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Abstract— The notion of artificially engineered materials, 

which has a long history dating back to the late part of the 19th 
century, gained considerable momentum two decades ago. The 
excitement associated with such metamaterials and the structures 
they have inspired has not waned since then. Rather, it has grown 
substantially. Metamaterial-inspired structures continue to 
challenge our imagination and our physics and engineering 
foundations. They are impacting wave-matter interactions across 
many frequencies and even across diverse fields of science and 
technology. They are now enabling many commercial 
opportunities. It is anticipated that they will provide access to yet 
new physical phenomena and will facilitate many novel future 
applications. 
 
 

Index Terms—Metamaterials, metamaterial-inspired 
structures, wave-matter interactions. 

 
 

his year marks the 20th anniversary of the DARPA 
“Meta-Materials” workshop that jump-started the modern 

era of metamaterials. In the dawn of this new era we gathered 
together a nascent group of AP/URSI researchers, who had 
begun exploring the exotic physics and engineering 
applications of such artificial materials, for special sessions at 
the 2002 IEEE Antennas and Propagation Society International 
Symposium and USNC/URSI National Radio Science Meeting 
in San Antonio TX. At the same time, we had begun openly 
advertising for submissions for a Special Issue of the IEEE 
Transactions on Antennas and Propagation on Metamaterials. 
As we continued to do later in our 2006 IEEE-Wiley book, 
Metamaterials: Physics and Engineering Explorations [1], we 
gathered together papers reporting various unconventional 
electromagnetic features of homogenized artificial materials in 
which the unit cells are much smaller than a wavelength as well 
as of electromagnetic band-gap structures.  

The resulting October 2003 special issue (vol. 51, no. 10, 
Part 1) presented state-of-the-art research advances that 
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included theoretical, numerical, and experimental contributions 
to the understanding of the behavior of several classes of 
metamaterials and to their potential applications to 
electromagnetic radiating and scattering systems. Several of the 
articles laid the foundations of future efforts that have persisted 
in the last two decades and, notably, of many current efforts. 
Metamaterials, like many other “hot” topics of our time, have 
experienced the well-known “hype cycle”. We believe that it is 
fair to say that we are now well into the stages of 
“enlightenment” and “productivity” in which actual devices 
and systems with superior performance characteristics inspired 
by their concepts and properties have begun appearing in 
commercial and governments systems. What are some of the 
initial ideas that have persisted and have evolved into many 
current works such as those reported in this special issue? 

The paper by R. W. Ziolkowski and A. Kipple entitled, 
“Application of double negative materials to increase the power 
radiated by electrically small antennas,” [2] led to exciting 
follow-up efforts on metamaterial-based antennas [3] and later 
to metamaterial-inspired antennas [4]. The concept that 
metamaterial unit cells could be resonant and much smaller 
than a wavelength provided an opportunity for the consequent 
development of a large variety of electrically small near-field 
resonant parasitic (NFRP) antenna systems [5]. Ziolkowski and 
his team have since extended this NFPR paradigm from the 
original basic electric and magnetic radiators to a large variety 
of multi-functional electrically small antenna systems 
simultaneously exhibiting high efficiency, large bandwidth and 
high directivity [6]-[12]. Moreover, it has led to the realization 
of both passive and active optical nanoantennas based on 
core-shell nanoparticle systems tailored to either resonantly 
enhance or jam the fields radiated by the quantum emitters 
exciting them [13]-[18]. Recent Huygens dipole and multipole 
antennas [19]-[28], Huygens dipole nanolasers [29], and 
superdirective Huygens multipole antennas [30] and nano 
antennas [31] have evolved from the same metamaterial- 
inspired physics principles.  

The paper by A. Alú and N. Engheta entitled, “Pairing an 
epsilon-negative slab with a mu-negative slab: resonance, 
tunneling and transparency,” [32] led to many following efforts 
by the authors. These have included the well-known “scattering 
cancellation” cloaking and transparency [33]-[36] and extreme 
metamaterial-inspired developments such as epsilon- near-zero 
(ENZ) resonant tunneling techniques and systems [37], [38]. 
This was followed by a diverse series of work on light-matter 
interactions with near-zero-index metastructures, providing 
exciting platforms for exploring novel wave physics and 
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quantum optics [39]-[53].  The notion of optical “lumped” 
circuit elements, coined “optical metatronics”, was then 
developed by Engheta and his team [54]-[64]. They later 
proposed ENZ structures as substrates for “D-dot wires” to 
connect those optical metatronic circuit elements [58], [61]. 
Optical metatronics has provided a paradigm for transplanting 
ideas from electronics into nanophotonics and has led to the 
two-way linkage and merger of these two fields [54]-[65].  For 
example, the idea of analog computing has now been 
resurrected and brought into the domain of wave-matter 
interactions [65]-[68]. Recent developments have shown how 
metamaterials can be designed to perform mathematical 
operations with waves such as solving integral equations [69] 
and can be utilized as edge detectors in image processing 
[65]-[68].  

The seminal paper co-authored by E. F. Kuester and C. L. 
Holloway entitled “Averaged transition conditions for 
electromagnetic fields at a metafilm,” established the concept 
of “generalized sheet transition conditions (GSTCs)” [70] and 
were refined by them in a series of follow-up papers [71]-[75]. 
The GSTCs now constitute the basis for the analysis of 
metasurfaces, the most recent focus of much metamaterial 
research and excitement. The two seminal papers co-authored 
by G. V. Eleftheriades and his team, “Periodic analysis of a 2-D 
negative refractive index transmission line structure” [76] and 
“Periodically loaded transmission line with effective negative 
refractive index and negative group velocity,” [77] firmly 
established planar (two- dimensional) metamaterials as a 
research area that comprehensively demonstrated negative 
refraction. These efforts later led to numerous practical results 
including sub-wavelength focusing [78]-[82], sub-wavelength 
microwave-engineered devices [83]-[87], and leaky wave 
antennas [88]-[92]. The papers “Reflection phase 
characterizations of the EBG ground plane for low profile wire 
antenna applications” by F. Yang and Y. Rahmat-Samii [93]; 
“Two-dimensional beam steering using an electrically tunable 
impedance surface” by D. F. Sievenpiper et al. [94]; and 
“Design methodology for Sievenpiper high-impedance 
surfaces: An artificial magnetic conductor for positive gain 
electrically small antennas,” by Clavijo et al. [95] firmly 
established the theory of structured ground planes and artificial 
magnetic conductors. These and a host of later efforts 
confirmed the importance and utility of mushroom surfaces for 
antenna applications. The paper “Electromagnetic bandgap 
antennas and components for microwave and (sub) millimeter 
wave applications,” by P. de Maagt et al. [96] was a prelude to 
several European Space Agency electromagnetic bandgap 
(EBG) systems now flying in space. Several other papers in the 
2003 special issue analyzed some of the earliest metamaterials, 
their properties, and their applications [97]-[108]. 
 Currently much of the metamaterial literature has been 
dominated by metasurface designs, properties, and their 
applications [109]-[120]. The title of this special issue 
emphasizes this fact. Metasurfaces undoubtedly will continue 
to drive part of the future research in metamaterials. 
 Most, if not all, of the original proclaimed optical 
metamaterials were actually metasurfaces. Nanofabrication is 

necessary at visible frequencies and the registration of layers 
becomes increasingly difficult. This made bulk optical artificial 
materials initially inaccessible. Nevertheless, advanced 
fabrication techniques were developed and true bulk optical 
metamaterials were achieved. Another issue associated with 
optical meta-structures based on metal inclusions in their unit 
cells are the large losses associated with metals at visible 
frequencies. They have limited the performance of perfect 
lenses and many plasmonic applications. Active materials have 
been included in theory and in practice to achieve designs and 
metastructures that overcome those losses [121]-[123]. All 
dielectric metamaterials have provided an alternate route to 
lower losses at all frequencies [124]. Mitigation of these losses 
will translate into the realization of practical 
metamaterial-inspired optical devices. 
 Whatever the frequency range, being able to achieve the 
desired wave-matter interactions and structured output fields in 
one or two subwavelength thick layers is highly desirable if not 
essential for many practical applications. The flexibility of 
metasurfaces to provide both spatial and temporal spectral 
performance has been facilitated by modulating them in both 
space and time. Space-time modulated metasurfaces have given 
access to broken symmetries that have enabled exotic 
phenomena such as magnet-free non-reciprocal devices that 
have facilitated diode-like unidirectional propagation systems 
[125]-[136]. 
 The adaptable nature of the unit cells of metamaterials and 
metasurfaces have also provided opportunities to locally 
reconfigure and tune their responses. This has furthered their 
applicability in numerous electromagnetic radiating and 
scattering systems [137]-[141]. For example, reconfigurable 
reflecting or transmitting metastructures may facilitate future 
5G antenna systems that will require multiple steerable beams 
[142], [143]. 
 Even more astounding is the fact that since their original 
electromagnetic inception, metamaterial concepts have proven 
useful in controlling other forms of wave phenomena. They 
have now gone well beyond their electromagnetic origins into 
the acoustic [131], [133], [144]-[147], thermal [148]-[150], 
mechanical [151], [152], seismic [153], and even quantum 
[154]-[158] domains. Whether the mitigation of earthquake 
triggered waves or the modification of phonon behaviors at 
terahertz frequencies, meta- and EBG-structures have provided 
a path forward to realizable acoustic possibilities. 
Metastructures have changed heat flow behaviors. Quantum 
properties of emitters have been modified with properly 
designed extreme metastructure environments. Waves of one 
type, e.g., acoustic waves, have been able to modify the 
material properties of metastructures and, hence, their 
electromagnetic responses and vice-versa. It is expected that 
these multi-physics aspects of metamaterial-inspired structures 
will lead to many new research opportunities in the future. 
 While we never could have anticipated where the original 
special issue results would take the antennas and propagation 
community, we believe it is fair to say it has spawned an 
amazing number of important results. Moreover, it has been 
exciting for each of us to participate in the growth of the 
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metamaterials research area. We believe the true magic of 
metamaterials is that they opened an unknown door into 
looking at field and wave-matter interaction phenomena in 
entirely novel manners. Thus, their legacy will extend far 
beyond our initial expectations of particular scattering 
phenomena and radiating systems. It is anyone’s guess what 
their actual future will hold, BUT we anticipate that 
metastructures will provide many research opportunities to 
many fields of science and engineering in the near future and 
beyond. 
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