Hindawi

Complexity

Volume 2020, Article ID 6147378, 12 pages
https://doi.org/10.1155/2020/6147378

Research Article

WILEY

Hindawi

Microcluster-Based Incremental Ensemble Learning for Noisy,

Nonstationary Data Streams

Sanmin Liu,"”? Shan Xue), Fanzhen Liu,’ Jieren Cheng ,} Xiulai Li,>* Chao Kong,l

and Jia Wu ©?

ISchool of Computer and Information, Anhui Polytechnic University, Wuhu 241000, China
’Department of Computing, Macquarie University, Sydney 2109, Australia

*School of Computer Science & Cyberspace Security, Hainan University, Haikou 570228, China
*Hainan Hairui Zhong Chuang Technology Co. Ltd., Haikou 570228, China

Correspondence should be addressed to Shan Xue; emma.xue@mgq.edu.au

Received 23 October 2019; Revised 26 December 2019; Accepted 1 February 2020; Published 5 May 2020

Guest Editor: Xuyun Zhang

Copyright © 2020 Sanmin Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Data stream classification becomes a promising prediction work with relevance to many practical environments. However, under
the environment of concept drift and noise, the research of data stream classification faces lots of challenges. Hence, a new
incremental ensemble model is presented for classifying nonstationary data streams with noise. Our approach integrates three
strategies: incremental learning to monitor and adapt to concept drift; ensemble learning to improve model stability; and a
microclustering procedure that distinguishes drift from noise and predicts the labels of incoming instances via majority vote.
Experiments with two synthetic datasets designed to test for both gradual and abrupt drift show that our method provides more

accurate classification in nonstationary data streams with noise than the two popular baselines.

1. Introduction

The velocity and voracity with which we are now producing
data is making streaming data ubiquitous in real-world
applications [1]. For example, intrusion detection [2], credit
fraud detection [3], network traffic management [4], and
recommendation system [5] all rely on data streams.
However, data streams have some unique characteristics that
make it more difficult to manipulate. First, the data can be
generated at very fast speeds and in huge volumes. Second,
there exists concept drift in data streams, and the existing
models no longer work as effectively as they once did. Last,
physical constraints mean that only a certain amount of
knowledge can be used or extracted from a data stream at
any point in time and, once elapsed, it can be very difficult to
go back and retrieve more knowledge. Thus, data stream
mining confronts many challenges.

Revealing the knowledge hidden in data streams is
broadly known as data stream mining, which spans data
stream classification, clustering, and other data analytics

tasks [6]. Data stream classification is, arguably, the most
common analytics task in many practical applications. Due
to the time-sequence characteristics, the related research
studies of data steam classification confront lots of diffi-
culties. For example, to keep track with concept drift, the
model not only needs to be retrained frequently but also its
processing and memory overheads must stay low to cope
with the velocity and volume of the data. In a traditional data
mining scenario, the model would merely need to extract
knowledge from a static dataset with a joint distribution
function that does not change. However, our model for data
stream classification needs to extract knowledge from in-
stances that are generated over time and where the joint
distribution function is variable, i.e., in the presence of
concept drift [7, 8]. According to many studies, concept drift
is the main barrier to data stream classification.

To date, the solutions to classification in nonstationary
data stream environment have been based on either online
or ensemble learning, and those methods improve the
performance of classification. Concerning concept drift in

mailto:emma.xue@mq.edu.au
https://orcid.org/0000-0002-9123-5133
https://orcid.org/0000-0002-0160-0126
https://orcid.org/0000-0002-1371-5801
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6147378

imbalanced streams data setting, an ensemble learning
model was presented with resampling technology [7]. A
combined online ensemble method was used to simulta-
neously consider concept drift and the high-dimension
problem [9]. Additionally, in the light of various classifi-
cation scenarios, many supervised learning approaches re-
cently have been widely explored [10-17], and some have
been applied in data stream classification, such as support
vector machine (SVM) and Bayesian technique.

In nonstationary streaming data environment, these
investigations solved some of the problems, including
concept drift, the curse of dimensionality, and imbalanced
learning. However, there are still some open problems to be
addressed. For example, few studies have considered how to
effectively and simultaneously cope with both concept drift
and noise in nonstationary data streams. To deal with these
problems, we design a new classification approach that
constructs microclusters to serve as a pool of base classifiers.
Final prediction of incoming instance’s class label is made by
a majority vote of the microclusters. At the same time, an
incremental learning strategy combined with an ensemble
learning and a smoothing operator does the work of
adapting the model to concept drift, distinguishing noise,
and maintaining stability.

In a word, there exist the three main contributions in our
paper:

(1) A technique for constructing a set of microclusters as
base classifiers by redefining the concept of cluster
feature previously used in hierarchical cluster
analysis. Good classification results can be achieved
with nonstationary data streams by combining nu-
merous microclusters. Additionally, microcluster
combined with incremental learning is a very con-
venient way to absorb new knowledge and keep track
of concept drift.

(2) A smoothing strategy designed to shift the centroids
of microcluster and control the balance between
historical and new instances. This approach makes
the best use of historical knowledge and can also
overcome problems with a shortage of drifted data.

(3) A majority vote strategy and an incremental learning
enhance the stability and adaptability of the model in
nonstationary data streams with noise. Thus, the
proposed model leverages the advantages of both
ensemble and incremental learning to maintain high
accuracy in class label prediction.

This paper is organized as follows. The background work
is discussed in Section 2, and then Section 3 outlines the
basic concept. Section 4 describes the proposed model and
provides a complexity analysis of the algorithm. In Section5,
experimental schema and results are illustrated. Section 6
describes conclusion and future plans.

2. Related Work

An excellent data stream classification approach has the
ability to learn incrementally and adapt to concept drift as

Complexity

well [18]. In general, two important kinds of incremental
learning method are concerned: instance-incremental
learning [19, 20], which learns an instance at a time, and
batch-incremental learning [21], which learns from instance
set once. In the instance-incremental learning group,
Crammer et al. [19] developed an online passive-aggressive
algorithmic (PA) framework based on SVM that forces the
classification hyperplane to move to satisfy the minimum
loss constraint when the classifier misclassifies an instance.
This framework has been widely explored for many practical
settings [22, 23]. In work [24], it presented the instance-
incremental method with weighted one-class SVM that
could solve gradual drift in nonstationary data streams.
Instance-incremental learning has also been based on ex-
treme learning machine as a way to boost classification
speeds [25]. When data stream is stable, incoming instance is
used to update the classifier; however, when concept drift
happens, a weakly performing classifier is deleted. This is a
very flexible approach to classifying real-time data streams.
In the batch-incremental learning domain, Lu et al. [26]
provided a novel dynamic weighted majority approach to
deal with imbalance problems and concept drift. This
method uses dynamic weighted ensemble learning to keep
the classification model stable and batch-incremental
learning to track concept drift.

Between the two modes, instance-based incremental
learning is more flexible and scalable for real-time data
stream classification. It is also a more suitable approach for
environments where it is difficult to label instances and
understand concepts in advance [20]. Hence, we turn our
attention to instance-incremental learning for the remainder
of this paper, using the simple term incremental learning,
hereafter.

The impetus for studying ensemble learning in con-
junction with data stream classification came from a desire
to improve classification model’s stability [27-31]. These
models include base classifier set and merged method which
combines the base classifier’s output into a final output by
the ensemble. SEA algorithm [29] is one of the early en-
semble methods. When the SEA ensemble model is not full,
each newly arriving data chunk is used to build a new base
classifier. If the limit has been reached, the new classifier is
still constructed for every newly arriving data chunk, but it
replaces the classifier with the worst performance.
According to a majority vote policy, the ensemble method,
SEA, outputs the final predictions. Another similar work is
weighted ensemble method based on accuracy [30], where
the important point is to allocate a weight to each base
classifier that is an estimate of its accuracy on the newest data
chunk. This idea suggests that the newest data chunk could
represent the target concept with high probability, so the
classifiers with higher accuracy should be given more im-
portance. Also, when the maximum ensemble scale has been
reached, a base classifier with the worst performance is
deleted and a new base classifier joins into the ensemble
model. Another iterative ensemble method was developed
based on boosting and batch-incremental learning [31]. This
method adds a suitable number of base classifiers to the
classification model with each newly arriving data chunk,

Complexity

instead of adding just one. The experimental results suggest
that the iterative boosting ensemble classification method is
a promising way to perform classification task in nonsta-
tionary data stream environment. Beyond concept drift,
imbalanced class distributions are another challenge with
data stream classification that can be tackled with ensemble
learning. Zhang et al’s [27] method of dealing with this
problem is a two-pronged approach. The first tack is to
divide the majority into N subsets of roughly the same size as
the minority and then construct N new balanced training
subsets from the minority and divided subsets. Next, the
ensemble model is created using a neural network with
backpropagation as the base learning algorithm. The base
classifiers’ diversity is one of the important factors of
learning system. Hence, Jackowski [32] introduced the idea
of two error trend diversity measurements: pair errors and
pool errors, to find and keep track with concept drift in
streaming data setting. Experiments with this model show
that the diversity measurements can not only be used to
enhance the ensemble model’s performance but also to hold
effectively the scale of ensemble model. Based on the above
analysis, we think that ensemble learning is currently the most
promising research direction for data stream classification.

From this review, we distill several observations: in-
cremental learning can dynamically reveal new knowledge in
data streams. Ensemble learning can improve the stability of
classification models for nonstationary data streams. The
suitable algorithm can enhance a classification model’s
flexibility. These three observations form the basis of three
integrated strategies in our method for simultaneously
tackling concept drift and noise.

3. Basic Concept and Problem Definition

This section firstly begins with a description of the basic
concepts used in this paper, and then a detailed analysis of
the research problem is explored.

3.1. Data Stream. According to the related studies, in this
paper, we think that data stream consists of a series of labeled
instances, namely, S={X,,X,,...,X,,...}, where
X, = (X,), in which X stands for a feature vector which
represents an instance characterizing the features of an
object and y is X,’s class label. When y is +1, X, represents
positive instance. On the contrary, X, is negative instance.

According to the above definition, we explore a mapping
function f: X — y with high accuracy which stands for
classification model that can output the incoming instance
X’s class label. Only supervised learning is considered in this
paper. Therefore, the classification model f is constructed
from a labeled dataset, and, once built, it can output the class
label +1 or —1 for the incoming instance. In addition, for the
purposes of this paper, the real label is acquired after the
mapping function f outputs the prediction of incoming
instance.

3.2. Concept Drift. According to the work [33], when a joint
probability distribution P of data changes evolving over

time, there exists concept drift. In other words,
P, (X, y)# P, (X, y), where the subscript ¢ stands for the
time stamp, X suggests the vector which represents the value
of feature attribute, and y is a class label. According to the
changing rate of concept, gradual drift and abrupt drift [34]
are discussed. Generally speaking, gradual drift is a slower
rate of change from one concept to another one, and it is
illustrated in Figure 1(a). When the distribution P, is
abruptly differentfrom the distribution P,,, at t + 1, we say
that abrupt drift occurs and it is seen in Figure 1(b). In
Figure 1, the difference between gradual drift and abrupt
drift is clearly found, and these two kinds of drift are
concerned in this paper.

3.3. Problem Definition. Noisy instances and concept drift
appear to have similar distributions in nonstationary data
streams. It is, therefore, critical to differentiate noise from
concept drift and that is the motivation of this paper to build
a classification model that can find and keep track with
concept drift in nonstationary streaming data with noise.
Meanwhile, in order to catch concept drift, the classification
model should be updated by incremental learning. The
research problem is demonstrated in Figure 2.

From Figure 2, we understand clearly the problem
definition of this paper and identify the noisy instance in
nonstationary streaming data. The dotted circle represents a
microcluster, and the dotted straight line suggests the dis-
tribution for instances in Figure 2. The current case is shown
in Figure 2(a). When time goes on, the instance is coming
and the microcluster is updated at time stamp ¢ + 1 as seen
from Figure 2(b), which represents the case of incremental
learning. At time stamp t + 2, in Figure 2(c), the incoming
instance with positive class label lies in the old microcluster
with a different class label. In this case, the new instance is
regarded as a noisy instance and will be discarded; this is why
this instance no longer exists at time stamp ¢+3. In
Figure 2(d), the incoming instance forms a concept drift and
leads to a new microcluster construction.

Based on the above analysis, our solution involves three
strategies to deal with the research problem as illustrated in
Figure 2: incremental learning to track concept drift; en-
semble learning to enhance the model’s stability; and
microclustering method to distinguish drift from noise and
make the final label predictions. In the next section, we
outline these strategies in detail and discuss the three sce-
narios illustrated in Figure 2.

4. Adaptive Incremental Ensemble Data Stream
Classification Method

This section describes microcluster and data stream classi-
fication model, followed by the corresponding algorithm.

4.1. Definition of Microcluster. Microclusters as classifiers in
our model are constructed by cluster features, which is a
technique that was originally developed as part of hierar-
chical cluster analysis [35]. The structure of cluster feature is

Pt

t+1

Complexity

Pt

Pgp————-

(a)

FiGURe 1: The two types of concept drift. (a) Gradual drift. (b) Abrupt drift.

Microcluster Incremgntal updation of Noisy instance Building new microcluster
, microcluster p ,
// - Y - . 7/
- 4 N
IR 4 e 8 7 e O\ s
— (] —
fo ey s | |1° e] tas oo N\,
\ / /7
N4 S0 A L e S | A A Q\ AV)
N~ -7 / it
7/
. N L7 ‘A~ e NP
% ~ = , A
J , Ve P N\’
// 7/ /
(a) (b) (©) (d)
... >
t t+1 t+2 t+3

FIGURE 2: A demonstration of problem definition. In data stream, (a) microclusters (shape: dotted circle) are developed by historical
instances (color: green) with positive class (shape: circle) and negative class (shape: triangle); (b) when new instance (color: red, shape: circle)
comes, microcluster is updated (color: red, shape: dotted circled), and (c) the old microcluster involves noisy instance (color: red, shape:
circle), and (d) concept drift (color: red, shape: circle) is detected and a new microcluster (color: red, shape: dotted circle) is built.

defined as CF = {SS, LS, n). Based on the cluster feature, we
give the definition of microcluster used in this paper.

Definition 1. Microcluster (MC) 1is represented as
(SS,LS,n,Cid,CL, ay, where SS and LS are used to compute
the boundary of MC that SS denotes the square sum of the
attributes of the instances in MC as calculated in equation
(1) and LS is a vector saves the sum of each attribute as in
equation (2), n suggests the number of instances, Cid
presents MC’s centroid which changes over time as shown
in equation (3), CL is MC’s class label, and « counts the
number that MC correctly classifies incoming instance and
« is initiated as 0.

n 1
$S=)) xi; (1)
rJ

1

n n n
m=<zxm“q2xwuqzﬁo,)
i i
where [is the dimension of the instance.
Cid = (1 - 0) x Cid,_, + 0 x (LS/n), (3)
where Cid,_; is MC’s centroid on the previous time stamp
t -1 and o € [0,1] stands for smoothing parameter.

The size of MC is represented by cluster’s radius » which
is calculated as follows:

2
r:\}ﬁﬁ , (4)
n n

where ||LS/n|| represents the length of vector.

4.2. Data Stream Classification Model Based on Microcluster.
Classification model consists of three phases: classification,
incremental learning, and updating. A framework of the
model is given in Figure 3. The processes and calculations are
presented in detail in this part and summarized into the
corresponding algorithm presented as Algorithm 1.

4.2.1. Phase 1 (Classification): The k-Nearest Microclusters
Classify the Incoming Instance. When an incoming instance
arrives, Euclidean distance is computed between the in-
coming instance and each microcluster in pool. Based on
Euclidean distances, the k-nearest microclusters are selected,
and then each microcluster will assign its own label to the
incoming instance. According to equation (5), the final label
of incoming instance is voted by the merged method.

c k

y = argmaxz Zf, (x), (5)
j

j=1i=1

where k stands for the number of microclusters participating
in the classification and ¢ denotes the number of class.

Complexity

Phase 1: classify the incoming instance

c(Xp Vs (K1 VisD) -+ Output prediction

Mediation rule for combining the
output of k microclusters

I Select k microclusters I

Microcluster

Microcluster

Phase 2: incremental learning

Figure 3: The framework of data stream classification model.

Input: The instances S = {X,, X, ..
the pool maximum limit M, and
the smoothing parameter o.

Output: The pool of microcluster P*

X

i

(1) PO= UL MC; «— the pool of initial microclusters (MC) which is formed by k-means
(2) for each instance X, = (X, y) do
Phase 1: Classification
(3) d «—— distance between X and MC
(4) MC® «—— select the k-nearest microclusters to classify the instance X
(5) 7 «— the predicted class label of instance X gained by majority vote in equation (5)
(6) o «—— update the parameter of the k-nearest microcluster
Phase 2: Incremental Learning
(7) if Scenario 1 then
(8) MCWO* — update the structure of nearest microcluster by equations (1)-(3) and the number of the instances in

microcluster will be incremented by 1

9) else if Scenario 2 then
(10) X «— consider the instance as a noisy point and neglect it
@11 else if Scenario 3 then
12) M C)((t) «— build a new microcluster on instance X
Phase 3: Updating Pool
13) ifL <M then
(14) P® =pW 4 MC¥
(15) L=L+1
@16) else
17) MC“)m «— the worst microcluster
(18) MC;(? «— replace MCl(lfg,st
19) end if
(20) end if
(21) end for
(22) return P* «— microcluster pool at required time stamp ¢

ALGORITHM 1: MCBIE.

Once incoming instance is classified, microcluster is
immediately updated. If the final prediction is correct, i.e., if
all the microclusters who voted have the same class label as
the final prediction, the value of « increases by 1; otherwise,
it decreases by 1.

4.2.2. Phase 2 (Incremental Learning): The Nearest Micro-
cluster Will Be Updated Based on the Incoming Instance.
Following the first-test-and-then-train principle, the
nearest microcluster is immediately updated to ensure the
model quickly adapts to the new concept or the new

microcluster is constructed in this phase, which is depicted
in Figure 4.

Scenario 1: when incoming instance’s label is the same as
the nearest microcluster’s label, incoming instance is
used to retrain this microcluster. The terms SS, LS, and
Cid of the nearest microcluster are recalculated by
equations (1)-(3). The number of instances in this
microcluster is incremented by 1. The radius of micro-
cluster is also updated by equation (4). This scenario is
shown in Figure 4(a). As a matter of fact, when the in-
coming instance drops into the nearest microcluster, we
carry out the same operation, that is, the incoming in-
stance is merged into the nearest microcluster.

Scenario 2: incoming instance’s label varies from the
nearest microcluster’s label and incoming instance lies
inside the boundary of the nearest microcluster, as seen
from Figure 4(b). In this paper, there exists the fun-
damental assumption that two adjacent instances are
highly likely to represent the same concept, i.e., the
probability that they share the same class label is very
high. According to the fundamental assumption, the
incoming instance will be treated as noise and deleted.

Scenario 3: in contrast to Scenario 2, incoming instance’s
label is different from the nearest microcluster’s label and
incoming instance does not drop into the nearest
microcluster, as shown in Figure 4(c). This scenario
suggests that incoming instance is derived from the
different joint probability distribution. Under this
circumstance, we think new concept happens, and a
microcluster will be constructed with incoming in-
stance by the method described in Section 4.1. Because
there is only one instance in this new microcluster
when it is constructed, its label CL will be the same as
the incoming instance and its centroid will be the
incoming instance itself. The terms SS and LS of the
new microcluster are computed by equations (1) and
(2), and the value of « is 0.

4.2.3. Phase 3 (Updating): The Pool of Microcluster Is
Updated. As time passes, new microclusters are continu-
ously being created and, eventually, the pool will reach its
limit. Once full, the microcluster with the worst performance
will be replaced with new microcluster. By this cyclical
update, the classification model can effectively catch concept
change, and it leads to improve the classification accuracy.
Generally speaking, the smaller the value of &, the worse the
performance of the microcluster. Therefore, the microcluster
with the smallest « is selected for replacement.

4.3. Algorithm and Complexity Analysis. In summary of the
above phases and scenarios in data stream classification
model, the algorithm of microcluster-based incremental
ensemble classification named as MCBIE is expressed in
Algorithm 1.

The algorithm of MCBIE includes three phases which
achieve three functions, namely, classification, incremental
learning, and updating pool. Line 1 is to train the initial

Complexity

microcluster and build a pool of microclusters. Lines 3 to 6
achieve the classification for an incoming instance X and
update the performance of the microcluster. According to the
three different scenarios, the function of Phase 2 is accom-
plished in lines 7 to 12. Finally, the size of base classifier
reaches the upper-bound M, the worst microcluster will be
deleted, and the new microcluster is added to microcluster
pool. On the contrary, the new microcluster is directly put
into microcluster pool. It is illustrated in lines 13 to 19.

In terms of complexity, through the analysis of Algo-
rithm 1, we know the core operation included by the al-
gorithm MCBIE is to calculate the distance in classification
phase. The complexity here depends on mainly two aspects:
the dimensions of the instance (I) and the number of
microclusters as base classifier (M) in the ensemble model.
Thus, the presented algorithm’s time complexity is ap-
proximately O(I-M). In the presented algorithm, the
previous instances are not reserved over time and the sta-
tistical information of microcluster is recorded, such as SS,
LS, and Ci d, which can save the storage memory by this way.

5. Experiments

5.1. Datasets. To evaluate MCBIE, we conduct simulation
experiments with two synthetic datasets. The two datasets
selected are the Hyperplane data stream and the SEA data
stream taken from Massive Online Analysis (MOA) [36].
Hyperplane data stream is designed to test for gradual drift,
while SEA data stream is designed to test for abrupt drift.
These are the most popular datasets in the data stream
classification domain. Further details are as follows.

Hyperplane data stream [37]: in the I-dimensional
space, a hyperplane includes the point set X which
satisfies Y|, a;x; = a, = Y., a;, where x; represents
the i-th dimension of X. Instances for which
ZLI a;x; = a, represent positive class, and instances for
which Y, | a;x; <a, represent negative class. A hy-
perplane in /-dimensional space may slowly rotate by
changing the parameters for simulating time-changing
concepts. In this paper, the value of / is 10 and there are
6 attributes with concept drift, and it generates 20,000
instances. Three different noise ratios (respectively,
20%, 25%, and 30%) are injected into data stream.

SEA data stream [29]: the instances in this data stream
are generated from three attributes with continuous
values x;, x,, x5 € [0,10]. When it satisfies x; + x, >0,
the instance is positive class; otherwise, the label of
instance is negative. To simulate concept drift, the
threshold value 6 = {8,9,7,9.5} will change over time.
It generates 5000 instances with each threshold value,
and the whole SEA data stream includes 20,000 in-
stances. SEA data stream with two different noise ratios
(20% and 30%) is applied in this experiment to test the
abrupt drift.

5.2. Baselines. The PA algorithmic framework [19] and
Hoeffding tree [38] are selected as baselines to compare with
the presented method MCBIE, and these two approaches are

Complexity

(a)

(c)

FIGURE 4: Three different scenarios: (a) incoming instance’s label is the same as the nearest microcluster’s label; (b) incoming instance’s label
varies from the nearest microcluster’s label, which represents noisy instance; and (c) incoming instance as a new concept does not drop into
the nearest microcluster and its label is different from the nearest microcluster’s label. Note: the color represents the class label, the rectangle
suggests the incoming instance, and the circle represents the nearest microcluster.

frequently chosen as the benchmark in many studies
[20, 22, 23, 38]. Moreover, as a well-known classical algo-
rithm, the Hoeffding tree algorithm is integrated into the
MOA platform [36]. Therefore, we have followed suit in our

paper.
The PA algorithmic framework [19] is an online in-
cremental learning framework for binary classification

based on SVM. Given instance X, the classification
model outputs the prediction as follows:

¥ = sign (WD - X), (6)

where W represents a vector of weights and ¥ is the
prediction of instance X.

After the ¥ is output, it acquires the ground truth class
label y and computes a loss value resulting from the fol-
lowing equation:

Is = max{0,1 - y- (W - X)}. (7)
The vector of weights W is then updated using
W=w+1-y-X, (8)

where 7> 0 is a Lagrange multiplier, whose value is calcu-
lated by equation (9) in three different methods, namely, PA,
PA-I, and PA-IL

Is
T= IxXP (PA),
7= min{C, (ls/||X||2)} (PA - 1), (9)

Is

CIXErweooy PATE

where C is a positive parameter and referred to as aggres-
siveness parameter of the algorithm. A detailed outline of the
derivation procedure can be found in [19].

Hoeffding tree [38] is a decision tree for online learning
from the high-volume data stream, and it is built from
each instance in constant time. According to Hoeffding
bound, we can estimate the number of instances which
are needed to build the tree node. The Hoeftding bound
has nothing to do with the distribution function that

generates the instances. Moreover, the Hoeffding
bound is used to construct Hoeffding tree which is
approximated to the one produced by batch learning.
In the light of its incremental nature of the Hoeftding
tree, it is used widely in data stream classification.

5.3. Experiment Setup. Following the first-test-and-then-
train principle [39], each incoming instance is first tested,
and then the model is retrained with the incoming instance
under an incremental paradigm. To assess the classification
model’s performance in this paper, the classification accu-
racy is computed every one hundred instances during the
process of data stream classification.

Both our MCBIE and the baselines are initialized on the
first 100 instances, and the model resulting from that ini-
tialization is used to predict the following instance in data
stream. In MCBIE, we use these 100 instances to train 6
initial microclusters as base classifiers by using the k-means
algorithm. At every time stamp, the three nearest micro-
clusters of each incoming instance are selected to assert the
label information. The maximum scale of microcluster pool
is 30, and once full, a new microcluster which takes the place
of the worst-performing microcluster joins in the pool. We
use Weka package to implement the MCBIE algorithm.
Hoeftding tree algorithm (named as HT) is run in MOA
platform with the parameters set to their default values. PA,
PA-I, and PA-II with Gaussian kernel are executed in
MATLAB and the constant C is equal to 1.

5.4. Experiment Result and Analysis. The simulation ex-
periments are designed to evaluate MCBIE in two sides.
First, we want to assess the sensitivity of the smoothing
parameter o; second, we want to justify the feasibility and
validity of MCBIE.

5.4.1. Experiment 1: Sensitivity Analysis of the Smoothing
Parameter. Following the experimental setup in Section 5.3,
we verify the function of smoothing parameter ¢ in MCBIE
from 0.1 to 1. When the smoothing parameter o is either too
big or too small, the MCBIE’s average accuracy and cor-
responding standard deviation do not reach the desired
result on the Hyperplane data stream and SEA data stream.

8 Complexity
TaBLE 1: Average classification accuracy and standard variance.
Hyperplane data stream SEA data stream
20% noise 25% noise 30% noise 20% noise 30% noise

PA 0.622 + 0.056 0.581 + 0.054 0.548 + 0.048 0.661 + 0.061 0.577 £ 0.056
PA-I 0.678 + 0.049 0.626 + 0.050 0.582 + 0.045 0.726 + 0.060 0.617 + 0.061
PA-II 0.646 + 0.053 0.599 + 0.053 0.558 + 0.047 0.688 + 0.062 0.595 + 0.059
HT 0.582 + 0.067 0.567 £ 0.061 0.556 + 0.060 0.705 + 0.068 0.625 + 0.059
MCBIE 0.696 = 0.051 0.648 + 0.046 0.618 + 0.047 0.708 + 0.053 0.632 + 0.046
Through the observation and analysis, we find the 0.85 : : : : : : : : :
smoothing parameter ¢ could regulate the balance between
the historical and new instances used to compute the cen- 0.77
troid of the microcluster. When ¢ = 0, the centroid of the
microcluster will not move, and only its radius changes. On 5 069
the contrary, when o = 1 reaches the maximum value, the E

< 061

microcluster’s centroid is a mean of instances. It suggests all
instances have the same importance to the centroid.
However, because concept drift will occur in nonstationary
data stream environment, instance at different time stamps
should have different contributions to the centroid of
microcluster. Experiment results justify this viewpoint.
According to the analysis of experiment results, a conclusion
is made that the best value of ¢ is located at an interval
[0.6,0.7]; hence, we chose o =0.65 for subsequent
experiments.

5.4.2. Experiment 2: Feasibility and Validity of MCBIE.
All the experimental results with both the Hyperplane and
SEA data streams are shown in Table 1. At the same time, the
maximum value in each column is marked in bold.

From Table 1, we see the average accuracy of MCBIE
reaches the highest value of 69.6%, 64.8%, and 61.8% on
Hyperplane data stream with the noise ratio of 20%, 25%,
and 30%, respectively. The corresponding standard variance
of the three average accuracies is 0.051, 0.046, and 0.047, and
the standard variances about accuracy are relatively low
compared with the baselines. On average, MCBIE provides
the most accurate classifications with the least standard
variance among all the baselines with the Hyperplane data
stream. On the SEA data stream, the average classification
accuracy of MCBIE is 70.8% at 20% noise and 63.2% at 30%
noise, respectively. Again, the standard variances are the
smallest compared to all baselines, which demonstrate
MCBIEF’s stability in nonstationary data streams with noise.
Based on the above experiment results, we may draw a
conclusion that MCBIE is an effective and well-performing
classification approach.

Through the further analysis of experiment results in
Table 1, some interesting phenomena exist. As the noise ratio
grows, the performance of MCBIE is improved to a greater
degree than the other methods. For instance, with a noise
ratio of 20% on the SEA data stream, MCBIE ranks only the
second lead behind PA-I. However, at 30% noise, MCBIE
becomes the most accurate model. Given the same noise
ratios, the experiment results show that the classification
model on SEA data stream performs better than on Hy-
perplane data stream. This suggests it is more difficult for
classification model to learn knowledge from gradual drift

o
19
@

045 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Data streams

—e— 20% noise
—o— 25% noise

—s— 30% noise

FIGURe 5: The accuracy curve for the MCBIE method with Hy-
perplane data stream.

than from abrupt drift. Of all the baselines, PA-I provides the
best performance, which indicates that selecting an ap-
propriate learning ratio 7 is very important for incremental
learning. The Hoeffding tree baseline has the largest standard
variance, and it shows that Hoeffding tree has instability.

Last but not least, we want to show MCBIE adapts well to
concept drift; Figures 5 and 6 illustrate accuracy curve for the
MCBIE method with Hyperplane and SEA data streams.
Figure 5 suggests that MCBIE can tackle concept drift in
time on the Hyperplane data stream with the different noise
ratios. When concept drift occurs, the curve plot in Figure 5
sharply descends and it indicates the concept included by the
model is inconsistent with the current concept. MCBIE’s
accuracy decreases when concept changes. However, the
performance of MCBIE improves immediately after the
model is retrained and updated with the incoming instance
through incremental learning. The intensity of ascent and
descent in Figure 5 reflects that the classification model has
the ability to catch concept drift. In Figure 6, we easily
understand that the similar phenomena are presented with
the SEA data stream.

To demonstrate MCBIE’s superiority, based on the above
analysis, we choose the two best methods MCBIE and PA-I
to illustrate the ability to perform the prediction task in
streaming data setting with noise and concept drift. The
accuracy curve is plotted in Figures 7 and 8. From Figure 7,
the accuracy curve suggests that these two methods have the
ability to keep track with concept drift and shows clearly that
our method is superior to the PA-I in terms of accuracy over
the Hyperplane data stream with the three different noise

Complexity 9

Accuracy

0.5

0 20 40 60 80 100 120 140 160 180 200
Data streams

—— 20% noise
—— 30% noise

FiGURre 6: The accuracy curve for the MCBIE method with SEA data stream.

0.9 T T T T T T T T T 0.8
0.85 - s A . 1 0.75 |
08} -- : : : :
: : 0.7
0.75 b ; ‘ - .
g ; ‘ ‘ & 0.65
g h , d g
g 0'7 Il , “) “‘ [| (lu‘ | 3
: '| |*! it] n
0-65 \ l \ !
0.55 Hh .
0.6 |
0.5 ; ; ; ; ; ; ; ; ; 0.45 ; ; ; ; ; ; ; ; ;
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Data streams Data streams
—— MCBIE —— MCBIE
—— PA-I —— PA-I
(a) (b)
0.75
0.7 t

0.65 |

Accuracy

o

o
4*-; — T L R
[——

o
wn .
&

— 7 oo _
—

: ——————
===
I ——— —

e ——

0.5

0.45 R A S S S S S
0 20 40 60 80 100 120 140 160 180 200

Data streams

—— MCBIE
—— PA-I

(0

FIGURE 7: The accuracy curve for the two best methods over Hyperplane data streams. (a) Hyperplane with 20% noise. (b) Hyperplane with
25% noise. (c) Hyperplane with 30% noise.

10

0.83

077 | "

Accuracy
=)
~
—

0 20 40 60 80 100 120 140 160 180 200

Data streams

—— MCBIE
—— PA-I

()

Complexity

0.8
0.75 -t
0.7 k_ ‘ <
|‘
& 0.65 i o
: U| I \ “ Ii i
5 | I {
< 06 I , "
0.55 | ‘ : ‘ A - .
e] <
0.45
0 20 40 60 80 100 120 140 160 180 200
Data streams
—— MCBIE
—— PA-I

(b)

FIGURE 8: The accuracy curve for the two best methods over SEA data streams. (a) SEA with 20% noise. (b) SEA with 30% noise.

ratios. Moreover, in three cases, the maximum and mini-
mum accuracy of MCBIE is higher than that of the PA-I.
Through the analysis of the accuracy curve over SEA data
stream, concerned with the ability to adapt to concept drift,
these two methods seem to have the same function to deal
with nonstationary data stream classification, as demon-
strated in Figure 8. Moreover, with the growth of noise ratio,
the MCBIE has a better performance than PA-I, such as
stability.

From these analyses, we conclude that the MCBIE
method is able to conduct nonstationary data stream clas-
sification with high accuracy in environments characterized
by both concept drift and noise.

6. Conclusions

Classification task in nonstationary data streams faces the
two main problems: concept drift and noise, which require
the classification model to not only cope with concept drift
but also differentiate noise from concept drift. In order to
deal with these problems, a novel method named MCBIE
was proposed, which can achieve the classification task in
nonstationary data streams with noise. Aiming to enhance
MCBIE’s performance, the three strategies are used to al-
leviate the influence of concept drift and noise. In this paper,
incremental learning can help microcluster as classifier to
catch the concept change fast and ensemble strategy alle-
viates the disturbance between noise and concept drift. The
function of smoothing parameter is to absorb the useful
information from historical knowledge. Compared with the
baseline methods, experiment results justify that our
method, MCBIE, has the ability to perform classification in
nonstationary streaming data setting. However, the three
problems are worthy to be further concerned: (1) how to
improve the noise recognition ability of our method in

abrupt drift environment needs to be further strengthened;
(2) in addition to accuracy, the stability of model needs to be
improved; (3) when concept reoccurs, it is important to
design more appropriate strategies for the replacement of
microcluster.

Data Availability

The data used to support the findings of this study have been
deposited in the GitHub repository (https://github.com/
FanzhenLiu/ComplexityJournal).

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This study was supported by the Natural Science Foundation
of Anhui Province (nos. 1608085MF147 and
1908085MF183), the Humanities and Social Science
Foundation of the Ministry of Education (no. 18YJA630114),
a Major Project of Natural Science Research in the Colleges
and Universities of Anhui Province (no. KJ2019ZD15),
MQNS (no. 9201701203), MQEPS (no. 96804590), MQRSG
(no. 95109718), and the Investigative Analytics Collaborative
Research Project between Macquarie University and Data61
CSIRO.

References

[1] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in
nonstationary environments: a survey,” IEEE Computational
Intelligence Magazine, vol. 10, no. 4, pp. 12-25, 2015.

https://github.com/FanzhenLiu/ComplexityJournal
https://github.com/FanzhenLiu/ComplexityJournal

Complexity

[2] A. Jadhav, A. Jadhav, P. Jadhav, and P. Kulkarni, “A novel
approach for the design of network intrusion detection system
(NIDS),” in Proceedings of 2013 International Conference on
Sensor Network Security Technology and Privacy Communi-
cation System, IEEE, New York, NY, USA, pp. 22-27, De-
cember 2013.

[3] A. Salazar, G. Safont, A. Soriano, and L. Vergara, “Automatic
credit card fraud detection based on non-linear signal pro-
cessing,” in Proceedings of 2012 IEEE International Carnahan
Conference on Security Technology, IEEE, Newton, MA, USA,
pp- 207-212, October 2012.

[4] T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for
classification of network traffic based on c5. 0 machine
learning algorithm,” in Proceedings of the 2012 International
Conference on Computing, Networking and Communications,
IEEE, Maui, HI, USA, pp. 237-241, February 2012.

[5] L. Gao, J. Wu, C. Zhou, and Y. Hu, “Collaborative dynamic
sparse topic regression with user profile evolution for item
recommendation,” in Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, New York, NY, USA,
February 2017.

[6] S. Xue, J. Lu, and G. Zhang, “Cross-domain network repre-
sentations,” Pattern Recognition, vol. 94, pp. 135-148, 2019.

[7] S. Ren, W. Zhu, B. Liao et al., “Selection-based resampling
ensemble algorithm for nonstationary imbalanced stream
data learning,” Knowledge-Based Systems, vol. 163, pp. 705-
722, 2019.

[8] J. Sun, H. Fujita, P. Chen, and H. Li, “Dynamic financial
distress prediction with concept drift based on time weighting
combined with adaboost support vector machine ensemble,”
Knowledge-Based Systems, vol. 120, pp. 4-14, 2017.

[9] T. Zhai, Y. Gao, H. Wang, and L. Cao, “Classification of high-
dimensional evolving data streams via a resource-efficient
online ensemble,” Data Mining and Knowledge Discovery,
vol. 31, no. 5, pp. 1242-1265, 2017.

[10] W.-X. Lu, C. Zhou, and J. Wu, “Big social network influence
maximization via recursively estimating influence spread,”
Knowledge-Based Systems, vol. 113, pp. 143-154, 2016.

[11] Y. Zhang, J. Wu, C. Zhou, and Z. Cai, “Instance cloned ex-
treme learning machine,” Pattern Recognition, vol. 68,
pp. 52-65, 2017.

[12] J. Wu, Z. Cai, S. Zeng, and X. Zhu, “Artificial immune system
for attribute weighted naive bayes classification,” in Proceedings
of the 2013 International Joint Conference on Neural Networks
(IJICNN), IEEE, Dallas, TX, USA, pp. 1-8, August 2013.

[13] J. Wu, S. Pan, X. Zhu, C. Zhang, and X. Wu, “Multi-instance

learning with discriminative bag mapping,” IEEE Transactions

on Knowledge and Data Engineering, vol. 30, no. 6,

pp. 1065-1080, 2018.

P. ZareMoodi, S. K. Siahroudi, and H. Beigy, “A support

vector based approach for classification beyond the learned

label space in data streams,” in Proceedings of the 31st Annual

ACM Symposium on Applied Computing, ACM, Pisa, Italy,

pp. 910-915, April 2016.

[15] S. Ramirez-Gallego, B. Krawczyk, S. Garcia, M. Wozniak,
J. M. Benitez, and F. Herrera, “Nearest neighbor classification
for high-speed big data streams using spark,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 47,
no. 10, pp. 2727-2739, 2017.

[16] J. Gama, R. Fernandes, and R. Rocha, “Decision trees for
mining data streams,” Intelligent Data Analysis, vol. 10, no. 1,
pp. 23-45, 2006.

[17] H. L. Hammer, A. Yazidi, and B. J. Oommen, “On the
classification of dynamical data streams using novel “Anti-

(14

11

Bayesian” techniques,” Pattern Recognition, vol. 76, pp. 108-
124, 2018.

[18] M. A. Maloof and R. S. Michalski, “Incremental learning with
partial instance memory,” Artificial Intelligence, vol. 154,
no. 1-2, pp. 95-126, 2004.

[19] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer, “Online passive-aggressive algorithms,” Journal of
Machine Learning Research, vol. 7, pp. 551-585, 2006.

[20] M. Tennant, F. Stahl, O. Rana, and J. B. Gomes, “Scalable real-
time classification of data streams with concept drift,” Future
Generation Computer Systems, vol. 75, pp. 187-199, 2017.

[21] J. Read, A. Bifet, B. Pfahringer, and G. Holmes, “Batch-in-
cremental versus instance-incremental learning in dynamic
and evolving data,” in Proceedings of International Symposium
on Intelligent Data Analysis, Springer, Helsinki, Finland,
pp. 313-323, October 2012.

[22] J. Lu, D. Sahoo, P. Zhao, and S. C. Hoi, “Sparse passive-ag-
gressive learning for bounded online kernel methods,” ACM
Transactions on Intelligent Systems and Technology, vol. 9,
no. 4, p. 45, 2018.

[23] M. Oide, A. Takahashi, T. Abe, and T. Suganuma, “User-
oriented video streaming service based on passive aggressive
learning,” International Journal of Software Science and
Computational Intelligence, vol. 9, no. 1, pp. 35-54, 2017.

[24] B. Krawczyk and M. Wozniak, “One-class classifiers with in-
cremental learning and forgetting for data streams with concept
drift,” Soft Computing, vol. 19, no. 12, pp. 3387-3400, 2015.

[25] S. Xu and J. Wang, “A fast incremental extreme learning
machine algorithm for data streams classification,” Expert
Systems with Applications, vol. 65, pp. 332-344, 2016.

[26] Y. Lu, Y.-M. Cheung, and Y. Y. Tang, “Dynamic weighted
majority for incremental learning of imbalanced data streams
with concept drift,” in Proceedings of the 2017 International
Joint Conference on Artificial Intelligence, pp. 2393-2399,
Melbourne, Australia, August 2017.

[27] Y. Zhang,]. Yu, W. Liu, and K. Ota, “Ensemble classification
for skewed data streams based on neural network,” Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 26, p. 08, 2018.

[28] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and
M. Wozniak, “Ensemble learning for data stream analysis: a
survey,” Information Fusion, vol. 37, pp. 132-156, 2017.

[29] W. N. Street and Y. Kim, “A streaming ensemble algorithm
(sea) for large-scale classification,” in Proceedings of the
Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ACM, San Francisco, CA,
USA, pp. 377-382, August 2001.

[30] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-
drifting data streams using ensemble classifiers,” in Pro-
ceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, Wash-
ington, DC, USA, pp. 226-235, December 2003.

[31] J. R. B. Junior and M. do Carmo Nicoletti, “An iterative
boosting-based ensemble for streaming data classification,”
Information Fusion, vol. 45, pp. 66-78, 2019.

[32] K. Jackowski, “New diversity measure for data stream clas-
sification ensembles,” Engineering Applications of Artificial
Intelligence, vol. 74, pp. 23-34, 2018.

[33] G.I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean,
“Characterizing concept drift,” Data Mining and Knowledge
Discovery, vol. 30, no. 4, pp. 964-994, 2016.

[34] A. Tsymbal, “The problem of concept drift: definitions and
related work,” Computer Science Department, vol. 106, no. 2,
2004.

12

(35]

(36]

(37]

(38]

(39]

T. Zhang, R. Ramakrishnan, and M. Livny, “Birch,” ACM
SIGMOD Record, vol. 25, no. 2, pp. 103-114, 1996.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa:
Massive online analysis,” Journal of Machine Learning Re-
search, vol. 11, pp. 1601-1604, 2010.

G. Hulten, L. Spencer, and P. Domingos, “Mining time-
changing data streams,” in Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, San Francisco, CA, USA, pp. 97-106,
December 2001.

P. Domingos and G. Hulten, “Mining high-speed data
streams,” in Proceedings of the Fifth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, vol. 2, p. 4, Boston, MA, USA, April 2000.

A. Bifet, G. Holmes, B. Pfahringer, and R. Gavalda, “Im-
proving adaptive bagging methods for evolving data streams,”
in Proceedings of 2009 Asian Conference on Machine Learning,
Springer, Berlin Germany, pp. 23-37, November 2009.

Complexity

