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Abstract:

The programmed cell death ligand 1 (PD-L1) protein has emerged as a predictive cancer 

biomarker for sensitivity to immune checkpoint blockade-based cancer immunotherapies. 

Current technologies for the detection of protein-based biomarkers, including the enzyme-linked 

immunosorbent assay (ELISA), have limitations such as low sensitivity and limit of detection 

(LOD) and in addition to degradation of antibodies in exposure to environmental changes such as 

temperature and pH. To address these issues, we have proposed a metal-organic framework 

(MOF)-based ELISA for the detection of the PD-L1. A protective coating based on Zeolitic 

Imidazolate Framework 8 (ZIF-8) MOF thin film and polydopamine-polyethyleneimine (PDA-

PEI) was introduced on an ELISA plate for the improvement of antibody immobilization. 

Sensitivity and LOD of the resulting platform was compared with a conventional ELISA kit, and 

the bioactivity of the antibody in the proposed immunoassay was investigated in response to 

various pH and temperature. The LOD and sensitivity of the MOF-based PD-L1 ELISA was 225 

and 15.12 times higher, respectively, compared with that of the commercial ELISA kit. The 

antibody@ZIF-8/PDA-PEI was stable up to 55°C and a pH range of 5-10. The proposed 

platform can provide sensitive detection for target proteins, in addition to be resistant to elevated 

temperature and pH. The proposed MOF-based ELISA has significant potential for the clinical 

and diagnostic studies.

Keywords: Metal-Organic Framework; ZIF-8; PD-L1; Enzyme-linked immunosorbent assay; 

Limit of Detection.
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Introduction

In the past decades, the socioeconomics burden of diseases, including cancer, has rapidly 

increased. To reduce this burden, fast and accurate diagnosis plays an important role in early 

detection and hence the treatment of diseases. Therefore, the demand for novel diagnostic 

technologies that benefit from high specificity and sensitivity to accompany clinical diagnosis 

has been increased.1 One of the most straightforward approaches for screening cancer patients is 

the detection and measurement of protein biomarker levels in biological samples, e.g., blood. 

Owing to the complexity and heterogeneity of cancer, rapid and accurate measurement of protein 

biomarkers is a challenging issue that requires further investigation.2

The programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) signaling pathway 

has been shown to play a crucial role in tumor immune invasion.3 The PD-1 protein is a 

checkpoint co-inhibitory receptor expressed on the surface of immune cells. Under normal 

circumstances, PD-1 causes a negative feedback mechanism that leads to switching off the 

activation of T cells. This phenomenon prevents tissue-damaging during stimulation of the 

immune system.4 The PD-L1 protein on the surface of tumor cells (or antigen-presenting cells, 

dendritic cells, and macrophages) could directly bind to PD-1. This process limits the activation 

and proliferation of T cells and weakens their cytotoxicity against tumor cells.5, 6 This 

mechanism is known for tumor immune escape,5, 6 which makes the expression level of PD-L1 

an important immune checkpoint.7 

The detection of PD-L1 and the measurement of its expression level have demonstrated 

significant potential for monitoring cancer progression and response to immunotherapy. Current 

immunoassay technologies for the cancer biomarker detection, including the enzyme-linked 

immunosorbent assay (ELISA) are accurate and simple.8 Despite the current progress in the 

development of immunosensors, microfluidic and point-of-care technologies, ELISA has been 
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identified as a gold standard and is the most widely used immunoassay technique for detecting 

and measuring disease biomarkers.9 However, there are some inevitable limitations in the use of 

ELISA, including limited sensitivity,10 which requires novel strategies to improve the ELISA 

limit of detection (LOD) and the need for reagents with high specific affinity, such as 

monoclonal antibodies (mAbs), that are not only expensive but also suffer from quality 

variations during production.11 Moreover, antibodies can degrade owing to temperature changes, 

corrosion from chemical reagents, and other perturbation conditions, which consequently affects 

the efficiency of the immunoassay.12 Therefore, stringent storage conditions (e.g., refrigeration at 

4°C) are usually required to maintain their stability. 

Several strategies have been developed to improve the performance of traditional ELISA13. 

Nanotechnology has provided a significant number of solutions. The most common strategies 

that are currently used to functionalize antibodies onto nanoparticles are covalent immobilization 

or direct physical adsorption .14 

During the last three decades, a wide range of antibody (Ab) immobilization chemistries have 

been developed through novel lab-on-a-chip technologies and biosensors, which has enhanced 

the performance of immunoassays.15 The performance of an immunoassay critically depends on 

the characteristics of the immobilized Ab because the detection sensitivity, reproducibility, 

robustness, and other bioanalytical parameters depend on the immobilization step. Therefore, the 

development of suitable strategy for immobilization of antibodyis a critical requirement that 

would affect the analytical performance of an immunoassay significantly.16 

Various antibody immobilization methods have been employed for the preparation of 

immunoassays, including covalent/noncovalent bonding, oriented, site-specific, peptide nucleic 

acid (PNA)- as well as DNA-directed, and recombinant antibody binding.16 However, the 
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immobilization of antibodies limits their movement, which could affect their three-dimensional 

conformation. These immobilization techniques suffer from critical limitations including random 

antibody orientation, nonspecific binding, low stability, uncontrolled immobilized-antibody 

density, antibody denaturation and conformation change, reduced antibody functional activity, 

and the need for extra reagents including cross-linkers, fragment crystallizable (Fc)-binding 

proteins, custom manufactured recombinant antibodies, and bioconjugate DNA/PNA.16

A metal–organic framework (MOF) is a kind of hybrid material containing metal ions or clusters 

coordinated to organic linkers. It possesses a large surface area, high porosity in addition to a 

tunable pore size.17 These features make MOFs suitable candidates in various applications 

including catalysis,18 gas storage,19 sensors,20 and functional devices.21 MOFs as a tool for the 

encapsulation of biomolecules has been a matter of research studies in recent years.22, 23 It has 

been shown that enzymes encapsulated in a MOF show limited structural changes, leading to 

maintenance of the biological function of the enzyme even under denaturing conditions.24 Naik 

and co-workers investigated the effect of MOF coatings on the preservation of the biorecognition 

capability of bio-conjugated antibodies after exposure to high temperatures (40°C and 60°C). 

They found that the stability of antibodies was improved in a wide temperature range, which 

might be practical for the fabrication of antibody-based biochips.25 The porous structure of 

MOFs could potentially protect the biomolecules from environmental conditions and improve 

their activity. MOFs-based biomineralization has been used for the transport, storage, sensing, 

and treatment of cargos including biomolecules, biological catalysts, and living organisms.26

Despite the many available strategies for ELISA fabrication, for the first time, we have 

introduced the application of MOFs for the fabrication of an ELISA platform. MOFs  have 

possessed nanoporous system with thermal stability and tunable physicochemical properties. 
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Furthermore, MOFs can be introduced as a host for encapsulation of biomolecules due to their 

ability to protect the biomolecules from rigorous environments and protect their biological 

functions 27. Moreover, due to a unique composition, diverse structures, and tunable size MOFs 

are an excellent alternative for novel immunoassay 28. The MOF-based polymeric nanoparticles 

provide the large surface-to-volume ratios which promote the efficient immobilization of 

antibodies on the nanoscale surface that consequently increase the capture efficiency of substrate 

surfaces. 

Herein, a new strategy for the immobilization of antibodies on an ELISA plate using MOFs to 

form an antibody@MOF composite is presented. Pretreatment of the surface of the plate with a 

binding agent is critical to obtain an antibody@MOF layer that is more stable and possess high 

integrity. Therefore, the polystyrene pattern coated with polydopamine-polyethyleneimine 

(PDA-PEI) was utilized to induce the basement for the nucleation of the antibody@MOF 

composite on a polystyrene substrate. PEI contains abundant NH2 groups to covalently 

immobilize PD-L1 antibodies. The Zeolite Imidazolate Framework-8 (ZIF-8) MOF was selected 

based on the following features: (a) biocompatibility and biodegradability (low cytotoxicity); (b) 

low cost and long durability,29, 30 and (c) high stability under experimental conditions (e.g., 

higher temperatures and extremely alkaline and acidic conditions) that are harsher than those 

used for ELISA.31, 32 In this article, we describe a simple method based on ELISA method for the 

development of an inexpensive, rapid and highly-sensitive in vitro diagnostics kit. This proposed 

immobilization approach only encompasses the addition of an antibody to ZIF-8 to form a stable 

complex on the PDA-PEI pattern on the polystyrene surface. The fabricated MOF-based ELISA 

improved the LOD and stability of the conventional ELISA kit under perturbation conditions, 

which demonstrated its potential to significantly improve current immunoassays.
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 Experimental section

Materials

A microtitre ELISA plate was purchased from FALCON (U.S.A), Human PD-L1 Simple Step 

ELISA® Kit was provided by Abcam (Cat No ab214565, Australia), Tris (hydroxylmethyl) 

aminomethane, dopamine hydrochloride (DA), polyethyleneimine (PEI, Mw=1000 Da), 2-

methylimidazole, phosphate buffered saline (PBS) and zinc nitrate hexahydrate were purchased 

from Sigma–Aldrich (USA).

 Polydopamine coating of polystyrene microtiter ELISA plates

A polystyrene microtiter ELISA plate was coated with a thin layer of PDA-PEI based on a 

previously published protocol.33 A PDA film can form on organic/inorganic surfaces through 

self-polymerization of dopamine under alkaline conditions.34 PEI in the dual polymerization of 

PDA-PEI, endures Michael addition or Schiff-base reactions with a catechol group in PDA to 

produce a strong bio-adhesive layer on the surface of substrate. Therefore, the role of PEI was as 

a cross-linking agent with PDA. 35 Briefly, each well of a microtiter ELISA plate as the model 

substrate was treated with 200 µL of freshly prepared solution of dopamine hydrochloride (2 

mg/mL), PEI (1000 MW, 2 mg/mL) in Tris-buffer solution (0.05 M, pH 8.5). The treated plate 

was incubated overnight at room temperature and washed three times with Milli-Q® water. For 

each experiment, a fresh dopamine hydrochloride solution was used to prevent premature 

polymerization of dopamine. 

Preparation of antibody@ZIF-8 

ZIF-8 was used as a representative MOF structure in this study. ZIF-8 was synthesized through a 

self-assembly process, as previously described 33. Briefly, the ZIF-8 precursor solution was 

prepared from zinc nitrate hexahydrate, Zn(NO3)2·6H2O (0.027 g) and 2-methyl imidazole, 

(0.566 g) in a total volume of 10 mL Milli-Q® water. Both the detector and capture anti-PD-L1 
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antibodies (from Abcam ELISA kit) were provided in 10× concentration and mixed with a ZIF-8 

solution to obtain a 1× concentration, dispensed into the PDA-PEI coated wells, and incubated 

for 60 min at room temperature using a plate shaker. A schematic illustration of the workflow is 

shown in Figure 1. The resultant antibody@ZIF-8/PDA-PEI was used for a highly sensitive 

immunoassay of PD-L1.

Surface characterization

The structure of the antibody@ZIF-8/PDA-PEI was characterized by using microscopy imaging 

and spectroscopic techniques. Scanning electron microscopy (SEM) was used to probe the 

surface morphology of the modified microtiter ELISA plate. The modified surfaces were sputter-

coated with a 15 nm Au/Pd coating under vacuum to achieve a good conductivity. SEM images 

were then taken using a scanning electron microscope (ZEISS SUPRA55VP, USA) with an 

accelerating voltage of 5 keV. The thickness of the ZIF-8 and PDA-PEI on the surface of the 

microtiter ELISA plate was measured by atomic force microscopy (AFM; Park systems XE7). A 

V-shaped cantilever with a frequency of 286.2 kHz was used to capture the surface morphology 

in nonconductive mode. The average values of the roughness were reported to determine the 

surface roughness of the polymer films on a scan area of 5.0 µm × 5.0 µm. The captured 

topographical images were analyzed using ProfilmOnline and Gwyddion 2.55 software.

The chemical composition of the modified microtiter ELISA plate wells was analyzed by 

Fourier-transform infrared spectroscopy (FT-IR) (MIRacle 10, Shimadzu, USA). FT-IR spectra 

were acquired in triplicate in the range of 4000–400 cm−1 with a resolution of 4 cm−1 and 

averaging 16 scans for each spectrum. Furthermore, powder X-ray diffraction (XRD) (D8 

Discover BRUKER) was performed to identify the ZIF-8 crystalline structure on the surface of 

the PDA-PEI-coated microtiter ELISA plate. Crystallographic data of the antibody@ZIF-8/PDA-

PEI patterns was obtained by scanning the sample through a 2θ range of 5–40o with a step size of 
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0.019o and 1 second per step. The XRD data analysis was performed using High Score Plus 

software and compared with the database from the International Center for Diffraction Data.

The water contact angle (WCA) was measured using a drop shape analyzer (DSA 100, Kruss, 

Germany) and One Attension software (14 µL, a geometrical method sessile drop, water, 

formamide, and glycerol). An image of a water droplet on the surface of a microtiter ELISA 

plate, PDA-PEI -coated, and PDA-PEI /ZIF-8-coated surface was captured with a CCD camera. 

The contact angles were calculated by drawing a tangent line near the edge of each droplet; the 

values are reported as the average of three measurements performed at three locations on the 

surface. Additionally, to probe the intermolecular interactions at the interface surface free energy 

(SFE) of a solid was calculated using the Oss and Good acid-base method from the contact angle 

measurement.36

Detection of PD-L1 using the modified ELISA

The detection of the PD-L1 antigen was performed using three different platforms including the 

commercial ELISA kit, modified ELISA in PDA-PEI -coated wells, and modified ELISA using 

antibody@ZIF-8/PDA-PEI. To achieve standard curves, which were defined as the optical 

density (OD) versus the protein concentration, eight concentrations of PD-L1 (0, 21.88, 43.75, 

87.5, 175, 350, 700, and 1400 pg/mL) were prepared and examined using the three 

configurations based on the ELISA protocol. Briefly, the precursors of ZIF-8 were added to the 

microtiter ELISA plate wells coated with PDA-PEI and incubated with both capture and detector 

antibodies for 60 minutes at room temperature. Then, the wells were washed with the washing 

buffer and incubated with 3,3’,5,5’-tetramethylbenzidine (TMB) development solution for 10 

min. Finally, the stop solution was added and the OD was immediately recorded at 450 nm. For 

statistical analysis , the OD measurements were conducted in triplicate. A concentration of 0 
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pg/mL of PD-L1 antigen, which means, no addition of antigen, was used to examine whether the 

PDA-PEI and ZIF-8/PDA-PEI platforms show self-absorbance in the immunoassay. 

 Examining the stability of antibody@ZIF-8 at various pH and temperatures

We hypothesized that MOF can be a powerful class of material for preserving the stability of 

antibodies at various temperatures and pH. To test this hypothesis, the activity of the antibodies 

in both antibody@ZIF-8/PDA-PEI ELISA and commercial ELISA was assessed under different 

pH and temperature conditions. The antibody@ZIF-8 was incubated for 10 min at room 

temperature to form the ZIF-8 crystals around the antibody. The resulting antibody@ZIF-8 

composite and the original antibody as a control were placed in microtubes and subjected to 

various temperatures ranging from 45°C to 85°C at 10°C intervals for 30 min. Then, the PD-L1 

antigen at a concentration of 350 pg/mL was added to each mixture, moved to the microtiter 

ELISA plate well, and incubated for 60 min at room temperature. After incubating with TMB 

and a stop solution, the OD was recorded at 450 nm. 

In order to examine the stability of the antibody@ZIF-8 at various pH, PBS solution with 

different pH values (ranging from 5 to 10 with an increment of 1) were used. Both the capture 

and detector antibody@ZIF-8 mixture was incubated with PD-L1 antigen at a concentration of 

350 pg/mL. The PBS solution with different pH were added to wells and allowed to stand for 60 

min, whereas in the control group, both the capture and detector antibodies without ZIF-8 were 

subjected to various pH treatments. 

The sensitivity measurements
To assess the sensitivity of the MOF-based ELISA, the concentration of the capture and detector 

antibodies was further decreased 20, 100, and 200 times, which we named 0.05x, 0.01x, and 

0.005x, and a PD-L1 ELISA was conducted in three different types of wells, (conventional 
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ELISA, PDA-PEI -coated, and antibody@ZIF-8/PDA-PEI). The LOD was calculated according 

to the standard formula reported in the literature.37, 38

The Sensitivity was calculated by measuring the slope of ELISA standard curve (Absorbance / 

concentration of antibody (absorbance/pg/mL)).

Statistical analysis:

Statistical analysis of ELISA in all three studied platforms including: antibody@ZIF-8/PDA-PEI, 

conventional ELISA in PDA-PEI coated wells and conventional ELISA in exposure to elevated 

temperatures and various pH was performed using T-test in SPSS 22 software. Experiments were 

carried out at least three times.  Statistically significances was measured as the p < 0.05 .

Results and discussions

 Surface characterization 

SEM images showed the morphologies of polystyrene substrate with and without ZIF-8 

precursors are quite distinctive and the PDA-PEI coating formed a dense, thick film above the 

polystyrene microtiter ELISA wells (Figure 2A). The antibody@ZIF-8 platform had the same 

polyhedral morphology as pristine ZIF-8 (Figure 2AI, II) the small size of antibody protein 

makes them invisible at this magnification. Due to the presence of a wide range of functional 

groups in proteins (such as carbonyl, hydroxyl ,carboxyl,  and imidazole groups), they consider  

as nucleation sites for the formation of ZIF-8 crystals.39 Besides, SEM images illustrate that the 

crystal morphology of ZIF-8 uniquely depended on the antibody. These images indicated that the 

microtiter ELISA wells were successfully covered by a hydrophilic PDA-PEI layer. 

The AFM image of the microtiter ELISA well in Figure 2B IV showed the native microtiter 

ELISA well is a flat surface. In comparison, the image displayed in Figure 2B III demonstrated 

that a nano-sized thin film was distributed on the surface uniformly with enhanced roughness 
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after treatment with ZIF-8. Based on Figure 2BII numerous evenly distributed sharp peaks on the 

microtiter ELISA well surface that previously coated with PDA-PEI confirmed the ZIF-8  

formation on the surface. The average values of the roughness of all surfaces were measured by 

atomic force microscopy That sensed the surface roughness of the sampleby a change in the laser 

beam and the deflection of the cantilever,40; thus it can generate  the topography of surface. The 

results were analyzed using Gwyddion 2.55 software, which indicated average roughness values 

of 20.47 nm, 13.22 nm, 5.296 nm, and 180 pm for the antibody@ZIF-8/PDA-PEI, ZIF-8/PDA-

PEI, PDA-PEI, and empty microtiter ELISA wells, respectively. 

 In Figure 2BI the distribution of multiple sharp peaks on the PDA-PEI treated microtiter ELISA 

well surface demonstrated the morphology of antibody@ZIF-8-loaded PDA-PEI treated surface. 

Overall, the observations made from the SEM and AFM images confirmed that both PDA-PEI 

and ZIF-8 could increase the surface roughness and consequently prepare larger surface area for 

PD-L1 antibodies to be immobilized on the ZIF-8/PDA-PEI-derived microtiter ELISA well 

surface, which is suitable for the formation of a sandwich-type ELISA format.

The functional groups present in the structures of PDA-PEI and ZIF-8 were identified using FT-

IR (Figure 3A). Strong bands at 3135, 2929, 1635, 1585, 1510, 1367, 1333, 1146 and 426 cm−1 

were observed in the FT-IR spectrum of the ZIF-8 sample after formation of ZIF-8 on the PDA-

PEI patterning. The peaks detected at 3135 and 2929 cm−1 were attributed to aromatic and 

aliphatic C–H asymmetric stretching vibrations, respectively. The signal at approximately 1635 

cm−1 was attributed to the C C stretching mode, whereas the band at 1585 cm−1 corresponded to 

the C N stretch vibration. The peaks at 1300–1460 cm−1 and 1146 cm−1were attributed to the 

entire aromatic ring stretching, and aromatic C–N stretching mode, respectively. Interestingly, a 

sharp Zn–N stretching vibration band was observed at 426 cm−1, which suggested the formation 
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of an imidazolate through the chemical combination of zinc ions and nitrogen atoms of the 

methyl imidazole groups.41 The FT-IR spectrum of the surface modified with PDA-PEI 

patterning contained a peak in the 1510–1560cm−1 range, which was attributed to N–H 

vibrations, and a peak between 3200–3400 cm−1, which indicated the presence of hydroxyl 

groups. The FT-IR spectrum of the antibodies@ZIF-8 contained stretches at 1530 cm−1 owing to 

the presence of antibodies, which corresponded with the characteristic amide II band (mainly 

from a combination of NH bending and CN stretching modes). Furthermore, in the FT-IR 

spectrum of antibodies@ZIF-8/PDA-PEI, shifting the amide vibrational mode for the antibodies 

to a higher wave number indicated strong interactions between the antibody and the ZIF-8 due to 

the coordination between the Zn cations and the carbonyl group of the protein. The characteristic 

ZIF-8 peak at 426 cm−1 was also observed in the antibodies@ZIF-8/PDA-PEI, confirming the 

formation of a ZIF-8 structure. The FT-IR results for ZIF-8 and antibody@ZIF-8 were consistent 

with the results of Feng et al., showing the presence of the same functional group.42 Moreover, 

Mohammad and co-workers reported similar FT-IR peaks for PDA-PEI patterning.33 

The XRD pattern of ZIF-8/PDA-PEI consisted of a broad peak owing to the presence of 

amorphous PDA-PEI. The XRD pattern was consistent with the dominant sharp peaks displayed 

by simulated ZIF-8 patterns;43 additionally for antibody@ZIF-8/PDA-PEI, the discrete peaks 

recognized were at 2θ of 18.02° , 12.7°, 10.3° and 7.3°,  corresponding to 222, 211, 200 and 110, 

orientations, respectively (Figure 3B). These results prove the existence of crystal structure of 

ZIF-8.

Changing the surface chemistry and microstructure could tuned the wetting properties of a 

surface The calculated WCAs and the corresponding SFEs of the modified surfaces are shown in 

Figure 3C. The WCA of polystyrene significantly reduced from 65.77° to 54.23° after the PDA-
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PEI patterning, whereas the SFE increased from 47.2 mN/m to 61.7 mN/m. We attributed these 

changes to the changes in the surface chemistry owing to the higher number of the catechol 

group, which increased the surface chemical attraction to molecules of water and enhanced the 

hydrophilicity. The increase in the hydrophilicity after the introduction of the PDA-PEI coating 

was due to the chemical nature of the PDA layer. Mohammad et al.33 also reported enhancement 

of the hydrophilicity after coating an ELISA plate with PDA-PEI. It has been shown that an 

increase in roughness results in increasing hydrophilicity.44 Our results demonstrated that the 

formation of ZIF-8 and antibody@ZIF-8/PDA-PEI thin films slightly decreased the WCA from 

65.77° in polystyrene to 25.14° and 30.48° in ZIF-8 and antibody@ZIF-8/PDA respectively. The 

change in WCA that make the patterning much more hydrophilic was owing to the ZIF-8 layer 

formation, which increased the surface rugosity. Wenzel explained the effect of morphology and 

surface chemistry on the WCA using the following equation (Eq. 1).45

Cos θ = r Cos θe   (1)

in which θe is the WCA on a flat surface, θ is the apparent contact angle, and r is the ratio of the 

actual solid/liquid contact area to its vertical projection. An increase in roughness enhances the 

value of r and results in hydrophilicity. The hydrophilicity resulting from the PDA and ZIF-8 

coating led to better absorption of droplets (e.g., antibody) to the surface.44

High thermal and pH stability of antibody@ZIF-8

The bio-mineralization of ZIF-8 was owing to the enrichment of precursors on the PDA-PEI-

coated wells, which possesses hydrophilicity properties, followed by the chelation of the zinc ion 

precursors on the surface with the catechol moiety in PDA.46 This enabled the spontaneous ZIF-8 

growth above the PDA-PEI coating.47-49 The ability of MOFs to preserve the stability of proteins 

and antibodies is attributed to the tight encapsulation of proteins, which resulted from the small 
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pore size of the MOF and the coordination interactions between the Zn cations of ZIF-8 and the 

carbonyl groups of the protein backbone .39 The loading of biomacromolecules in the pore 

networks of MOFs could potentially protect them from the outer environment. Moreover, it has 

been demonstrated that the MOF pore structure not only maintains the activity of stored 

biomolecules but also improves their activity through the self-assembly (biomineralization) 

process.26 The results indicated that after heating treatments, the unprotected antibody lost its 

main activity in ELISA whereas antibody@ZIF-8 maintained its biological activity up to 55°C 

(Figure 4A). The activity of the antibody@ZIF-8 decreased when the temperature was increased 

to 65°C. However, the antibody@ZIF-8 structure still showed a higher OD at 65°C compared 

with the standard ELISA either in empty wells or PDA-PEI -coated wells. The effect of the 

PDA-PEI coating on the protein stability at various temperatures was much lower than ZIF-

8/PDA-PEI; however, its detected OD was still higher than that in commercial ELISA wells. 

Results of ELISA using antibody@ZIF-8/PDA revealed that by increasing the temperature, the 

detected OD using the antibody@ZIF-8/PDA platform ELISA will be decreased. However, this 

reduction compares to that of PDA-PEI coated well ELISA and conventional ELISA was not 

significant (p value=0.22). To explain quantitatively, the detected OD in conventional ELISA in 

exposure to elevated temperature (45ºC) showed a dramatic decrease from 0.8 to 0.2, and by 

increasing the temperature to 55ºC, it decreased to 0.17, which is the confirmation for the loss of 

antibody bioactivity. Similarly, in ELISA performed on PDA-PEI coated wells, detected OD in 

exposure to elevated temperature (45ºC) showed a sharp decrease from 2 to 0.3, and by 

increasing the temperature to 55ºC, it decreased to 0.2, which is the confirmation of the loss of 

antibody bioactivity. However, in antibody@ZIF-8/PDA-PEI platform ELISA the detected OD 

in exposure to elevated temperature (45ºC) showed a slight decrease from 2.55 to 2.4. By 
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increasing the temperature to 55ºC, it decreased to 2, which is confirmation of the antibody 

stability in elevated temperature. However, when the temperature increased to 65ºC, the OD was 

decreased dramatically to 0.2, which proves the loss of antibody bioactivity (Figure 4A).  

Similarly, the results clearly proved the stable behavior of antibody@ZIF-8 when exposed to 

various pH from 5 to 10. The ability of the PDA-PEI coating to maintain the antibody activity at 

various pH was much lower than ZIF-8; nonetheless, its activity was still higher than the activity 

of antibodies in commercial ELISA wells (Figure 4B). To explain quantitatively, the detected 

OD in conventional ELISA in exposure to pH=5 showed a dramatic decrease from 0.8 to 0.15, 

and by increasing the pH to 10, the OD decreased to 0.07, which proves the antibody lost its 

bioactivity. Moreover, in ELISA performed using antibody@ZIF-8/PDA-PEI platform, the 

detected OD in exposure to pH=5 showed a slight decrease from 2.55 to 2.04, and by increasing 

the pH to 10, the OD decreased to 1.1 that is confirmation of the antibody stability in acidic and 

alkaline condition (Figure 4B). The reduction of the OD in the antibody@ZIF-8/PDA ELISA, in 

exposure to various pH compare to that of PDA-PEI coated wells ELISA and conventional 

ELISA was not significant (p value=0.14).  Feng et al.42 showed that protecting antibodies with 

ZIF-8, ZIF90, and ZIF8X resulted in extraordinary thermal, chemical, and mechanical stabilities. 

The results in our study indicate that ZIF-8 is a protective agent for biological molecules, which 

was consistent with the results reported by Feng et al. Furthermore, the novel use of MOF for 

biomineralization of an antibody improved the LOD in an ELISA assay. Tan and co-workers50 

demonstrated similar results by replacing the antibody-conjugated enzymes in ELISA with 

antibody-covered Cu3(PO4)2@PDA nanosheets. They revealed that a high number of attached 

antibodies to the flat nanosheets resulted in a low detection limit. They also proved the antibody-

covered Cu3(PO4)2@PDA nanosheets were stable under conditions that are usually not favorable 
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to enzymatic activity. In another report, Mohammad et al.33 employed a mussel-inspired PDA-

PEI coating to pattern horseradish peroxidase (HRP) and glucose oxidase (GOx)-ZIF-8 in 

microfluidic channels. Their results indicated that in situ ZIF-8/GOx&HRP composites prepared 

on PDA-PEI patterns showed a higher acidic and thermal stability compared to the samples 

without ZIF-8. More recently, Zhang and co-workers51 developed a MOF delivery system 

through the encapsulation of CpG oligodeoxynucleotides (ODNs) into ZIF-8 nanoparticles. Their 

results emphasize the high stability of ZIF-8/CpG ODNs complexes in various physiological 

environments. Furthermore, Wang et al.52 were able to maintain the biorecognition capabilities 

of antibodies exposed to increased temperatures (40 and 60°C) by using MOF coatings of 

antibodies (IgG/anti-IgG) to immobilize them on sensor surfaces. In the present study, we 

successfully immobilized antibodies on the surface of microtitre ELISA plates using a simple 

one-step cost-effective material to improve the LOD of conventional ELISA kit by 225 times and 

examined their stability at elevated temperatures and a wide pH range to confirm their heat, 

acidic, and alkaline stability. The configuration used in this work eliminates the need for strict 

storage conditions for antibodies and preserves the biofunctionality of antibodies in harsh 

environmental conditions. In another study, Liao and co-workers24 integrated catalase (CAT) 

enzyme in ZIF-90 and ZIF-8 microcrystals and showed the enzyme maintained its biological 

features in a broader variety of conditions, including high temperatures (i.e., 80°C) and addition 

of denaturing reagent (i.e., urea). 

Antibody@ZIF-8 improved LOD and sensitivity of ELISA

We anticipated that the present PDA-PEI - and antibody@ZIF-8/PDA-PEI -coating method 

would improve the LOD of the immunoassay. The LOD on the PDA-PEI -coated wells (0.313 

pg/mL) and antibody@ZIF-8/PDA-PEI -coated wells (0.035 pg/mL) improved 25 times and 225 
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times, respectively, compared with that of the commercial ELISA kit (7.89 pg/mL). Liu et al.53 

used a MOF-based sandwich ELISA system for the detection of alpha-fetoprotein (AFP), a 

biomarker for liver cancer, however they modified their wells using PEI which could detect 0.02 

ng/mL AFP in blood. In the present study the further modification on PDA-PEI coated surface 

with ZIF-8 leads to thousand time improvement in the LOD compare with their study. Our 

proposed coating methods improved the detection limit of the PD-L1 immunoassay 25 times, 

which is much higher than that recently reported by Wang et al..54 They integrated the rabbit 

anti-mouse immunoglobulin G antibody (RIgG) with Cu-MOF with peroxidase-like activity 

(RIgG@Cu-MOF) for colorimetric immunoassay detection of mouse IgG (mIgG) in serum. The 

limit of detection of RIgG@Cu-MOF toward mIgG was 0.34 ng/mL which was 3 times more 

sensitive than that of horseradish-peroxidase-labeled RIgG. Additionally, they reported a similar 

stability against pH, high temperature, and long-time storage, using different types of MOFs. 

The sensitivity of the antibody@ZIF-8/PDA-PEI ELISA was also studied. The sensitivity of 

antibody@ZIF-8/PDA-PEI was measured as the value of absorbance over the antibody 

concentration 33, 55. The sensitivity of antibody@ZIF-8/PDA-PEI was linear when examined in a 

low concentration antibody (ranging from 0, 21.88, 43.75, 87.5, and 175 to 350 pg/mL). The 

ELISA performed using the antibody@ZIF-8/PDA-PEI platform had a higher sensitivity of 

0.0862 absorbance/pg/mL compared with the ELISA performed in wells coated with PDA-PEI 

(0.0424 absorbance/pg/mL) and conventional ELISA (0.005 absorbance/pg/mL; Figure 4D). 

This indicated 15.12 and 7.4 times higher sensitivity of the antibody@ZIF-8/PDA-PEI and PDA-

PEI platforms, respectively, compared with conventional ELISA. Our platform also showed 

(Figure 4C) that even after decreasing the number of antibodies 200 times; we were still able to 

obtain the same efficient results as the standard antibody used for ELISA. This makes this 
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technology more versatile and cost-effective for ELISA and other techniques that use protein and 

antibody immobilization for biomarker detection. Results of this study showed higher 

improvement in LOD (225- fold) compare to other published MOF-based ELISA methods54, 56, 

57. The MOF-based ELISA techniques and other metal and metal oxide-based techniques to 

improve the LOD of conventional ELISA have been listed in Table 1 and elsewhere13. 

The ELISA results of three different well configurations, commercial ELISA wells, PDA-PEI -

coated wells, and PDA-PEI /ZIF-8 coated wells, indicated that the OD in antibody@ZIF-8 wells 

was higher than that in the PDA-PEI -coated wells, and much higher than that in commercial 

ELISA wells. These results proved our hypothesis that the ZIF-8/PDA-PEI configuration 

increased the sensitivity of the immunoassay (Figure 4C). Moreover, both configurations 

including the PDA-PEI -coated and ZIF-8/PDA-PEI -coated wells did not show any measurable 

OD in the absence of the PD-L1 antigen, which confirmed that there was not any false-positive 

absorbance.

We proposed a protective coating approach based on MOFs to proficiently improve the LOD of 

current ELISAs and also protect antibodies against perturbation environments. To the best of our 

knowledge, this is the first time that a MOF coating has been used to improve the LOD of a 

commercial ELISA kit. There are three major factors that could contribute to the enhancement of 

the LOD and sensitivity of the antibody@MOF in a commercial ELISA kit: 1) The antibody 

could adsorb physically to the polystyrene surface by interacting with the hydrophobic groups 

exist in antibody molecules without requirements for ZIF-8/PDA-PEI. A higher Ab 

immobilization density could be reached on this platform to promote improved the physical 

adsorption of the antibody onto the polystyrene surface because of the increase in surface 

roughness, which provides a larger surface area. The higher surface area results in higher 
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absorption and detection. 2) This platform not only provides the specific orientation for 

immobilized antibodies owing to the reduction of steric hindrance and tight confinement of the 

antibodies, but it also inhibits the random and upside down orientation of the antibody, which 

increases the exposure of the antibody’s antigen binding fragment to a higher amount of 

antigens. 3) The hydrophilicity of the surface is improved as a result of coating with PDA-PEI, 

which would be beneficial for capturing of antibodies. 

 

Conclusions

A MOF-based sandwich immunoassay was developed for highly sensitive detection of human 

PD-L1 antigen using modified ELISA. The antibody@MOF was highly stable against elevated 

temperature and pH, as indicated by no decrease in the detection response when it was exposed 

to a pH range of 5-10 and a temperature up to 55°C. The proposed method resulted in an LOD of 

0.035 pg/mL and 0.313 pg/mL in antibody@ZIF-8/PDA-PEI and PDA-PEI -coated 

configurations, which was 225 and 25 times more sensitive than conventional ELISA, 

respectively. The developed immunoassay had a 15.12-fold higher sensitivity compared with the 

commercially available ELISA, which represent significant potential for the future development 

of in vitro diagnostic kits and immunoassays that are highly sensitive for various disease 

biomarkers and analytes.
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List of Figures

Figure 1. The workflow of the surface modification for the immunoassay using a PDA-PEI and 
ZIF-8 platform and their stability against high temperature and various pH. The microtitre 
ELISA plate coated with thin layer of PDA-PEI and the anti PD-L1 antibody was added in to 
precursors of ZIF-8, following the addition of the certain concentration of PD-L1 antigen and 
incubate for 1 hour in room temperature on 400 rpm plate shaker. The stability of proposed 
platform against elevating pH and temperature was also investigated during incubation time.

Figure 2. (A) SEM images of (I) antibody@ZIF-8/PDA-PEI, (II) ZIF-8/PDA-PEI, (III) PDA-
PEI coated well, (IV) empty well with 5000x magnification (Scale bar: 2 µm). The thin film of 
PDA/PEI formed on the surface of microtiter ELISA wells. (B) AFM images of (I) empty well, 
(II) PDA-PEI coated well, (III)ZIF-8/PDA-PEI , (IV)antibody@ZIF-8/PDA-PEI. Surface 
roughness increases by formation of thin film of ZIF-8 on the surface of PDA-PEI coated wells.

Figure 3. (A) FT-IR spectra of antibody@ZIF-8/PDA-PEI, ZIF-8/PDA-PEI, PDA-PEI coated 
well and  Empty well. Measurements were done from 4000 to 400 cm-1 and PDA-PEI showed 
intensive peak at 1650cm-1 whilst ZIF-8 have important peak at 426cm-1. (B)XRD patterns of 
antibody@ZIF-8/ PDA-PEI, ZIF-8/PDA-PEI, PDA-PEI coated well and Empty well. The 
intensive peaks in 7.3, 10.3, 12.7, 16.5, 18 which is specific for ZIF-8 crystalline structure proves 
the dense formation of ZIF-8 crystalline layer on surface of microtitre ELISA plate. (C)Water 
Contact Angle and Surface Free Energy of antibody@ZIF-8/ PDA-PEI, ZIF-8/PDA-PEI, PDA-
PEI coated well and  Empty well.

Figure 4. ELISA for detection of PD-L1 antigen in exposure to various (A) temperatures and (B) 
pH and (C Standard Curve for PD-L1 antigen in PDA-PEI coated wells, antibody@ZIF-8 in 
PDA-PEI coated wells and empty wells. (D) The effect of decreasing antibody concentration on 
OD detection. Up to the concentration of 350pg/mL of PD-L1 antigen the detection graph was 
linear. The lines show linear trend line.  
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Table 1. The comparison of using ZIF-8/PDA-PEI platform with other MOF, metal, and metal oxide-based 
platforms for ELISA in the literature.

Types of 
nanoparticles Signal Analyte Detection range LOD

Comparison with 
traditional ELISA

(LOD
improvement)

Ref

ZIF-8/PDA-PEI Colorimetric PD-L1 21.87 –1400 pg/mL 0.035 
pg/mL 225-fold This 

study

Platinum 
nanocubes Colorimetric

Prostate-
Specific 
Antigen

20-2000 pg/mL 0.8 
pg/mL

10-fold 58

Gold nanoparticle Colorimetric C reactive 
protein 0.1 – 1000 ng/mL 0.1 ng/mL 100-fold 59

Magnetic 
nanoparticles Colorimetric Aflatoxin B1 0.002 – 0.2 ng/mL 2 pg/mL 10-fold 60

Mesoporous  
Silica 

nanoparticles 
Sandwich

Colorimetric hIgG 0.1 – 1000 ng/mL 0.5 
ng/mL 20-fold 61

ZnFe2O4@ 
multiwalled 

carbon nanotube
Colorimetric Carcinoembry

onic Antigen 0.005 – 30 ng/mL 2.6 
pg/mL

77-fold 56

Hemin- 
Au@MOF Colorimetric alpha-

fetoprotein 0.080 – 43 ng/mL 0.020
ng/mL 5-fold 57

Cu-MOF Colorimetric mIgG 1 – 100ng/mL 0.34
ng/mL 3-fold 54
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