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Abstract. Land surface temperature (LST) is a crucial parameter for global climate change
studies. LST changes are also directly associated with the large-scale changes in land cover.
Previous studies carried out a comparative analysis of satellite-derived LST response between
periods before and after homogenous land cover changes. We present an alternative approach
that quantifies long-term LST variability in response to various land use/land cover change
(LULCC) patterns over Phuket Island, Thailand, from 2003 to 2017. First, four Moderate
Resolution Imaging Spectroradiometer (MODIS) overpass times of LST time series were
adjusted for seasonal effects using a cubic spline function to preserve the number of original
data and enable estimates of LST dynamics and trends using the generalized least squared
models. Second, LULCC patterns were classified according to land cover type conversion and
spatial pattern transformations between the years 2000 and 2016. Spatial homogeneity and
heterogeneity were quantified by the coverage percentage for each land use and land cover
(LULC) type within a given location. Finally, the influence of LULCC patterns on the long-term
spatiotemporal behavior of LST was assessed using the generalized estimating equation model.
Results showed that different land cover transitions influence the dynamics of daytime LST but
not the nighttime LST. The proportion of different land cover types within an LST pixel and
transition amounts contributed to the quantity of increasing surface temperature, especially over
impervious surface types. Diverse LULCC patterns with considerations of spatial heterogeneity
improved our insight about a relatively strong effect of combined LULC types on LST responses.
The climatic effect through the gradual conversion of heterogeneous land cover is necessary to
be considered in climate research studies. © 2020 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JRS.14.014513]
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1 Introduction

Population growth and economic expansion, especially in developing countries, have been the
primary drivers of land use and land cover change (LULCC). High demand for cultivated and
urban residential land for sustenance and a prosperous economy plays a significant role in land
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transformations and losses in vegetation abundance, which are influential primary factors in land
surface temperature (LST) measurement. Change in land use/land cover (LULC) not only results
in habitat losses of important plant species,1,2 endangered animals, and terrestrial biodiversity,3

but also affects the biophysical characteristics of many of Earth’s surface parameters. LULCC
has contributed to global warming and affects urban heat island (UHI) intensity, mainly through
the processes of urban extension4–8 and degradation of vegetation cover.9,10 Haddad et al.11

reported that LULCC could alter atmospheric rainfall and temperature patterns, affect climate
at different scales (regional, local, and microclimate), and impact various ecosystems, including
urban environments,12–14 grassland ecosystems,15 equatorial mountain ranges,16 and irrigated
agricultural areas.17 Thus, comprehensive knowledge of the underlying mechanisms, patterns,
and processes of land cover conversion and relationships between land use, UHI effect, and
regional climate change are vital to informed decision-making processes in response to climate
change of urban areas, which, in turn, improves the scientific basis of future planning and
regulations.18

A number of studies have used various station-based and satellite-based data to determine the
spatiotemporal relationships between surface temperature and changes in land cover.6,19 These
studies found that near-surface air temperature and LST are sensitive and strongly related to
LULCCs, especially in urban areas.5,13,20–22 Many previous studies have also used a few satellite
images to analyze the impact of land conversion on LST but without fully considering the tem-
poral features of reflective and thermal data. Sahana et al.23 and Kayet et al.24 used decadal
separated Landsat images to study the impact of LULC conversion on LST distributions.
They used various remote sensing techniques to detect land use changes and assess their impact
on surface temperature and variations over the hot spots of land cover conversion. They found
substantial increases in LST with the loss of vegetated areas. Chen et al.5 used remote sensing
images from the years 1990 and 2000 in the Pearl River Delta area, south of China, to explore the
relationship between temperature and LULC changes at regional and local scale utilizing veg-
etation, water, bareness, and built-up indices. Their results showed the UHI effect to be more
prominent in areas of rapid urbanization. Li et al.25 utilized the coupling of remotely sensed data
acquired in 1997 and 2004 to quantitatively characterize patterns of UHI in Shanghai, China.
The study revealed a significant increase of magnitude in UHI intensity and its spatial extent
mainly caused by the rapid growth of urbanized area, which was consistent with the study of
Xiong et al.,26 which observed that the urban thermal environment could be attributed to rapid
urbanization, especially by the expanding built-up areas and developing land and to the declining
vegetation coverage.

High temporal resolution satellite-derived LST and land cover data were used in time series
analysis of the LST dynamic caused by the change of land cover. Hereher27 used 299 satellite
images acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) LST prod-
uct for the period between 2003 and 2015 to address the change in LST resulting from the emer-
gence and disappearance of lakes, as the main LULCC, in the Western desert of Egypt. Their
study highlighted the occurrence of a severe heat island effect caused by comparing annual and
13-year mean LST trends. The method of averaging high temporal LST data was usually used to
eliminate the seasonal effect of the time series. However, this reduces the number of observed
data, making inferential statistical analysis less effective, and thus only comparative analysis is
an appropriate method for trend analysis. Fu and Weng28 conducted a time series analysis of
urbanization-induced LULCC using 507 Landsat L1T images from 1984 to 2011. The satellite
images were classified and detected for LULC change. LST time series were also extracted from
the image series and further decomposed into seasonal and trend components through an additive
model. Decomposition analysis showed that the conversion of evergreen forest to medium-inten-
sity urban land generated the most significant changes in annual LST variation and the most
considerable LST trend differences.

Previous studies have focused solely on the LST effect from one individual LULCC pattern
and assume a uniform land cover type within a given coarse resolution LST pixel for simplicity.
Moreover, few studies have concerned the effect of spatial heterogeneity of land cover within
low-resolution LST pixels, such as 1-km MODIS LSTs that could affect the variation of LST
trend. Zhang and Liang29 investigated the impact of different transitions of land cover on LST
over China. They computed pixelwise MODIS LST changes (ΔLST) over different classes of
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land cover transition, as well as different percentage levels of transition, based on averages of
monthly LST data across 3 years (2001, 2006, and 2011). Their quantile regression results show
that LST (both day and night time) changes were, on the whole, relatively limited and uncertain.
LST changes were not only found in areas where transitions occurred but also in the area with-
out transition. An increasing amount of change from cropland to built-up area within MODIS
pixel (1 × 1 km2) resulted in LST increases both in daytime and nighttime. However, their results
did not confirm the impact of LULCC with different percentages of land cover transition on LST
over China.

The objective of this study is to demonstrate an alternative approach for estimating the impact
of LULCC on long-term LST variability and trends. Unlike previous studies that quantify
impacts of land cover conversion on LST through comparing annual average satellite-derived
LST from the period before and after the transition, this study utilized 15 years of 8-day
composite MODIS LST time series to assess the spatiotemporal dynamics of LST over the study
area. Time-series analyses, including explicitly performed seasonally adjusted LST time series to
preserve the number of data observations and linear trend estimation, were conducted to expose
the influence of land conversion on the long-term surface temperature dynamics. We also con-
sidered different transition patterns and the proportion of transition amounts from individual land
cover types. Such time series analysis using a combination of statistical methods with consid-
eration of statistical assumptions leads to a better understanding and firmer evidence-based con-
clusions of an LST trend and its drivers.

2 Materials and Methods

2.1 Study Area

Figure 1 illustrates the study area. Phuket Island is the largest island situated off the southwest
coast of Thailand [Fig. 1(a)]. The total area of the island is about 532 km2, with a length of

Fig. 1 (a) Map of Thailand and (b) geographical map of Phuket Island including elevation, roads,
and four administrative boundaries.
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48.7 km from north to south and a width of 21.3 km from west to east. Approximately 65% of the
island area, as shown in Fig. 1(b), is the high mountain range that runs along the southwestern
shore from the north to the south direction. The highest peak is about 582 m above average sea
level. Its west coast facing the Andaman Sea (a marginal sea of the eastern Indian Ocean) has
many magnificent long sandy beaches. In contrast, its eastern shoreline, which is facing Pahang
Nga Bay, contains many dense mangrove forests.

Phuket Island is divided into three administrative districts [Fig. 1(b)], namely, Mueang
Phuket, Kathu, and Thalang. Mueang Phuket district has a local administration, namely Phuket
City, with the highest density of residential and commercial buildings. The island interior is
mostly mountainous while the lowland occupies most of the Thalang district area where the
major agricultural area is located. The high mountains cover ∼80% of the Kathu district area
and about 35% of the southwest region of the Mueang Phuket district area. Phuket is considered
as the major capital in Thailand’s southwest region (also called the Andaman Coast region) with
a population of nearly 400,000 according to a register-based census in 2014. However, it is
expected that the real number of its people could reach 600,000 because there are labor migrants
from other parts of Thailand and neighboring countries living on the island that have not been
recorded in the census database. Phuket formerly derived its wealth from the tin mining industry
since the early 15th century until 1992 when the last mine was closed. The island now earns
much of its income from tourism. In 2014, Phuket welcomed more than 11.9 million visitors and
brought in about 260 billion Baht (nearly 7.3 USD billion), accounting for 50% of the country’s
tourism revenue. Most of the developments and infrastructures on the island during the last two
decades have been driven by the massive growth of the tourism industry. Consequently, Phuket
is experiencing significant LULC changes due to the rapid growth of urbanization and local
economic exploitation of natural resources.30

2.2 Data

2.2.1 Land Use and Land Cover

LULC data for years 2000 (LU2000) and 2016 (LU2016) were obtained from the Land
Development Department (LDD), Ministry of Agriculture and Cooperatives of Thailand. LDD
is responsible for surveying LULC for every province in Thailand since 1967. According to
LDD, the secondary LULC data were initially generated in vector format (shapefile map) by
digitizing high spatial resolution aerial photography (1 m) released around 1 year after the survey
project started. A new land use map was developed on top of the previous map. Aerial photo

Table 1 LULC type and its description.

LULC type Description

Forest land (F) All dense evergreen and deciduous forests either as forest under any
legal enactment, whether state-owned or private, as well as a dense and
disturbed mangrove forest.

Agricultural land (A) All cultivable land and land under plantations (both small private plantations
and commercial plantations), e.g., paddy fields (abandoned and active),
para rubber plantations, mixed orchards (perennial fruit trees), coconut
orchards, as well as all land utilized for field crops, horticulture, pasture and
farmhouse, and aquatic plants.

Urban and built-up
land (U)

All land occupied by buildings in both urban and rural such as city, town,
and commercial areas, villages (low land), and recreation areas such as
golf courses, as well as institutional land and public infrastructures,
e.g., airport, road, harbor.

Water body (W) All water bodies, e.g., rivers, natural and irrigation canals, reservoirs, farm
ponds, and aquaculture lands (fish and shrimp farms).

Bare land (B) Shrub/grassland, open woodland, and beach, as well as barren land,
abandoned mines, and soil/gravel pits.

Wongsai et al.: Impacts of spatial heterogeneity patterns on long-term trends. . .

Journal of Applied Remote Sensing 014513-4 Jan–Mar 2020 • Vol. 14(1)



interpretation and ground survey were conducted for land use classification. There are three
levels of land use types classified according to LDD definitions. The first level comprises five
primary types. Table 1 shows a detailed description of five major types: forest (F), agricultural
(A), urban and built-up (U), water body (W), and bare land (B). In this study, farm ponds, fish,
and shrimp farms that were initially classified by LDD as agricultural land were redigitized and
reclassed into water bodies.

2.2.2 MODIS LST data

In this study, we used both daytime and nighttime level-3 LST products from two MODIS
sensors (Terra and Aqua platforms). Both space-borne sensors detect and measure the Earth’s
surface temperature four times a day, which are 10:00/22:00 (Terra) and 14:00/02:00 (Aqua) at
local overpass times. The Collection 6 (C6) eight-day composite Global 1-km sinusoidal tile
Grid MODIS LST/emissivity products located over the study area were downloaded from the
MODIS subset tool.31 We also used the MODIS product quality control layers (QC_day and
QC_night) that provide information on the accuracy of the retrievals. The additional information
on algorithm results for each pixel was used to determine a set of weight scores. It was used in
seasonal modeling using an annual periodic boundary cubic spline function in the seasonal
adjustment of LST time series to preserve the number of original LST data.32 The best QC values
have an average error of <1 Kelvin (K), while the worst QC values have an average error of 3 K
or more.33 Other previous MODIS LST studies usually disregard LSTs with low-quality QC
value. However, we used all the obtained LST data in our study, but the low QC LSTs contrib-
uted less in the regression analysis with the weight scores.

MODIS LST products are globally validated in physical radiance units over large uniform
areas, such as water bodies and under clear sky conditions through aircraft and field cam-
paigns.34–36 The evaluation of the absolute radiometric accuracy of MODIS LST data against
in situ measurements has been conducted, and the results showed good performances in many
large homogeneous surface study areas, such as lake,37–39 rich field,35,40 grass/cropland,41,42 and
arid areas.43 However, the accuracy over other homogeneous and heterogenous surfaces could be
relatively lower. It is very difficult for validating large 1-kmMODIS LST pixels, especially when
affected by clouds and heavy aerosols. Severely contaminated LSTs are removed in level-3 C6
MODIS LST products using empirical constraints on temporal variations in clear-sky LSTs.33

The available quality assurance provides information on the possible contaminants, such as sub-
pixel cloud presence in MODIS data, which should be considered for applications. In this study,
C6MODIS LST data fromMOD11A2 start fromMarch 5, 2000, which is 2 years earlier than the
data from MYD11A2. Thus, we decided to select LST data from the years 2003 to 2017, com-
prising 690 observations in total (46 observations each year) for the simplicity of data processing
and comparison of results.

2.3 Data Analysis

2.3.1 LULC Change and Its Patterns

LU2000 and LU2016 data were managed in the open-source QGISplatform.44 Overall, LULCC
in the entire study area and by four subregions (Mueang Phuket, Kathu, Thalang, and Phuket
City) from 2000 to 2016 were examined by a transition matrix.

For LULCC pattern identification, we first determined the area of LULC type within a 1 ×
1 km2 MODIS LST pixel. Polygons in the WGS84 coordinate system that match the sinusoidal
MODIS LST pixels were generated over the study area using projection/grid conventional
formulas.45 Here, we are given the row (i) and column (j) in MODIS tile H, V. First, compute
the position of the center of the grid cell on the global sinusoidal grid:

EQ-TARGET;temp:intralink-;e001;116;122x ¼ ðjþ 0.5ÞωþHT þ xmin; (1)

EQ-TARGET;temp:intralink-;e002;116;79y ¼ ymax − ðjþ 0.5Þω − VT: (2)
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Next, compute the latitude (∅) and longitude (λ) at the center of the grid cell (in radians):

EQ-TARGET;temp:intralink-;e003;116;723∅ ¼ y∕R; (3)

EQ-TARGET;temp:intralink-;e004;116;680λ ¼ x∕R cosð∅Þ; (4)

where R ¼ 6371007.181 m, T ¼ 1111950 m, xmin ¼ 20015109 m, ymax ¼ 10007555 m, and
ω ¼ T∕1200 ¼ 926.625 m, the actual size of a “1 km” MODIS sinusoidal grid cell. However,
the coordinates of the four corners of the pixel can be obtained directly by adding�0.5 to the row
(i) and column (j) as desired.

Then, the coordinates were formed as the vector geometry of polygon objects in the well-
known text (WKT) format, originally defined by the Open Geospatial Consortium. The WKT
file was imported to QGIS and then converted to a shapefile format. Finally, LU2000, LU2016,
and LST polygon layers were intersected using geoprocessing tools. Second, we defined six
LULC classes by assigning a LULC type to each LST pixel according to its percentage of a
combined area-based condition by following the classification rules described in Table 2. A bin
width of 20% was suggested to ensure the lowest percentage of area in the case when all five
types are found within a pixel. The higher the portion in a class the greater homogeneity the
LULC type. Classes 1 and 2 are labeled to homogeneous land with at least 80% of the total area
belonging to only one LULC type, whereas classes 3 to 6 are entitled to heterogeneous land with
one or two dominant types.

Table 3 shows four categories of LULCC pattern and their criteria for a comparison of indi-
vidual classes from two different periods, allowing us to explore pattern differences in spatial
homogeneity and heterogeneity. In this study, a change is referred to as LULC type transfor-
mation over time and heterogeneity is denoted by the coverage percentage for each LULC type

Table 2 LULC classes and their corresponding classification rules based on the percentage of
a combined area within the 1 × 1 km2 LST pixel.

Class LULC type selection % of Domination area Example

1 One LULC type (first maximum) 100% F1

2 One LULC type (first maximum) >80% A2

3 One LULC type (first maximum) 60%–80% U3

4 One LULC type (first maximum) 40%–60% W4

5 Two LULC types (first and second maximum) 40%–60% AU5

6 Two LULC types (first and second maximum) <40% UA6

Table 3 LULCC pattern categories and their corresponding criteria.

Category 2000 -> 2016 Example

Homogeneous unchanged (HoU) LULC1;2 = LULC1;2 HoU-A

A1 -> A2

Homogeneous changed (HoC) LULC1;2 ≠ LULC1;2 HoC-AU

A2 -> U2

Heterogeneous unchanged (HeU) LULC3;4;5;6 = LULC3;4;5;6 HeU-F

F3 -> F4

Heterogeneous changed (HeC) LULC3;4;5;6 ≠ LULC3;4;5;6 HeC-AUa

A3 -> UA5

Wongsai et al.: Impacts of spatial heterogeneity patterns on long-term trends. . .

Journal of Applied Remote Sensing 014513-6 Jan–Mar 2020 • Vol. 14(1)



in a pixel. When considering homogeneous classes 1 and 2, if the dominant LULC type is
unchanged over time, and its area coverage is at least 80%, then it is defined as homogeneous
unchanged type category (HoU). Conversely, if dominated LULC type is changed by at least
80% of its area conversion during the study period, then it is defined as homogeneous changed
type category (HoC). A similar rule was applied when considering heterogeneous classes 3 to 6.
Heterogeneous unchanged type category (HeU) and heterogeneous changed type category
(HeC) are denoted for the unchanged and changed types with varying coverage percentages,
respectively. We intentionally proposed the systematic criteria used as the classifying conditions
to be employed in other study areas at any scale. By using this proposed criteria, we can cat-
egorize land cover change patterns with different degrees of spatial heterogenicity. Thus, we
can gain the inside information of the effects of spatial heterogenicity for particular land cover
conversion patterns on LST trend using appropriate statistical methods.

2.3.2 Seasonally adjusted LST time series

We adopted a spline-based method32 to remove the seasonal effect from eight-day composite
MODIS LST time series data. A summary of the method is described as follows: The cubic
spline with annual periodic boundary condition was derived for extracting interannual season-
ality in LST data series. The cubic spline function can be expressed in the following equation:

EQ-TARGET;temp:intralink-;e005;116;507sðtÞ ¼ aþ btþ
Xp−3
k¼1

ck½ðt − tkÞ3þ − dðt − tp−2Þ3þ þ eðt − tp−1Þ3þ − fðt − tpÞ3þ�; (5)

where d ¼ ðtp−tkÞðtp−1−tkÞ
ðtp−1−tp−2Þðtp−tp−2Þ, e ¼ ðtp−2−tkÞðtp−tkÞ

ðtp−1−tp−2Þðtp−tp−1Þ, and f ¼ ðtp−2−tkÞðtp−1−tkÞ
ðtp−tp−2Þðtp−tp−1Þ.

This cubic spline function is aimed to detect the annual climatological profile by fitting it on
all 15-year data series reordered into Julian days. Extreme LST values need to be identified using
interquartile range (IQR). LST values at a particular Julian day higher than 1.5 times of the IQR
above the third quartile or below the first quartile were marked as outliers. To fit the cubic spline
function to the data, we applied weighted least squares regression with propensity scores accord-
ing to the QC layers of the obtained LST data. With this method, high-quality LSTs, which refers
to a low average LST error in Kelvin degrees, would have a higher impact on the estimation of
regression coefficient than low-quality LSTs. In this study, we give zero weight to all the extreme
LSTs and give a score of 10 when an average LST error ≤1 K, 5 for an error ≤2 K, 2 for an error
≤3 K, and 1 for an error >3 K.

Once the seasonal effect is estimated, the seasonally adjusted LST can be computed by sub-
tracting the original LST data series from the seasonal component and then adding the difference
of the averaged LST component and the averaged seasonal subtracted LST, denoted as follows:

EQ-TARGET;temp:intralink-;e006;116;281LSTs:adj ¼ lsti − Si þ
�Xn

i¼1

lsti
n

−
Xn
i¼1

lsti − Si
n

�
; (6)

where S is the seasonal component and i is the ordered observation in the data series. From this
point forward, a term of LST is referred to as a seasonally adjusted LST using the method
described in this section.

2.3.3 Statistical analysis of spatial and temporal data

We first fitted a generalized least squares (GLS) model to 690 observed LST data for each pixel
to estimate the slope coefficient, indicating an increasing or decreasing trend over 15 years of
the study period. GLS is a modification of ordinary least squares (OLS) that accounts for covari-
ance among observations on the dependent variable. Although the acquired MOD11A2 and
MYD11A2 products were generated from MODIS daily products by eight-day composition and
the seasonal effect was eliminated from the original LST time series, there was a certain degree of
autocorrelation, where the value of LST affects its future value. This causes a problem in sat-
isfying statistical assumptions of uncorrelated observations and equality of sampling variances in
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the OLS, and thus, the OLS-fitted coefficients could be inaccurate relative to GLS-fitted coef-
ficients. The processes of statistical model fitting were conducted in R platform46 using its nlme
package.47 For a particular pixel, long-term LST series were individually fitted using the gls()
function with corAR1 as the correlation structure class. This AR(1) correlation structure rep-
resents an autocorrelation structure of order 1.48,49 An increasing or decreasing trend of LST and
its corresponding p-value of model fitting were obtained for each LST pixel (location) and then
illustrated as thematic maps for spatial inspection.

For each LULCC pattern, we then fitted generalized estimating equations (GEEs), available
from the R geepack package,50 to the LST data. GEE is an appropriate model because it is
generally applied for repeated measures in longitudinal and clustered data analysis.51,52 In this
study, LST at a given pixel was repeatedly measured for 690 time points. Such longitudinal LST
data were then clustered by a correlation link of the pixel identification number. GEE is a semi-
parametric population-averaged model that focuses on the aggregate response for the
population.53 It estimates the marginal model parameters and their standard errors. Hence, the
estimated slope coefficient of the fitted model between LST and observed times, its correspond-
ing p-value for the fixed effect of repeated measures, and a 95% confidence interval (CI) were
obtained. Similarly, we also fitted the GEE model to the LST data in the area where the land
cover was transformed to urban with different amounts of built-up fragments to examine the
impact of heterogeneity in long-term LST change during the study period.

3 Results

3.1 LULCC of Phuket During 2000 to 2016

LULC maps are illustrated in Fig. 2, and their corresponding LULCCs from 2000 to 2016 over
Phuket Island are given in Table 4, respectively. Agricultural land degradation accounted for the
most substantial proportion of land conversion during the study period. It declined from 292.2 to
184.5 km2 (20.8% of the total area) due to urban expansion and reforestation. Other types of land
were expanded and ranked in descending order for urban (10.0%), bare land (5.4%), forest
(3.9%), and water bodies (1.6%), respectively.

Fig. 2 Land use and land cover maps in (a) 2000 and (b) 2016.
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Agricultural land was mainly converted to urban and bare land for supporting the economic-
driven growth of tourism in Phuket during the last two decades, particularly in Mueang Phuket
district and Thalang district. Not only high demand for tourism-related developing land and
buildings is the significant driving force of rapid LULCC, but also the growth of population
and labor migration to support tourism service sectors is another cause of urban expansion with
the need for residential housing and community infrastructures.54 Furthermore, a transformation
of cultivation land to the forest was observed in land-reform areas, mostly on high hills of
Mueang Phuket and Kathu districts. The government’s land-reform scheme was first imple-
mented in 1975, with an aim to distribute degraded forest lands to poor farmers under the con-
ditions for temporary land tenure and utilizing given land only for cultivation. However, not all
of the distributed lands were used for agriculture, in practice, because many parts of them were
not worthy and suitable for cultivation (e.g., too steep, difficult to access). Thus, some areas
remained uncultivated and turned gradually and naturally into a dense forest cover. Furthermore,
bare land has experienced such extensive change to urban surface. Around 36.7% of bare land in
year 2000 had been converted to new urban in year 2016, especially on the west of Phuket City.

3.2 LULCC Pattern Analysis

Table 5 shows classification results of LULCC patterns of Phuket Island from 2000 to 2016,
aggregating into three levels: major, minor, and finest. At the finest level, 92 LULCC patterns
were observed using the classification rules and change pattern criteria described in Sec. 2.3.1.
Our study area is relatively small and experiences rapid land cover change during the study
period, which causes high surface heterogeneities. Thus, there were many different change pat-
terns with a few numbers of pixels. The individual patterns require aggregation for further stat-
istical analysis to ensure a sufficient number of sample sizes in each change pattern. At the minor
level, 15 categories were aggregated using their transformation similarity and area domination of
its mixed LULC classes. HoU-A, HoU-F, and HoU-U represent the transformation from homog-
enous unchanged agriculture, forest, and urban, respectively. HeU-A, HeU-B, HeU-F, HeU-U,
and HeU-W represent heterogeneous unchanged agriculture, bare land, forest, urban, and water
bodies. HeC-AF, HeC-AU, HeC-FM, and HeC-WM represent heterogeneous changed pattern
from agriculture to the forest, agriculture to the urban, forest to mixed types of land, and water
bodies to mixed types of land. HeC-AMb, HeC-AMw, and HeC-BMu represent heterogeneous
changed pattern from agriculture to mixed types of land with bare land dominating, agriculture to
mixed types of land with water bodies dominating, and bare land to mixed types of land with
urban dominating, respectively. For simplicity of referring to the change patterns, 10 categories
were defined at the major level according to whether or not the LULC type has been converted
over time. Unchanged agriculture area, bare land, forest, urban, and water body were symbolized

Table 4 LULC transition matrix between 2000 and 2016 in Phuket Island in km2. Percentage
of LULC conversion is given in the brackets.

LULC

2016

TotalF A U W B

2000 F 57.9 (64.2) 17.6 (19.5) 7.5 (8.3) 3.5 (3.9) 3.7 (4.1) 90.2

A 44.1 (15.1) 152.5 (52.2) 52.1 (17.8) 5.7 (2.0) 37.8 (12.9) 292.2

U 2.5 (3.0) 7.1 (8.7) 58.5 (71.8) 3.8 (4.7) 9.6 (11.8) 81.5

W 2.6 (17.9) 2.9 (20.0) 1.7 (11.7) 5.4 (37.3) 1.9 (13.1) 14.5

B 3.2 (8.0) 4.4 (11.0) 13.4 (33.7) 4.2 (10.6) 14.6 (36.7) 39.8

Total 110.3 184.5 133.2 22.6 67.6 518.2

Direction of
change

↑ ↓ ↑ ↑ ↑

F, forest land; A, agricultural land; U, urban and built-up land; W, water body; and B, bare land.
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as AA, BB, FF, UU, and WW, respectively. AM and AU represent the transformation of agri-
culture to mixed land type and urban, and FM and WM denote conversion from forest and water
body to mixed land type, respectively. BU indicates conversion of bare land to mixed land type
with urban domination.

Of 612 pixels, AA, BB, FF, UU, and WW accounted for 57.2% (350 pixels), indicating
∼353 km2 of the dominant LULC types on the Phuket Island has not been changed over the
study period. Homogeneous land with at least 80% of 1 × 1 km2 pixel being unchanged over
time; HoU-A (54), HoU-F (17), and HoU-U (8), ensuring∼79 km2 (12.9%) being almost entirely
untouched land. Heterogeneous land with 40% to 80% of 1 × 1 km2 pixel being unchanged over
time; HeU-A (146), HeU-F (48), HeU-U (53), HeU-B (9), and HeU-W (15) represent ∼271 km2

(44.3%) of persistent of dominant LULC type being moderately transformed.
HoU-A and HeU-A were the most land cover change patterns found on the low and high

ground in the study area [Fig. 3(a)]. HoU-F was found on high mountain range enclosed within
Khao Phra Thaeo Wildlife Sanctuary area in the Thalang district, whereas HeU-F was found
close to the shore (mangrove forest blended with aquaculture farms) and around the foothills
(rainforest mixed with rubber plantations). HoU-U was unsurprisingly found in the Phuket City
area, where building and housing have been fully developed. HeU-U was noticed along the
western coastline, where the famous beaches and numerous vacation facilities (resorts and
hotels) are situated.

LULC transformation in terms of types and corresponding area coverage was observed for
42.8% (262 pixels), comprising AM (97 pixels, 15.8% of the total pixels), AU (92, 15.0%), BU

Table 5 Groups of LULC change pattern. Numbers of pixels indicated in the brackets.

Major Minor Finest

AA (200) HoU-A (54) HoU-A (54)

HeU-A (146) HeU-A (137), HeU-AF (4), HeU-AB (1), HeC-AfA (4)

BB (9) HeU-B (9) HeU-B (9)

FF (65) HoU-F (17) HeU-F (17)

HeU-F (48) HeU-F (38), HeU-FW (1), HeC-FFa (1), HeC-FFw (1), HeC-FaF (5),
HeC-FFu (1), HeC-FwF (1), HeC-FaAf (1)

UU (61) HoU-U (8) HoU-U (8)

HeU-U (53) HeU-U (36), HeC-UA (1), HeC-UaU (5), HeC-UfU (1), HeC-UbU (1),
HeC-UUb (1), HeC-UUw (1), HeC-UAu (1), HeC-UB (1), HeC-UBu (3),
HeC-UW (1), HeC-UWu (1)

WW (15) HeU-W (15) HeU-W (15)

AM (97) HeC-AF (62) HoC-AF (5), HeC-AF (27), HoC-AAf (8), HoC-AFa (13), HoC-AFu (2),
HoC-AFw (1), HoC-AfF (4), HoC-AfFa (2)

HeC-AMb (23) HeC-AB (11), HeC-ABa (3), HeC-ABf (1), HeC-ABu (1),HeC-AfB (1),
HeC-AbBf (1), HeC-AAb (5)

HeC-AMw (12) HeC-AAw (2), HeC-AW (2), HeC-AWa (3), HeC-AWf (2), HeC-AWu (1),
HeC-AwW (2)

AU (92) HeC-AU (92) HoC-AU (4), HeC-AU (57), HeC-AAu (6), HeC-AUa (8), HeC-AUb (4),
HeC-AUw (1), HeC-AbU (1), HeC-AuU (9), HeC-AwU (1), HeC-AuUa (1)

FM (25) HeC-FM (25) HoC-FA (1), HeC-FA (5), HeC-FAf (3), HeC-FU (3), HeC-FUf (2),
HeC-FW (1), HeC-FWb (1), HeC-FaA (7), HeC-FaU (1), HeC-FwFu (1)

BU (31) HeC-BMu (31) HeC-BU (12), HeC-BUb (4), HeC-BaAu (1), HeC-BaBu (1),
HeC-BaU (2), HeC-BuU (1), HeC-BAb (1), HeC-BF (2), HeC-BaA (1),
HeC-BaB (4), HeC-BfF (1), HeC-BfB (1)

WM (16) HeC-WM (16) HeC-WFw (1), HeC-WBu (1), HeC-WBw (1), HeC-WU (5), HeC-WWa (1),
HeC-WWf (2), HeC-WWb (1), HeC-WaW (2), HeC-WfU (1), HeC-WuUb (1)
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(31, 5.1%), FM (25, 4.1%), and WM (16, 2.8%), which face major land transformation. AU and
BU were mostly found along the main road of the island. It spreads as far north as the middle of
the Thalang district, as far south as the bottom of the island along with the south-eastern part of
the Mueang Phuket district, and as far west as into the Kathu district. AM was observed on the
western coast of the island and FM was sparsely marked. A majority of the WM pattern was
devoted to the conversion of water bodies (Fig. 3).

3.3 Impacts of LULC and Change Patterns on LST

The coefficients of daytime and nighttime LST and their corresponding p-values from the GLS
model in linear regression analysis for each LST pixel (with a sample size of 690 observations)
were shown on the thematic maps in Fig. 4. An increasing or decreasing trend of LST over
15 years from a particular pixel (location) for four different overpassed times was illustrated
in Figs. 4(a)–4(d), respectively. Statistical evidence presented by the p-value were depicted
in Figs. 4(e)–4(h). The daytime LST, in particular at 10:00 [Figs. 4(a) and 4(e)], increases sig-
nificantly on the east side of the island, especially in the lowland area. The nighttime LST rises
significantly almost everywhere. This suggests that the dynamic of daytime LST trends was
affected by the different patterns of LULCC, but not for nighttime, where the long-term trend
of LST increases with statistical significance over most of the study area. In the case of cooling
temperature, most of those pixels were not statistically significant. A declining temperature was
only observed at the miscellaneous lands in the midwestern part of the Thalang district [pointed
out inside the circle in Figs. 4(b) and 4(f)].

The results from the GLS model showed the evidence of increasing or decreasing trend of
LST outcome variable. It allowed us to preliminarily explore its relations to spatial distribution
when visualized on maps. Differently, the GEE model was applied to investigate the correlation
between LULCC patterns and LST trends. Results from the GEE models with “exchangeable”
working correlation structure, as illustrated in Fig. 5, show the effects of LULCC patterns on
LST trends with their 95% CIs. Overall, the daytime LST increased significantly with the change
patterns [Fig. 5(a)], whereas the nighttime LSTwas raised considerably regardless of the change

Fig. 3 (a) The original LULC conversion map classified using area-based criteria described in
Tables 2 and 3 and (b) the regrouping LULC conversion map for inferential analysis, as detailed
in Table 5.
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patterns [Fig. 5(b)]. During the nighttime, an increase in LSTwas strong in both areas where the
conversion between land use types, as well as where the increase of area proportion within the
same land use type. This shows that the nighttime LSTwas not influenced by LULCC patterns,
suggesting that other factors would have been the causes of its warming dynamics. Note that
MODIS LST data only from 611 pixels were used in this analysis since one pixel located over
Bang Wad Dam, the biggest reservoir on the island, was not available. The overall trends of
daytime LST over the study area increased by 0.4°C and 0.14°C per 15 years for 10:00 and
14:00, respectively. The nighttime LST trends, which were generally warmer than the daytime,
increased by 0.62°C and 0.50°C per 15 years for 22:00 and 02:00, respectively. At the 95% CI,
15-year LST trend over the study area varies between −0.07°C and 1.00°C for 10:00, −0.15°C
and 0.50°C for 14:00, 0.42°C and 0.76°C for 22:00, and 0.38°C and 0.62°C for 02:00. The effects
of change patterns in terms of LULC type conversion over time and spatial heterogeneity (cover-
age proportions) within the specific location were clearly exposed during the 10.00 am obser-
vations. Therefore, the following results were based on this overpass time.

For each of the unchanged types over time (AA, FF, and UU), the spatial homogeneity pat-
terns (HoU-A, HoU-F, and HoU-U) experienced a higher rate of rising LST than the hetero-
geneity patterns (HeU-A, HeU-F, and HeU-U). However, there was no evidence of statistically
significant differences as the CIs of the estimated effects were still overlapped. A bigger sample
will probably shrink the range of uncertainty associated with the estimates. When comparing
the different types, the UU pattern had a higher temperature compared to the other patterns.
The rising temperature was ranked in decreasing order for UU, BB, FF, AA, and WW patterns,
respectively.

For each of the changed types over the study period (AM, AU, BU, FM, and WM), both the
conversions to urban from agriculture land (AU) and bare land (BU) had a higher rate of increas-
ing LST than the transformations to mixed land uses from agriculture land (AM), forest (FM),
and water body (WM). There was no significant difference in rising LST among the AM, FM,

Fig. 4 (a)–(d) Spatial distribution of 15-year surface temperature trends and (e)–(h) maps of
p-value distribution of surface temperature trends for four overpass-time MODIS LST datasets.
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andWM patterns, whereas the AU pattern faced a lower rate than the BU pattern with a statistical
evidence at the 95% confidence level.

3.4 Impacts of Land Cover Heterogeneity on LST

By using our proposed land cover conversion classification, we can categorize the level of spatial
heterogeneity and then quantify its effect on LST trend. The effect of heterogeneity of land
conversion in terms of different transition proportions was revealed in Fig. 6. Different LULC
types of land cover domination show a different degree of influence on the long-term 10:00 LST
trend. A transformation from agriculture to different percentages of dominated urban surface
(HeC-AU) resulted in a remarkably rising LST trend. There was strong evidence that an increas-
ing rate of LSTover 15 years for such an LULCC pattern with a transition proportion of less than
40% was significantly lower than that for the pattern with the transition proportions of 40% to
60%, 60% to 80%, and more than 80% (CIs being not overlapped). Also, a marginal difference
was marked between a transition proportion of 40% to 60% and more than 80%. A similar
finding was found for the transformation from bare land to mixed land use type with urban being

(a)

(b)

Fig. 5 Overall 15-year surface temperature trends in various LULC transformations for the
(a) daytime and (b) nighttimeMODIS LST datasets. The error bars denote 95% confidence interval
and “n” denotes the number of the LST pixel with a sample size of 690 observations.

Fig. 6 Overall 15-year surface temperature trends (error bars denote 95% CIs) level of hetero-
geneity for the 10:00 MODIS LST datasets. “A,” “B,” “C,” and “D” indicate the amount of land cover
fragment that the original land cover has been transformed to; “A” is less than 40% of the total
1 km2 area, “B” is 40% to 60%; “C” is 60% to 80%, and “D” is more than 80%. And “n” denotes the
number of the LST pixel with a sample size of 690 observations.
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dominated (HeC-BMu) only for a transition proportion of less than 40% and more than 80%, and
that of 40% to 60% and more than 80% having significant statistical evidence. An increase of
sample size (a number of pixels) will aid this circumstance. For HeC-AF pattern, an increasing
proportion of forest in the original agriculture lands has no effect on the LST trend. This may be
explained by the existing agroforest that combines forest and monoculture rubber plantation in
the study area. Other heterogeneous LULCC patterns (HeC-FM and HeC-WM) have no signifi-
cant trend over the study period.

4 Discussion

Diverse patterns and their corresponding spatial heterogeneity of LULC have a significant in-
fluence in the study of the long-term variation in LST. Our study pointed out that lands having
unchanged LULC types over time (AA, FF, and UU) have less LST variability than those with
LULC change patterns from one type to another, particularly the transformations from agricul-
ture land and bare land to urban area (AU and BU). These confirm the conclusions in this study
and many previous UHI studies7,25,29,55 that LST change is sensitive and strongly relate to the
evolution of land cover and is often associated with urbanization. Moreover, our finding was
similar to the results from Fall et al.56 reporting that converted land types of agriculture, urbani-
zation, and barren solids constituted strong drivers of surface temperature change.

The new urban areas surrounding the Phuket City area and along the main road of 57 km
distance from the north to the south of the island developed significant increasing trends of LST.
It is not only the artificial materials in the urban area that have higher heat capacities and con-
ductivities occupying most of the urban surface, but the anthropogenic heat discharge such as
energy consumption also contributes to the increase in surface and atmospheric temperatures.25

This figure was more evident during the daytime than in the nighttime. LST in response to LULC
change patterns depends on the time of the day. Variations in LST due to LULC change patterns
were observed clearly during the daytime but not at night. Land surface in the morning time
(10:00) has a statistically substantial increasing temperature within all land cover change pat-
terns. On another hand, LSTon the land transformation of AU and BU patterns gains temperature
significantly in the afternoon (14:00). A similar result was found for the effect of LULCC on the
daytime LST. Franco et al.6 described that the daytime temperature profiles established a great
rising of heat in the conversion to a metropolitan area and a drop of temperature while encoun-
tering water bodies and nearby regions.57,58 The reduction in vegetal cover and emerging of new
urban areas contributes greatly to strengthen the intensity of LST during the daytime.59 The
finding was also emphasized by magnitudes of nighttime LST that more than 50% of all pixels
(390 and 363 pixels for 22:00 and 02:00 datasets) over the entire study area have a sizeable
increasing temperature with great statistical evidence (temperature increases > 0.3°C in 15 years
and has p-value < 0.05). Moreover, the graph of comparison CIs of changing daytime surface
temperatures (combined 10:00 and 14:00 datasets), as shown in Fig. 7, indicates that the
changing temperatures from three groups of urbanized LULCC patterns are above the average
statistically significant increasing temperature during 15 years. The highly significant p-value
(<0.001) resulting from the analysis of variance (ANOVA) test signifies that there are substantial
differences in the mean of increasing temperature among the groups of LULCC pattern. In con-
trast, the comparative confidence interval of the changing temperatures in the nighttime (com-
bined 22:00 and 02:00 datasets) are around the average increasing temperature (0.65°C/15
years). The insignificant p-value (0.5099) from the ANOVA test implies that there is weak evi-
dence that the changing temperatures among the group of LULCC patterns are different. In other
words, nighttime LST increased almost everywhere regardless of diverse patterns of LULCC. To
our best knowledge, our study was the first report that pointed out no significant relationship
between the nighttime LST long-term trend and LULC conversion. We would recommend that
climatic researchers investigate the nighttime LST as one of the Earth’s surface biophysical
indicators in the process of demonstrating global climate change and global warming.

As mentioned in Sec. 3.2, the LULCC of Phuket Island was caused by rapid economic
growth and the population pressure. The study area has experienced enormous changes in
LULC. As the result, from transition analysis (Table 4), there is urban expanding continuously
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from the Phuket City to Kathu and Thalang districts and also along the eastern shoreline of
Mueang Phuket district since 2000. According to the studies54,60 in the study area, only during
the short period, from 2005 to 2009, were the forest conservation and rural/agricultural areas
transformed into residential areas by 3.19% and 10.95%, respectively. The study of LULCC in
Phuket for over 23 years (1989-2011) disclosed that built-up areas had replaced all types of land
use. Those lands mostly were the agricultural regions, such as coconut orchards (27.35%), paddy
fields (24.51%), and para-rubber plantations (15.5%).30 Similar to the result, Thinnukool et al.61

discovered that the agricultural area had changed to urban area by 19% only in a decade (2000 to
2009). These previous reports were in agreement with our findings of LULC transitions during
the 15-year study period. However, the replacing of humanmade built-up surface on vegetation
cover within each LST grid size in the study area was assumed to be gradually changed. An
infrequent occasion of 1 km2 land cover has been entirely transformed in the short period, except
for natural disasters that could affect the broad area coverage. Thus, the gradual conversion
of LULC was assumed to slowly modify the surface temperature and its long-term trend, result-
ing in variation in the temperature trend within the group of land conversion patterns. This
assumption also applies a nonchanging urban surface, where some unchanged urban areas in
the study area could raise its surface temperature trend due to the variation of its surface density.
There is a possibility that the urban area classified in 2000 was a low density of buildings and
then turned to a high-density surface in 2016, which could cause an increasing temperature trend.

There was also the area that shows a declining trend of surface temperature with a highly
statistical significance, as pointed out inside the circle in Figs. 4(b) and 4(f). It is located in the
midwestern part of Thalang district. This cooling trend occurring in the 14:00 LST dataset was
due to many water bodies that have been introduced into the area. Before 2000, this area was
abandoned open ground tin mines and neglected paddy fields. Since 2000, many waterfront
resorts and hotels, including lake and lagoon-style housing estates, golf courts, and green spaces,
have been developed.62 The water body has a low surface temperature during the daytime
because it absorbs more radiant energy from solar radiation to escalate its heat capacity63 and
the green spaces may cause the cooling trend. Moreover, water consumption such as water spray-
ing in the parks and the golf court during the day may be other factors of decreasing temperature
trend in this area.

Spatial heterogeneity has evidently impacted the variability in LST in this study. The spatial
heterogeneity patterns diminish the growth rate of LST. Land surfaces with heterogeneous land
cover have a lower magnitude of rise in their temperature than those with homogenous land
cover. This urges researchers who have studied in a field of the LULCC effects on LST trends
to pay more attention to the proportions of area coverage within a pixel of different LULC types.
Previous studies had been assuming spatial homogeneity for simplicity. Our approach in spatial
heterogeneity identification was complex but affordable and thus improved our insight under-
standing about a relatively strong effect of a combination of LULC types in a given area on LST.
In practice, when it comes to set up a plan for land management, such as a proportion of green
belt in a particular building region for environmental sustainability, spatial heterogeneity will
give more precise vision and accuracy sense.

(a) (b)

Fig. 7 Comparison of CIs of 15-year changing surface temperature during the study period of 10
LULC change patterns for combined (a) daytime and (b) nighttime LST data. The label “n” indi-
cates the number of LST time series that have a statistically significant surface temperature trend
(p < 0.05) in each group of land cover change pattern.
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In traditional statistical analysis, an exploratory analysis is the first step to exploring a sample
known as “let data tell its story,” and then an appropriate statistical method was applied for a
testing hypothesis to conclude the population. Previous studies often carried out an exploratory
study rather than go further for confirmation with a statistical model. One of the reasons may be
the use of an anomaly measure that reduces the number of original data, resulting in not enough
sample size for further analysis. Our approach of seasonally adjusted LST using a cubic spline
method resolves this problem and is recommended to apply on a broader area. A conclusion with
a statistical validation will provide better evidence for the decision-making process. As in this
present study, we confirmed our descriptive explanation from the visualization maps with the
95% confidence that LST increases significantly with AU and BU using the regression analysis
with the GEE model.

5 Conclusions

In this study, we investigated the impacts of different transformed LULC characteristics
(i.e., types and spatial heterogeneity) on the long-term dynamic and trend of MODIS LST time
series of Phuket Island from 2003 to 2017. The 15-year LST time series were seasonally adjusted
using a cubic spline function to eliminate seasonal effect and were subsequently estimated as
a 15-year linear trend in a series-by-series procedure (pixel-by-pixel) using the GLS model in
regression analysis. Finally, the effects of LULCC patterns were investigated using the GEE
model.

The long-term trends of seasonally adjusted LST vary with the time of the day and in the
different areas of LULC conversion depending on types and heterogeneity patterns. This
LULCC factor remarkably contributed to the increasing trend and variation of LST only in
the daytime. It did not affect the nighttime LST dynamics. It suggests that the nighttime tem-
poral MODIS LST data would be applicable for a short- or long-term surface temperature trend
and climate change studies in any study area. Since the evolution of LULCC types and spatial
heterogeneity between two periods were the strong factors affecting a change in LST trend, the
morning MODIS LST data is, on the other hand, suitable for a study of LULCC impact of LST
trend, particularly for urbanization and UHI effect. The spatial heterogeneity patterns exhibited
a lower rate of rising surface temperature than the spatial homogeneity patterns. In addition, the
greater the proportion of land cover transition, the higher the rate of increasing temperature,
especially for conversions from cultivated agriculture land to built-up land. These suggested
the importance of spatial heterogeneity effects in the study of LST dynamics and long-term
trends.

Even though our study area is relatively small and has high surface heterogeneity, which
presents a small number of sample sizes for individual conversion patterns, the result for this
study is still providing high certainly in evidence. Performing this similar analysis that concerns
preserving the number of original data in the larger study area could increase the number of
sample size and therefore could confirm the impacts of the spatial heterogeneity on LST changes
and also prove the variability and validity of the nighttime LST trend. The comprehensive knowl-
edge of the underlying mechanisms of Earth’s surface temperature, land conversion patterns, and
their relationships is vital to decision-making processes in responses to climate change that will
improve the scientific basis of future planning and regulations. This study also provides a meth-
odological guideline for trend analysis of satellite-based climate time series data in climate
science studies in which regional or global coverages are desired.
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