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Abstract—Recently, the intelligent reflecting surface (IRS)
has become a promising technology for energy- and spectrum-
efficient communications by reconfiguring the radio environment.
In this paper, we consider multiple-input single-output (MISO)
transmissions from a multi-antenna access point (AP) to a
receiver, assisted by a practical IRS with a power budget
constraint. The IRS can work in energy harvesting and signal
reflecting phases. It firstly harvests RF energy from the AP’s
signal beamforming and then uses it to sustain its operations in
the signal reflecting phase. We aim to characterize the maximum
capacity by optimizing the AP’s transmit beamforming, the IRS’s
time allocation in two operational phases, and the IRS’s passive
beamforming to enhance the information rate. To solve the non-
convex maximization problem, we exploit its structural properties
and decompose it into two sub-problems in two phases. The
IRS’s phase shift optimization in the reflecting phase follows
a conventional passive beamforming problem to maximize the
received signal power. In the energy harvesting phase, the IRS’s
time allocation and the AP’s transmit beamforming are jointly
optimized using monotonic optimization. Simulation results verify
the effectiveness of the proposed algorithm.

Index Terms—Energy harvesting, wireless powered transfer,
time switching protocol, intelligent reflecting surface.

I. INTRODUCTION

Recently, Intelligent reflecting surface (IRS) has become
one of the most promising solutions to improve energy- and
spectrum-efficiency (EE/SE) of wireless communications, by
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providing the capability of reconfiguring the radio environment
in favor of information transmission, e.g., [1] and [2]. The
IRS is a planar array consisting of numerous passive scatter-
ing elements. Each scattering element is able to induce an
electronically-controlled phase shift independently on the in-
cident electromagnetic wave. The joint control of all scattering
elements’ phase shifts, namely, passive beamforming, can re-
shape the physical channel on demand, e.g., focusing the signal
beams at designated receiver and suppressing interference to
undesirable directions. The main advantage of IRS-enhanced
wireless communications lies in that it can greatly increase the
channel capacity, with extremely low power consumption and
flexibility for large-scale deployment in the radio environment.

The IRS’s passive beamforming along with the transmission
control of the legacy transceivers is envisioned to revolutionize
the network optimization paradigm. The existing research
works on IRS-assisted wireless networks mainly focus on
maximization of the channel capacity [3], [4], energy effi-
ciency [5], or minimization of the AP’s transmit power [6].
The physical layer security can also be enhanced by leveraging
the IRS’s passive beamforming [7], [8]. However, the IRS’s
energy consumption is usually ignored due to the extremely
low power consumption of the passive scattering elements.
In fact, the IRS’s energy consumption depends on the size
and implementation of its scattering elements [5]. For a self-
sustainable IRS, it has to harvest energy from the RF signals,
which is also featured with extremely low energy-conversion
efficiency. As such, the IRS’s energy consumption becomes a
critical design aspect for overall performance improvement.

In this paper, we envision a wireless network assisted by
a self-sustainable IRS capable of harvesting energy from RF
signals, similar to the RF-powered backscatter-aided relay
communications [9]. To sustain the IRS’s operations, the
IRS controller can schedule its switching between the en-
ergy harvesting and signal reflecting phases, similar to the
conventional time-switching (TS) protocol for energy harvest-
ing IoT devices [10]. As depicted in Figure 1, the signal
transmission from the multi-antenna AP to the single-antenna
receiver is assisted by the energy harvesting IRS. The IRS
firstly operates in the energy harvesting phase to charge its
capacitors for a portion of the time slot, and then works
in the reflecting phase by tuning its phase shifts to assist
signal transmissions from the AP to the receiver. We aim
to optimize the AP’s transmit beamforming in two phases,
the IRS’s phase shifts and time allocation to maximize the
transmission rate. The AP’s transmit beamforming in the first
phase not only determines the data rate to the receiver, but
also affects the energy flow to the IRS. This implies a close
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coupling between the AP’s transmit beamforming and the
IRS’s time allocation in two phases. The solution to the non-
convex maximization problem is decomposed into two sub-
problems. The sub-problem in the second phase follows a
conventional passive beamforming optimization [6]. As for
the first phase, by exploiting the problem structure, we devise
the monotonic optimization algorithm to find the optimal time
allocation and transmit beamforming strategies. To the best of
our knowledge, we are the first to characterize the maximum
rate in an IRS-assisted MISO system, where the IRS works
in a self-sustainable manner under TS protocol. Simulation
results verify the potential performance gain of the proposed
system and reveal that the performance gain becomes more
significant with higher transmit power.

II. SYSTEM MODEL AND FORMULATION

We consider the IRS-assisted MISO downlink system, as
shown in Fig. 1, where the AP with M antennas transmits
information to the single-antenna receiver device. The IRS
with N passive scattering elements is capable of adjusting
phase shifts dynamically according to the channel state in-
formation (CSI). The IRS controller is also equipped with
an energy harvester circuit that is able to harvest RF energy
from the AP’s beamforming signals. We assume that the IRS
controller can switch the IRS’s operations in two phases, i.e.,
the energy harvesting phase and the signal reflecting phase.
The complex channels of the AP-receiver, AP-IRS, and IRS-
receiver links are denoted by hd ∈ CM×1, G ∈ CN×M
and hr ∈ CN×1, respectively. Let Θ = diag(ejθ1 , . . . , ejθN )
denote phase shift matrix for the IRS, where θn ∈ [0, 2π),
n ∈ {1, . . . , N} denotes the phase of the reflection coefficient
of the n-th scattering element. Vectors are denoted by bold
lowercase letters while matrices are denoted by bold uppercase
letters. ‖·‖ denotes the Euclidean norm of a complex vector.
Tr(X) denotes the trace of matrix X and diag(a) denotes the
diagonal matrix with the diagonal vector a.

A. IRS-assisted and Unassisted Transmission Rates

Without loss of generality, we focus on the AP’s signal
transmission in a unit time slot. Considering the TS protocol
similar to [10], the IRS is individually scheduled by the IRS
controller to operate in two phases. The AP’s information
transmission is similarly divided into two phases, i.e., unas-
sisted and IRS-assisted transmissions, as illustrated in Fig. 1.
In the first phase with duration 1 − t, the IRS harvests RF
energy from the AP’s signal beamforming to the receiver. In
the second phase t, the IRS adapts its passive beamforming
and thus reflects the incident signal to enhance information
transmission from the AP to the receiver. The AP can also
adjust its transmit beamforming vectors in two phases, denoted
as w1 and w2 ∈ CM×1 respectively, to balance the energy
transfer to the IRS and the information transfer to the receiver.
Let s denote the complex symbol transmitted by the AP with
unit power. In the first phase, the received signal is given by
y = hHd w1s + νd (the superscript H denotes the conjugate
transpose operation), where νd ∼ CN (0, σ2) denotes the noise

Figure 1: An MISO system assisted by a self-sustainable IRS.

signal with zero mean and variance σ2. Hence, the data rate
in the first phase is given by

r1(w1) = log2

(
1 + |hHd w1|2/σ2

)
. (1)

Similarly, the data rate in the second phase is given by

r2(w2,Θ) = log2

(
1 + |

(
hd + GHΘhr

)H
w2|2/σ2

)
, (2)

where hd + GHΘhr represents the enhanced channel from
the AP to the receiver by the IRS’s passive beamforming Θ.

B. Wireless Powered Self-sustainable IRS
The harvested energy by the IRS in the first phase can be

stored in capacitors and shared among all elements to ensure
their operations during the second phase. In the first phase,
the incident signal at the IRS is given by x = Gw1s, which
is fed into the IRS’s energy harvester. Hence, the harvested
energy by the IRS is given by η(1 − t)‖Gw1‖2, where η
denotes the energy harvesting efficiency. In the second phase,
the IRS fully reflects the incident signals from the AP to the
receiver by adjusting its passive beamforming Θ. The IRS’s
power consumption in the second phase relates to N , the
number of scattering elements, and the phase resolution of
each scattering element. Typically, the IRS power consumption
increases linearly with the IRS’s size and also depends on the
phase resolution of individual reflecting element, e.g., [11],
[12]. As such, the IRS’s energy budget constraint is given
by η(1 − t)‖Gw1‖2 ≥ tNµ, where µ denotes the power
consumption of a single scattering element and it relates
to the phase resolution. Note that we can install multiple
energy harvesters in the physical structure of a large-scale
IRS to improve the energy harvesting efficiency. In the special
case, each scattering element can have sensing capability and
harvest energy individually. Then, the power budget can be
simplified as η(1− t)‖Gw1‖2 ≥ tµ.

III. THROUGHPUT MAXIMIZATION IN TWO PHASES

We assume that the AP can communicate with the IRS and
thus jointly adapt their operating parameters in two phases to
maximize the throughput from the AP to the receiver. Note
that the AP’s transmit beamforming also transfers energy to
the IRS in the first phase. Hence, it is necessary to optimize
different beamforming strategies w1 and w2 in two phases.
The time division t between two phases is also a critical
parameter that balances the IRS’s power demand and supply.
The throughput maximization problem is formulated as:

(P1) max
t≥0,w1,w2,Θ

(1− t)r1(w1) + t · r2(w2,Θ) (3a)

s.t. (1− t)η‖Gw1‖2 ≥ tNµ, (3b)

‖w1‖2 ≤ pmax, ‖w2‖2 ≤ pmax, (3c)
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where r1 (w1), r2 (w2,Θ), defined in (1) and (2), represent
the data rates in the first and the second phases, respectively.
pmax denotes the AP’s maximum transmit power. Constraint
(3b) denotes the IRS’s power budget, which depends on the
AP’s transmit beamforming w1 in the first phase and the IRS’s
time switching strategy.

A. Decomposed Solution Method

Problem (P1) is generally non-convex due to couplings
among decision variables in both the objective and constraints.
To tackle this difficulty, we decompose the problem into two
sub-problems by exploiting its structural properties. Firstly, we
note that w2 and Θ only appear in the objective (3a) and w2

is individually constrained by the AP’s power limit. Hence, the
maximization of r2(w2,Θ) can be decomposed from problem
(P1) and formulated as the following sub-problem:

(P1.1) γ̄2 , max
Θ,w2

|
(
hd + GHΘhr

)H
w2|2/σ2 (4a)

s.t. ‖w2‖2 ≤ pmax, (4b)
0 ≤ θn < 2π,∀n ∈ {1, . . . , N}, (4c)

where γ̄2 denotes the maximum SNR in the second phase
by jointly optimizing the AP’s transmit beamforming and the
IRS’s passive beamforming. Hence, the maximum data rate in
the second phase is given by r̄2 = log2(1 + γ̄2). Given the
solution to (P1.1), problem (P1) can be simplified as

max
t,w1

(1− t)r1 (w1) + t · r̄2 (5a)

s.t. (3b) and ‖w1‖2 ≤ pmax. (5b)

Note that we have r̄2 > r1 due to the channel enhancement
by the IRS in the second phase. As such, we can easily verify
that the power budget constraint (3b) will hold with equality at
optimum of problem (5). Otherwise, we can properly increase
t in (3b) to further increase the objective in (5a). Therefore,
the optimal time division t∗ is given as follows:

t∗(w1) =
η‖Gw1‖2

Nµ+ η‖Gw1‖2
. (6)

By substituting (6) into the objective (5a), we are expected to
solve the second sub-problem (P1.2):

(P1.2) max
w1

(1− t∗(w1))r1(w1) + t∗(w1)r̄2 (7a)

s.t. ‖w1‖2 ≤ pmax. (7b)

Problem (P1.1) is similar to the joint active and passive
beamforming optimization problem studied in the literature,
e.g., [6], which can follow the conventional semidefinite re-
laxation (SDR) method. The second problem (P1.2) introduces
the couplings between the AP’s transmit beamforming and
the IRS’s time allocation strategies. In the sequel, we present
detailed solutions to these two sub-problems, respectively.

B. Rate Maximization for IRS-assisted Transmission

Given a fixed Θ, the AP’s optimal beamforming vec-
tor w2 can be simply aligned with the enhanced channel
hd + GHΘhr via maximum-ratio transmission (MRT), i.e.,

w∗2 =
√
pmax

(
hd + GHΘhr

)
/‖hd + GHΘhr‖. (8)

As such, problem (P1.1) is reduced to

max
Θ
‖hd + GHΘhr‖2 s.t. (4c),

by changing variables, let Φ = diag(hHr )G and ν =
[ejθ1 , . . . , ejθN ]H , this problem is equivalent to the following
quadratically constrained quadratic program (QCQP).

(P2) max
ν

νHΦΦHν + νHΦhd + hHd Φν + hHd hd

s.t. |νn| = 1,∀n = 1, . . . , N.

Though problem (P2) is still non-convex, it can be further
converted into a semidefinite program (SDP) by semidefinite
relaxation (SDR) technique, similar to that in [6]. We omit
details here for conciseness. As such, the converted SDP can
be solved efficiently by the interior-point algorithms using an
off-the-shelf solver, such as CVX [13].

C. Optimizing Energy Transfer to the IRS

Problem (P1.2) is still hard to solve in its current form as
w1 appears in both numerator and denominator in (6). Define
γ0 = ‖Gw1‖2 for notational convenience, we can rewrite
(P1.2) as follows:

max
w1

r(γ0, r1) , r̄2 −
r̄2 − r1

1 + η
Nµγ0

s.t. ‖w1‖2 ≤ pmax. (9)

Though problem (9) is non-convex, it is easy to verify that the
objective r(γ0, r1) in (9) is increasing in both r1 and γ0, which
makes it possible to solve the problem optimally by using the
monotonic optimization (MO) algorithm [14]. Specifically, we
can further rewrite problem (9) in the following form:

(P3) max
(γ0,r1)∈Ω

r(γ0, r1) (10a)

s.t. Ω ,

(γ0, r1)

∣∣∣∣∣∣
|hHd w1|2 ≥ r1
‖Gw1‖2 ≥ γ0
‖w1‖2 ≤ pmax

 , (10b)

where Ω is defined as the feasible set of (γ0, r1). Besides
monotonicity in the objective r(γ0, r1), we also find that Ω
bears a special structural property, stated as follows:

Proposition 1. Given any feasible point (γ0, r1) ∈ Ω, we
always have (γ′0, r

′
1) ∈ Ω for any (γ′0, r

′
1) � (γ0, r1)1.

The proof of Proposition 1 is straightforward by showing
that there always exists a solution w′1 that satisfies the in-
equalities in (10b). Let w1 denote the solution corresponding
to (γ0, r1) ∈ Ω. We can simply construct w′1 as w′1 = w1.
Hence, we have r′1 ≤ r1 ≤ |hHd w′1|2 and γ′0 ≤ γ0 ≤ ‖Gw1‖2,
which implies that (γ′0, r

′
1) ∈ Ω. We usually call Ω as a normal

set if it has the above structural property.

Proposition 2. The optimum of problem (P3) is attained on
the boundary of the feasible set Ω, denote by ∂+Ω.

The proof of Proposition 2 can be easily obtained from
the results in [14]. This proposition allows us to apply the
MO algorithm to solve problem (P3) optimally in an iterative

1a � b means each component of vector a is no larger than the
corresponding one of vector b.
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procedure. As the objective r(γ0, r1) is monotonic, the max-
imum is always on the boundary point of the feasible set Ω.
The appealing structural property of a normal set allows us
to find the optimal boundary point efficiently by successive
polyblock approximation (SPA). In each iteration, the SPA
algorithm uses box sets2, namely, polyblock, to approximate
the feasible region Ω. The algorithm starts from an initial
polyblock P0 that is large enough to cover the feasible set,
i.e., P0 ⊃ Ω. At k-th iteration, a smaller polyblock can be
created such that Pk−1 ⊃ Pk ⊃ Ω.

Let Vk denote the set of vertices of the polyblock Pk. Hence,
we can update the upper bound on (10) as follows:

max
(γ0,r1)∈Ω

r(γ0, r1) ≤ max
(γ0,r1)∈Pk

r(γ0, r1) = max
(γ0,r1)∈Vk

r(γ0, r1).

The first inequality holds due to the fact that Ω ⊂ Pk while
the equality holds due to the monotonicity of the objective
function r(γ0, r1), which always achieves its maximum on one
of the vertices points of the polyblock Pk. Here, we assume
that vk = (γ

(k)
0 , r

(k)
1 ) ∈ Vk achieves the upper bound, given

by r
(k)
U = r(vk), in the k-th iteration. If vk ∈ Ω, it is the

optimal feasible solution. Otherwise, we can update a lower
bound on (10) by projecting the infeasible vertex point vk onto
the boundary of Ω. In particular, we can find the maximum
scaling factor λ such that λvk ∈ Ω. Let ok = λvk denote
the projection point. Thus, we can use r

(k)
L = r(ok) as a

lower bound on (10) in the k-th iteration. After that, infeasible
polyblock spanned by (ok,vk) can be trimmed from Pk to
get a smaller polyblock Pk+1 ⊃ Ω. This procedure continues
until the gap between the lower and upper bounds falls below
an error tolerance ε. The solution procedures are depicted as
SPA in Algorithm 1. A similar approach has been applied in
conventional wireless powered communications [15].

The computational complexity of the SPA algorithm mainly
lies in two parts. One part relates to the outer-loop iterations of
the MO algorithm and the other part lies in the solution to SDP
problems. The complexity of the MO algorithm is generally
increasing exponentially in the dimension of decision variables
[14]. However in our formulation, the dimension is limited to
2, which are γ0 and γ1. This guarantees a fast convergence
for the outer-loop iterations. On the other hand, within each
loop, the main computational task lies in the projection of an
infeasible vertex vk onto the boundary ∂+Ω, which can be
performed in an efficient bisection method. Specifically, given
a fixed λ ∈ (0, 1], the following feasibility check determines
whether to scale down or up λ in the next iteration.

min ||w1||2 (11a)

s.t. |hHd w1|2 ≥ r1λ and ‖Gw1‖2 ≥ γ0λ. (11b)

Let p(λ) denote the optimum to problem (11). If p(λ) ≤ pmax,
this implies that the scaled vertex λvk = (λγ0, λr1) ∈ Ω.
Hence, we can increase λ in the next bisection iteration,
otherwise we have to decrease it. To solve problem (11)
efficiently, we introduce a matrix variable W1 = w1w

H
1 and

then transform it into an efficiently tractable SDP via the SDR.

2A box set is in the form of [0,v], where v is the end point of the box,
and also called a vertex of a polyblock that is the union of finite box sets.

Algorithm 1 Two-stage Algorithm for Problem (P1)
First Stage: Optimize IRS reflecting phase and AP’s w2

1: Solve the SDP form of problem (P2)
2: Retrieve w∗2 by (8)

Second Stage: SPA algorithm for problem (P3)
3: Initialize γmax

0 and rmax
1 , set v0 = (γmax

0 , rmax
1 )

4: ε← 10−5, k ← 0, initialize V0 = {v0} and P0

5: r
(k)
L ← 0, r(k)U ← r(vk)

6: while |r(k)U − r
(k)
L | > ε

7: k ← k + 1
8: Find vk that maximizes the objective, i.e.,

vk = arg maxv∈Vk
r(v)

9: r
(k)
U ← r(vk)

10: Find projection point ok = λvk by bisection
11: r

(k)
L ← r(λvk)

12: Update vertex set Vk+1 and Pk+1 ← ∪v∈Vk+1
[0,v]

13: end while
14: Output: AP’s beamforming matrix W1.

(a) A normal feasible region of (P3)
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Figure 2: An illustrative example: The feasible region of
problem (P3) and the convergence of Algorithm 1.

IV. NUMERICAL RESULTS

We consider M = 10 antennas at the AP and a rectangular
array of N = 80 scattering elements at IRS. The AP-IRS, AP-
receiver and IRS-receiver distances are given by 2,

√
5,
√

5 in
meters, respectively. Furthermore, the path loss is modeled
by the log-distance propagation model with the path loss
exponent α = 2. The path loss at the reference distance
(1 m) is 30 dB. The energy harvesting efficiency is set as
0.8 and power consumption of a single scattering element
is 15 µW [12]. The AP’s maximum transmission power is
limited to 10 mW. We first give an illustrative example to show
the convergence of the approximation algorithm for solving
problem (P3). Its feasible region Ω is illustrated in Fig. 2(a).
It is clear that Ω is a normal set by verifying the property in
Proposition 1. As the objective of problem (P3) is increasing
in both γ0 and r1, we can adopt monotonic optimization to
solve problem (P3) optimally. The convergent results of SPA
algorithm for problem (P3) is shown in Fig. 2(b). We can
observe that the lower and upper bounds, denote as r(k)L and
r
(k)
U , respectively, converge fast in a few iterations, which

verifies the effectiveness of the SPA algorithm.
Figure 3 shows the performance comparison of the proposed
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Figure 3: Optimal throughput and EH time vs. the AP’s transmit power and the size of IRS.

system with some baseline approaches. We set different trans-
mit powers at the AP and evaluate the throughput performance
in both phases. For comparison, we also implement 1) a ran-
dom phase-shift scheme that sets random passive beamforming
for the IRS, 2) and a baseline scheme without using IRS.
It is clear that our proposed system outperforms the random
phase-shift scheme and the baseline scheme. The achievable
throughput in three schemes are very close to each other when
the AP’s transmit power is relatively low. The performance
gain of the proposed system becomes more significant with
the increase of the AP’s transmit power. In this case, the
IRS can quickly harvest sufficient energy for its operation
in the reflecting phase. Hence, the AP will experience more
IRS-assisted information transmission with higher data rate.
As shown in Figure 3(b), the IRS needs more time for
energy harvesting when the AP’s transmit power is small. In
particular, the energy harvesting time takes up 90% of the unit
time slot for pmax = 0.1 mW. Hence, the AP’s information
transmission is barely assisted by the IRS. For pmax = 10 mW,
we can observe that the AP’s information transmission can be
IRS-assisted in most of the unit time slot, which leads to a
more significant performance gain.

Figure 3(c) shows the performance gain with a different
size of the IRS. It is clear that the overall throughput of the
IRS-assisted system increases with the number of reflecting
elements, for either the random phase-shift scheme or the
optimal scheme. The performance gain in the optimal scheme
raises from 2.0% to 7.3% compared to the baseline when
the number of reflecting elements increases from 30 to 150.
With more reflecting elements, the IRS has a higher flexibility
to leverage the multi-path diversity and thus enhance the
information transmission from the AP to the receiver.

V. CONCLUSIONS

In this paper, we have investigated the throughput max-
imization problem of an IRS-assisted MISO system with a
practical power budget constraint for the IRS. We propose a
time-switching alike protocol for the IRS to harvest energy in
the first phase and then assist information transmission in the
second phase. The throughput maximization is formulated into
a joint optimization of the AP’s transmit beamforming in two
phases, the IRS’s time scheduling, and passive beamforming

strategies. Based on the problem structure, we decompose the
original problem into two sub-problems that can be solved
individually in two phases, respectively. The simulation results
verify the superiority of the proposed system compared to the
random phase-shift scheme and the baseline without IRS.
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