding protein 4 (FABP4), and chondrogenesis: col
lagen 2 (COL2A1) and aggrecan (ACAN)). All specific gene 
expressions were normalized to GAPDH housekeeping gene 

(See Supplementary Table 2 for details). Total RNA was 
extracted using TRIzol reagent (Invitrogen, CA, USA), and 
cDNA synthesis was carried out by applying the Amplisense 
cDNA Synthesis kit (AmpliSens, Moscow, Russia). qRT- 
PCR reactions were done by Applied Biosystems Step One 
Plus (ABI, CA, USA) and data analysis performed through 
the ddCt method to compare to pre-treatment cells (day 0).

In addition, an immunocytochemistry assay was car
ried out for further evaluation of differentiation at the 
protein level. Cells were stained with integrin-binding 
sialoprotein (IBSP/BSP2), PPARG, and COL2A1, which 
are used for labeling osteoblasts, adipocytes, and chondro
cytes, respectively. To prepare samples for immunostain
ing, cells were fixed, permeabilized (as we mentioned in 
section 5.5), and stained with specific primary and second
ary antibodies (see Supplementary Table 3 for details). 
Imaging was performed using fluorescence microscopy 
(Olympus, BX51, Japan).

Results
Substrate Characterization
A thin layer of ZIF-8 crystals was observed in coated 
samples, through SEM imaging of modified membranes, 
and verified by XRD analysis and FTIR absorbance spec
tra (Figure 1A–C). Even though PP and PP/PDA speci
mens do not present crystalline XRD pattern, exhibited 
diffraction peaks of PP/PDA/ZIF8 sample are highly 
matched with the ZIF8 pattern obtained from Cambridge 
Structural Database (CSD) as well as the simulated PP/ 
PDA/ZIF8 XRD pattern. PDA/PEI surface modification is 
accompanied by two distinct IR peaks at 3200–3600 cm−1, 
due to the stretching vibration of alcohol, catechol and 
amine bonds, and 1680 cm−1, mainly related to C=N 
bonds between PEI and PDA. Among new peaks revealed 
as the result of ZIF8 coating, a characteristic peak at 
420 cm−1 refers to Zn-N stretching, and the other notable 
peak at 1600 cm−1 corresponds to N-H bending. In addi
tion, substrate treatment with PDA and PDA/ZIF8 coating 
dramatically decrease the water contact angle from 130 ͦ ± 
1 for PP to 54 ͦ ± 8 and 27.8 ͦ ± 7, respectively. In contrast, 
SFE values rise significantly after PDA treatment and 
increase further after ZIF8 coating (Figure 1D). 
Furthermore, we found that PDA/PEI modification leads 
to a notably smoother substrate (Ra = 57 nm ± 1.6, Rq = 
71.4 nm ± 5.8) compared to pristine PP membrane (Ra = 
213.9 nm ± 18.5, Rq = 279.7 nm ± 27.3). On the other 
hand, as expected, ZIF8 in situ crystallization significantly 
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increases the roughness value of the modified membrane 
(Ra = 244.2 nm ± 27, Rq = 376.3 nm ± 97.1), because of 
the crystalline structure of the thin layer (Figure 1E). 
Figure 1F shows 4.25 GPa Young’s modulus (from 
a surface roughness analysis via AFM force mapping) 
for PP/PDA/ZIF8 samples, which is significantly higher 
than both PP/PDA (1.84 GPa) and PP (0.99 GPa) 
specimens.

Cell Attachment on ZIF-8 Thin Film
The first set of cell culture experiments on MOF thin films 
revealed a proper attachment of DPSCs on PP/PDA/ZIF-8 
substrate with a level comparable to the TCP control group 
(Figure 2A and B). Quantitative analysis showed that nearly 
twice the amount of cells adhered to ZIF-8, while the spread 
area of the cells did not change much (Figure 2C). We also 

assessed the primary metabolic activity of cells attached to 
samples by MTS assay. Surprisingly, cells cultured on ZIF-8 
exhibited markedly reduced activity, in contrast to the con
trol group of TCP (Figure 2D). Morphological studies by 
SEM imaging provided additional evidence for satisfactory 
adherence of cells on ZIF-8, likewise TCP surface 
(Figure 2E and F). Furthermore, strong evidence of the 
viability of the attached cells is presented in Figure 2G and 
H, which shows the high number of CFSE+/PI− cells on TCP 
and ZIF-8 layer.

On the other hand, notable populations of cells were 
found on the intact polypropylene support, which formed 
an aggregation feature with a very low level of cell spread
ing. This phenomenon was confirmed by SEM imaging, 
and the basal activity of cells in this configuration was 
defined regarding MTS results (Supplementary Figure 2). 

Figure 1 Characterization of modified substrates. (A) SEM imaging for exploring the morphological feature of PP/PDA and PP/PDA/ZIF-8 substrates. Images with higher 
magnification are shown as inserts. (B) XRD crystalline patterns of the PP, PP/PDA, and PP/PDA/ZIF-8 membranes compared to the simulated ZIF-8 coated sample and ZIF-8 
database. (C) FTIR spectra obtained from PP, PP/PDA, and PP/PDA/ZIF-8 samples. Blue and green dash lines show characteristic peaks for ZIF-8 and PDA-PEI, respectively. 
(D) Water contact angle measurement and calculated surface free energy for PP, PP/PDA, and PP/PDA/ZIF-8. Each sample was assessed in three replicates for 10 seconds. 
Data is represented as mean ± SEM, * p<0.05. (E) 3D AFM topographical images and measured surface roughness values of PP, PP/PDA, and PP/PDA/ZIF-8 substrates. (F) 
Surface elastic modulus measurement for PP, PP/PDA, and PP/PDA/ZIF-8 substrates by PeakForce AFM. Individual values are presented for 256 samples/line in each specimen 
with the corresponding mean value. 
Abbreviations: PP, polypropylene; PDA, polydopamine; PEI, polyethyleneimine.
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Not surprisingly, DPSCs finely attached, extended, and 
retained their fibroblastic morphology on PDA modified 
PP membrane (Supplementary Figure 3).

Cell Proliferation on Modified 
Membranes
As for TCP, cytoskeletal imaging of cells on PP/PDA/ 
ZIF-8 substrate after seven days clearly showed the sig
nificant propagation of cells in comparison to the first day 
(Figure 3A and B). Further quantitative analysis of 

figures highlighted that a greater number of cells with 
a higher spread area were observed on the ZIF-8 layer 
than for a standard tissue culture plate (Figure 3C). 
Aligned with these findings, MTS analysis revealed 
a reasonable absorbance on day one through both tested 
groups, which gradually rose to a near-constant (Figure 
3D). While the TCP group showed higher initial absor
bance and peaked sooner (day 5), cells on PP/PDA/ZIF-8 
coated membrane grew rapidly, as overtaking the control 
after seven days.

Figure 2 Cellular attachment and viability analysis of DPSCs on the ZIF-8 modified substrate. F-actin arrangement of DPSCs cultured on (A) TCP and (B) PP/PDA/ZIF-8 
substrates after one day. F-actin filaments were visualized via labeling with phalloidin-TRITC (red), and nuclei were stained with DAPI (blue). Scale bar = 200 µm. Magnified 
inserts showed the typical morphological features of cells on each substrate. Scale bar = 20 µm. (C) Bar graph presenting the quantification of cell count (black bar) and cell 
spread area (brown bar). (D) Analysis of cell metabolic activity was carried out after 8 hours, using MTS assay. SEM imaging of cultured cells on (E) TCP and (F) PP/PDA/ZIF- 
8 substrates, following one-day incubation in normal culture condition. The viability of cultured DPSCs was evaluated on (G) TCP and (H) PP/PDA/ZIF-8 substrates on day 1. 
Viable cells are stained in green as the result of CFSE cleavage, while dead cells are showed by PI-positive cells (red points). Quantified data are represented as mean ± SEM 
from three independent experiments, * p<0.05.

International Journal of Nanomedicine 2020:15                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                      
10035

Dovepress                                                                                                                                                            Ejeian et al

https://www.dovepress.com/get_supplementary_file.php?f=269169.docx
http://www.dovepress.com
http://www.dovepress.com


Even though cellular activity and the total spreading of 
DPSCs attached to the PP membrane displayed slight 
elevation during the period, the overall number of cells 
did not increase (Supplementary Figure 2). On the other 
hand, Supplementary Figure 3 provides evidence on the 
proliferation and expansion of DPSCs on the PP/PDA 
modified membrane.

Multilineage Differentiation of DPSCs on 
ZIF-8-Coated Membranes
The multilineage differentiation potential of DPSCs on the 
ZIF-8 layer was assessed following 3-weeks induction 
under specific culture conditions. Gene expression analysis 
exhibited significant elevation of expression of all critical 

lineage-specific markers in cells cultured on PP/PDA/ZIF8 
in both RNA and protein levels. We found a substantially 
higher expression level of BSP1 and BMP2 not only 
concerning day 0 (external control sample) but also to 
the treated cells on the TCP substrate (Figure 4A). On 
the other hand, the expression of PPARG and FABP4 
enhanced with an almost similar level in both experimental 
groups (Figure 4B). Interestingly, two-dimensional chon
drogenic induction resulted to form an aggregation of cells 
exceptionally expressed COL2A1 and ACAN; however, it 
was much fewer than the cells cultured on TCP (Figure 
4C). Immunofluorescent imaging also revealed consider
able expression of BSP2, PPARG, and COL2A1 in 
DPSCs, which were treated with osteo-, adipo-, and 

Figure 3 Proliferation potential of DPSCs on the ZIF-8 modified substrate. Cytoskeletal F-actin staining of DPSCs cultured on (A) TCP and (B) PP/PDA/ZIF-8 substrates 
after seven days. F-actin filaments were visualized via labeling with phalloidin-TRITC (red), and nuclei were stained with DAPI (blue). Scale bar = 200 µm. The insets are 
showing a higher-magnification view of the larger image. Scale bar = 20 µm. (C) Quantification analysis of cell number (black bar) and cell spread area (brown bar) of 
phalloidin-stained cells after a week. (D) Investigation of the proliferation rate of cultured DPSCs via analysis of cellular metabolic activity with MTS assay over seven days.
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chondrogenic induction medium on TCP and PP/PDA/ 
ZIF-8 substrate (Figure 4D–J).

Discussion
Despite rapid progress toward the biomedical application of 
stem cells, there remains a high demand for clinical-grade 
stem cell products as well as functional supports to promote 

tissue regeneration. Over the past two decades, bioengineering 
strategies investigate for suitable biomaterials to develop safe 
patient-specific regeneration therapies. In line with our pre
vious studies on MOF-modified 
substrates,77,82,101,102,110,115 we proposed these nanostructures 
as tunable cell culture platforms with considerable potential to 
simultaneously regulating different microenvironmental cues. 

Figure 4 Multilineage differentiation potential of DPSCs on the ZIF-8 modified substrate. Evaluation of the multilineage differentiation potential of DPSCs cultured on PP/ 
PDA and PP/PDA/ZIF-8, and TCP substrates at mRNA level, after three weeks induction. Osteo-, adipo-, and chondrogenesis were assessed respectively via measurement of 
the relative expression of (A) BSP1 and BMP2, (B) FABP4 and PPARG, and (C) COL2A1 and ACAN compared to pre-treated cells (Day 0). Data represented as mean ± SEM 
from three independent experiments, * p<0.05. (D) The quantitative analysis of fluorescence intensity of immunostaining assay for lineage-specific markers (BSP2: 
Osteoblasts; PPARG: Adipocytes; COL2A1: Chondrocytes) in the level of protein at the end of 21 days induction time for DPSCs cultured on TCP and PP/PDA/ZIF-8. 
The representative images of stained DPSC for (E, F) BSP2, (G, H) PPARG, and (I, J) COL2A1. In all images, nuclei were stained in blue with DAPI. Scale bar is 200 µm.
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This idea is supported by the diverse physical and mechanical 
characteristics of more than 20,000 components belong to 
MOF family, such as elastic properties, inherent porosity, 
stiffness, and particle size.116,117 From the literature, it is 
mainly governed by the structural flexibility, framework 
breathing, and the chemistry of subunits, and influenced by 
the fabrication conditions.117–119 Besides, there are very lim
ited reports exploited particular characteristics of MOFs to 
specifically control cellular behavior. For instance, controlla
ble gas-release from photoactive MOF crystals has been 
applied for local regulation of cellular signaling pathways 
through in vitro culture conditions.120,121 A number of recent 
approaches have utilized MOF nanoparticles for improving 
osteoconductivity/osteoinductivity of standard bone substitu
ents, such as titanium (Ti), poly-l-lactic acid (PLLA), and 
calcium phosphate (CaP).88,89,122 This emerging paradigm is 
quite governed by the precise concentration of metal ions and 
the stability of MOF nanostructure. Accordingly, it is deduced 
that applying MOF layers could improve their stability at the 
cell-substrate interaction surface and decline their probable 
toxic effect.

According to our hypothesis, we examined the cellular 
response of human DPSCs to the particular physio- 
mechanical cues of the ZIF-8 thin layer, as a well-known 
example of MOFs. All experiments were also performed 
for the PP membrane as well as PP/PDA to ascertain 
whether the findings were related to the ZIF-8 layer. 
Razmjou et al previously investigated the physical proper
ties of the ZIF-8 dense layer with an approximate thick
ness of 800 nm and sensible adsorption capacity for silver 
particles.82 Generally, this study showed that forming the 
ZIF-8 layer significantly improved the hydrophilicity, SFE, 
nano-roughness, and elastic modulus of the PP membrane. 
Indeed, the chemical composition analysis identified 
plenty of N-H and Zn-N bonds in the ZIF-8 crystalline 
layer.

Based on the critical objectives of tissue engineering, 
cell culture platforms are required to hold suitable surface 
properties to promote stem cell adhesion, proliferation, and 
differentiation.123–125 The higher number of adhered 
DPSCs on the ZIF-8 layer, as compared to TCP as the 
“gold standard” substrate for cell culture, highlights its 
superiority not only for in vitro but also for in vivo and 
clinical experiments. In fact, the relative increased rough
ness and greater surface area provided by ZIF-8 film 
(37.46 m2/g, graphs are shown in Supplementary Figure 1 
and data are summarized in Supplementary Table 1) along 
with the active basic nitrogen atoms in the structure of ZIF- 

8 crystals seems to play critical roles in the primary attach
ment of cells.126

Although DPSCs were successfully attached to a ZIF-8 
layer, they were not able to expand very well and find an 
appropriate fibroblastic morphology within one day. The 
reduced level of metabolic activity at this stage correlates 
with substantial evidence in the literature that showed the 
reduced cell spreading area, indicating a significant drop in 
cellular metabolism.127–129 Interestingly, after seven days, 
they formed a compact monolayer of cells that overtook 
the PP/PDA group and TCP. Furthermore, the significant 
higher surface free energy is also an essential factor for 
enhanced cell attachment following PDA modification. 
This result is in accordance with reported findings that 
considered surface free energy as an effective parameter 
for cell-substrate interaction, in addition to wettability.130

Regarding the importance of efficient differentiation 
promotion by cell culture platforms through homing 
conditions,131–133 we evaluated the multilineage potential 
of DPSCs during long-term culturing on a ZIF-8 layer. It is 
suspected that considerable upregulation in all three line
age-related genes is at least partially related to the higher 
surface area provided by the ZIF-8 layer. Even more 
important factor may be harnessing of cell-secreted stimu
latory signals by internal active sites in the ZIF-8 crystal
line layer.99 The trapping of soluble growth factors and 
ECM components secreted by differentiating DPSCs on 
the substrate resulting in subsequent amplification of the 
differentiation process.

As a key index of osteogenic differentiation during 
bone development and regeneration,134,135 the highly 
amplified expression of BSP1 and BMP2 on PP/PDA/ 
ZIF-8 platform is in line with our primary hypothesis on 
promising potential of the ZIF-8 layer for exaggerating the 
innate osteogenic potential of DPSCs. Indeed, our findings 
showed that the ZIF-8 coating drastically increased the 
rigidity of matrix, which is extensively reported to have 
a major impact on the commitment of MSCs to osteogenic 
differentiation.37,136,137 The higher elastic modulus of PP/ 
PDA/ZIF-8 substance compared to the reported value for 
standard tissue culture plates (≈ 1 GPa) is consistent with 
the higher level of osteogenesis on the ZIF-8 layer.138,139 

Stiff materials predominantly regulate cell fate via mod
ulating integrin interactions, reorganizing adhesion 
ligands, increasing cytoskeletal tension,140 and inducing 
epigenetic modification.141

As a result of the chondrogenic induction of DPSCs 
through two-dimensional culture conditions, we were 
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surprised to detect 3D cartilage-like structures after three 
weeks. This finding is in complete agreement with the 
proper physiological environment of chondrocytes, which 
function in loose contact with the substrate.142–144 It seems 
that the stiff surfaces provided by both test and control 
groups prompted the cells to disrupt cell-substrate adhe
sions, migrate, and form features more resembling the 
natural cartilage environment. The elevated expression of 
COLL2A confirmed the notable level of chondrogenesis 
on both substrates. The higher stiffness value of PP/PDA/ 
ZIF-8 is accompanied by lower chondrogenic efficiency, 
compared with TCP. In contrast to remarkable osteo- and 
chondrogenesis, the relative weaker adipogenic differen
tiation observed maybe because of the stiff structure of the 
substrates.

Hence, these attractive features render PP/PDA/ZIF-8 
platform suitable for GBR therapies. GBR is a surgical 
technique that occludes the in-growth of adjacent soft 
tissue into periodontal bone defects via utilizing 
a flexible bioactive barrier membrane. The ideal GBR 
membrane is required to improve bone regeneration and 
appropriately integrate into the host tissue.34 The recent 
clinical studies provided evidences for recruitment of 
cells into pristine PP membrane during GBR 
processes.38,39,145 Similarly, we found that DPSCs can 
be attached on PP membrane and enhanced their meta
bolic activity over time; however, they did not spread 
properly even after seven days. This phenomenon was 
also observed for adipose-derived stem cells (ADSCs) 
grown on poly(l-lactide) acid (PLLA) film.65 It seems 
that the inherent hydrophobic characteristic of the sup
port materials strongly inhibited the normal expansion of 
MSCs in both cases. Whereas, significant improvement 
in cellular attachment on the PP/PDA/ZIF-8 platform 
may be reflected in the marked increase in surface 
hydrophilicity, obtained through PDA surface modifica
tion, as previously described by Schendzielorz et al.146

Conclusion
In summary, we have obtained satisfactory results prov
ing the promising capacity of ZIF-8 thin film as 
a stimulating agent on the cell culture substrate. This 
report opens up a new field of study of the applications 
of MOFs for the manufacturing of substrates able to 
mimic various mechanochemical properties of natural 
tissues. As an example, the PP/PDA/ZIF-8 showed 
remarkable capacity for the primary adhesion of DPSCs 
in comparison to other surface modification strategies 

(Supplementary Table 4). Exceptional expression of line
age-specific markers on PP/PDA/ZIF-8 substrate, espe
cially in the case of bone-specific markers, presents 
higher efficiency rather than immobilization of some bio
logical components (Supplementary Table 5). Favorable 
characteristics of the MOF nanostructures could mini
mize the requirement for biologically active induction 
molecules, and provide a chemical-based alternative to 
cell microenvironments. Further studies should concen
trate on designing particular substrates with the desired 
stiffness, roughness, and geometrical features. On 
a broader level, we can apply a wide range of post 
functionalization and pore engineering approaches to 
mimic physiological conditions. In the light of these 
findings, PP/PDA/ZIF-8 platform exhibits profound capa
city to use as a promising nanomedical tool in GBR 
procedures, apart from its in vitro application for mimick
ing natural microstructure of hard tissues.
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