
1

Computing K-Cores in Large Uncertain Graphs:
An Index-based Optimal Approach
Dong Wen, Bohua Yang, Lu Qin, Ying Zhang, Lijun Chang, and Rong-Hua Li

Abstract—Uncertain graph management and analysis have attracted many research attentions. Among them, computing k-cores in
uncertain graphs (aka, (k, η)-cores) is an important problem and has emerged in many applications such as community detection,
protein-protein interaction network analysis and influence maximization. Given an uncertain graph, the (k, η)-cores can be derived by
iteratively removing the vertex with an η-degree of less than k. However, the results heavily depend on the two input parameters k and
η. The settings for these parameters are unique to the specific graph structure and the user’s subjective requirements. In addition,
computing and updating the η-degree for each vertex is the most costly component in the algorithm, and the cost is high. To overcome
these drawbacks, we propose an index-based solution for computing (k, η)-cores. The size of the index is well bounded by O(m),
where m is the number of edges in the graph. Based on the index, queries for any k and η can be answered in optimal time. We
propose an algorithm for index construction with several different optimizations. We also propose a new algorithm for index
construction in external memory. We conduct extensive experiments on eight real-world datasets to practically evaluate the
performance of all proposed algorithms.

Index Terms—K-Core, Uncertain Graphs, Semi-External Algorithms.

F

1 INTRODUCTION

Graphs have been widely used to model sophisticated rela-
tionships between different entities due to their strong rep-
resentative properties. Many real-world applications con-
tain uncertainty in the form of noise [1], measurement errors
[2], the accuracy of predictions [3], privacy concerns [4], and
so on. These uncertain relationships are often modeled as an
uncertain graph, where the actual existence of each edge is
assigned an “existence probability”.

A large number of studies on uncertain graph analysis
and management have involved combining fundamental
graph problems with uncertain graph models. These studies
span a range of tasks, such as reliability searches [5], fre-
quent pattern mining [6] and dense subgraph detection [7].
Among the solutions, k-core is a popular and well-studied
cohesive subgraph metric [8], and the k-core conception in
the uncertain graph model is originally formalized in [9].
k-Cores in Deterministic Graphs. Given a deterministic
graph, a k-core is a maximal connected subgraph in which
each vertex has a degree of at least k [8]. k-cores are com-
puted by iteratively removing the vertex with the minimum
degree and incident edges. This is done in linear time.
Computing k-cores has a large number of real-world ap-
plications: community detection [10], [11], network visual-

• Dong Wen is with the University of Technology Sydney, Australia. Email:
dong.wen@uts.edu.au.

• Bohua Yang is with the University of Technology Sydney, Australia.
Email: bohua.yang@student.uts.edu.au.

• Lu Qin is with the University of Technology Sydney, Australia. Email:
lu.qin@uts.edu.au.

• Ying Zhang is with the University of Technology Sydney, Australia.
Email: ying.zhang@uts.edu.au.

• Lijun Chang is with the University of Sydney, Australia. Email: li-
jun.chang@sydney.edu.au.

• Rong-Hua Li is with the Beijing Institute of Technology, China. Email:
lironghuascut@gmail.com.

v6

v3v1

v5v2 v7v4

0.20.5
0.2

0.8 0.80.60.2 0.40.5 v8

v10v9
0.80.5

0.5 0.80.8

Fig. 1: The (k, η)-cores of G for k = 2 and η = 0.3

ization [12], network topology analysis [8], system structure
analysis [13], protein-protein interaction network analysis
[14], and so on. It also serves to find an approximation result
for densest subgraph [15], betweenness score [16].
(k, η)-Cores in Uncertain Graphs. In the context of uncer-
tain graph models, the degree of each vertex is uncertain. A
(k, η)-core model in uncertain graphs is formalized in [9]. A
(k, η)-core is a maximal subgraph in which each vertex has
at least a probability of η that the degree of this vertex is at
least k. Note that, in this paper, we have imposed a connec-
tivity constraint to ensure the cohesiveness of the resulting
subgraph, i.e., a (k, η)-core is connected. Figure 1 illus-
trates an example of the (k, η)-cores. Here, given an integer
k = 2 and a probability threshold η = 0.3, the uncertain
graph contains two (2, 0.3)-cores — G[{v2, v3, v4, v5}] and
G[{v7, v9, v10}]. Computing the (k, η)-cores can be naturally
applied in the aforementioned areas. For example, in DBLP
collaboration network, each vertex represents an author, and
edges represent co-authorships. The edge probability is an
exponential function based on the number of collaborations
[17]. A (k, η)-core in this case may be a research group.
In addition, [9] introduced some specific applications for
(k, η)-cores associated with uncertain graph models, such
as influence maximization and task-driven team formation.

Given an uncertain graph G, an integer k and a probabil-
ity threshold η, this paper explores the problem of efficiently
computing all the (k, η)-cores in G. In other words, our aim
is to compute a set of vertex sets, and the induced subgraph

2

of each vertex set is a (k, η)-core.
The Online Approach. In [9], (k, η)-cores are derived using
an η-core decomposition algorithm. The algorithm com-
putes an η-core number for each vertex u in G, where the
η-core number for u is the largest integer k such that a
(k, η)-core containing u exists. Let the η-degree of a vertex
u be the largest possible degree such that the probability
of u to have that degree is no less than η. The algorithm
iteratively removes the vertex with the minimum η-degree
and updates the η-degrees of the neighbors. With a small
modification, this algorithm could compute all the (k, η)-
cores in our problem. Specifically, we can iteratively remove
all the vertices with η-degrees of less than k and derive a set
of resulting vertices. The final result can then be generated
by performing a connected component detection procedure.
Motivation. Even though the online approach can success-
fully compute the (k, η)-cores, several challenges remain:
• Parameters Tuning. The results heavily depend on two

input parameters, k and η, and these parameter settings
usually depend on the topological structure of the in-
put graph along with user’s subjective requirements. To
arrive at a satisfying result, users may need to run the
algorithm several times to properly tune the parameters.

• Query Efficiency. Computing and updating the η-degree
for each vertex is costly and accounts for the majority
of the running time in the algorithm. Even though [9]
proposes a dynamic programming approach to partially
offset this problem, the algorithm is still time-intensive
and is not scalable to large uncertain graphs.

An Index-based Approach. Motivated by these challenges,
we have developed an order-based index structure, called
UCO-Index. The general idea is to retain the resulting
vertices for every possible k and η. Specifically, a probability
order for each vertex is maintained. Given an integer k and a
probability threshold η, a vertex in the result set is identified
by comparing the k-th value in the order for the vertex
with η. The final result is then produced by performing a
connected component detection on the vertex set. We have
imposed a bound on the length of the order for each vertex
according to the core number, i.e., the largest integer k
such that a k-core exists containing this vertex. Therefore,
the space for the UCO-Index is well-bounded by O(m),
where m is the number of edges in the graph. The time
complexity for query processing is O(n +

∑
u∈C Deg(u))

for every possible parameter setting of k and η, where n
is the number of vertices and

∑
u∈C Deg(u) is the sum of

degrees of all the vertices in the result set C .
There is still room to reduce the amount of time it takes

for query processing based on the UCO-Index. Hence,
we further propose an alternative method for computing
the (k, η)-cores based on a forest index structure, called
UCF -Index. In this method, rather than maintaining the
order of each vertex, UCF -Index maintains a tree struc-
ture for each integer k. Each tree node contains a set of
vertices, and a probability value is assigned to the tree node,
which means a corresponding (k, η)-core that contains these
vertices exists. The size of UCF -Index is also bounded by
O(m). Using the UCF -Index, we make the time complexity
of query processing optimal. In other words, let |C| be the
number of vertices in the result set. The running time of the
query algorithm is bounded by O(|C|).

Further, we have explored two optimizations to speed up
construction of the index. The first one is called core-based
reduction. By computing the core number of each vertex,
some unnecessary neighbors of each vertex are pruned to
reduce the running time required to compute and update
the probabilities for each vertex. This approach is espe-
cially effective in the last few iterations of the index con-
struction algorithm. The second optimization is called core-
based ordering. This approach avoids the need for repeated
computations of each vertex in the dynamic programming
schema as each iteration of index construction algorithm
proceeds without breaking the correctness. Our experiments
demonstrate a significant increase in speed as a result of
these two optimizations.
I/O Efficient Query Processing. We also study an index-
based solution when a graph cannot be entirely loaded in
memory. We adopt the semi-external setting [18], [19], which
allows O(n) memory usage. The structure of UCF -Index
can be naturally stored in external memory. We use the
same strategy of in-memory query processing to derive
results from the external index and achieve the optimal
I/O complexity O(|C|/B). To construct UCEF -Index in
external memory, straightforwardly using the strategy of
in-memory index construction incurs significant I/O cost
due to frequent random accesses of external memory. We
propose a new framework for external index construction
and derive the index by sequentially accessing the external
graph in several iterations. Several optimizations are also
given to further improve the efficiency.
Contributions. The main contributions of this paper are
summarized as follows:
• The first index-based solution for computing (k, η)-cores in

uncertain graphs. This study presents an effective index
structure, called UCF -Index, for computing all the
(k, η)-cores. The size of UCF -Index is well-bounded
by O(m). To the best of our knowledge, this is the first
index-based solution to this problem.

• Optimal query processing. We present an efficient query
algorithm based on UCF -Index for any possible k and
η. The time complexity is optimal and linear to the
number of vertices in the result set.

• Optimizations for index construction. We give two opti-
mizations, core-based reduction and core-based ordering, to
improve the efficiency of index construction.

• Index Construction in External Memory. We propose a new
framework for index construction in external memory.
Several optimizations are given to reduce I/O cost and
further improve the efficiency.

• Extensive performance studies on both real-world and syn-
thetic datasets. Extensive experiments were conducted
with all the proposed algorithms on eight real-world
datasets. The results demonstrate that this index-based
approach is several orders of magnitude faster than the
online approach.

Outline. Section 2 provides some preliminary concepts and
formally defines the problem. In Section 3, we review an
existing solution and explain the online approach in detail.
Section 4 describes the basic structure of the index. Sec-
tion 5 presents the optimized forest-based index structure.
Section 6 proposes the algorithm for index construction in
external memory. Section 7 practically evaluates the pro-

3

posed algorithms. Section 8 summarizes related works, and
Section 9 concludes the paper.
Extensions Beyond the Conference Version. The confer-
ence version of this paper can be found in [20]. The current
version mainly adds a new Section 6, which proposes a
new algorithm for index construction in external memory.
Some corresponding experiments are added in Section 7.
Due to the space limitation, we omit straightforward proofs
for lemmas and theorems. We also remove several parts,
which do not affect the understanding of the extension. 1)
We remove Section 4.3, which proposes an algorithm for
UCO-Index construction. 2) We remove Section 5.3, which
proposes an algorithm and optimizations for UCF -Index
construction. 3) We remove some experimental results, in-
cluding the query time for different parameters, the index
size, the running time of in-memory algorithms for index
construction, and the scalability of the index construction.

2 PRELIMINARIES

K-Core. Given a deterministic undirected graph G(V,E), V
is the set of vertices and E is the set of edges. The neighbor
set of a vertex u is denoted as N(u,G). The degree of u is
denoted as deg(u,G). We use the termsN(u) and deg(u) for
simplicity when the context is clear. Given a set of vertices
V ′, the induced subgraph of V ′ is denoted as G[V ′], i.e.,
G[V ′] = (V ′, {(u, v) ∈ E|u, v ∈ V ′}).
DEFINITION 1. (k-CORE) Given a graph G(V,E) and an in-
teger k, the k-core is a maximal connected induced subgraph
G′[V ′] in which every vertex has a degree of at least k, i.e.,
∀u ∈ V ′, deg(u,G′) ≥ k. [8]

DEFINITION 2. (CORE NUMBER) Given a graph G(V,E), the
core number for a vertex u, denoted as core(u), is the largest
integer of k such that a k-core containing u exists.

Given a graph G, computing core numbers for all ver-
tices is called core decomposition, which can be done by
iteratively removing the vertex with the minimum degree.
The time complexity is O(m). [21], [22]
K-Core in Uncertain Graphs. Given an uncertain graph
G(V,E, p), p is a function that maps each edge to a prob-
ability value in [0, 1]. The probability of an edge e ∈ E is
denoted by pe. We denote the neighbor set and the degree
of a vertex u in G as N (u,G) and Deg(u,G) respectively.

In line with existing works, we assume that the prob-
ability of each edge actually existing is independent, and
adopt the well-known possible-world semantics for uncer-
tain graph analysis. There exist 2|E| possible graph instances
under this assumption. The probability of observing a graph
instance G(V,E′), denoted by Pr(G), is:

Pr(G) =
∏
e∈E′

pe
∏

e∈E\E′
(1− pe). (1)

The concept of (k, η)-cores, originally defined in [9], is
based on possible-world semantics.

DEFINITION 3. ((k, η)-CORE) Given an uncertain graph
G(V,E, p), an integer k and a probabilistic threshold η ∈ [0, 1],
the (k, η)-core of G is a maximal connected induced subgraph
G′[V ′] such that the probability that each vertex u ∈ V ′ has
a degree of at least k in G′ is not less than η, i.e., ∀u ∈
V ′, P r[deg(u,G′) ≥ k] ≥ η.

Note that we have slightly revised this definition by
adding a connectivity constraint to the (k, η)-cores.

EXAMPLE 1. Consider the uncertain graph G in Figure 1. Given
an integer k = 2 and a probability threshold η = 0.3, we
identify two (2, 0.3)-cores, as marked in the figure. One is
G[{v2, v3, v4, v5}], and the other one is G[{v7, v9, v10}]. We
denote G[{v2, v3, v4, v5}] as G1 for simplicity. Consider the vertex
v2 in G1. There are three edges connected to v2 in G1, and
we have Pr[deg(v2,G1) ≥ 2] = 0.568. Similarly, we have
Pr[deg(v3,G1) ≥ 2] = 0.8, Pr[deg(v4,G1) ≥ 2] = 0.3 and
Pr[deg(v5,G1) ≥ 2] = 0.656. G1 is maximal. Assume that we
add v1 in to G1. We have Pr[deg(v1,G1) ≥ 2] = 0.1 < 0.3.
Therefore, v1 cannot be in the (2, 0.3)-core.

Problem Definition. Given an uncertain graph G(V,E, p),
an integer k and a probabilistic threshold η ∈ [0, 1], we aim
to compute all the (k, η)-cores of G.

Let C be the vertex set such that the induced subgraph
G[C] ofC is a (k, η)-core. The problem aims to compute a set
R containing all such vertex sets C without any duplication.
In the case of k = 2, η = 0.3 in Figure 1, we return
{{v2, v3, v4, v5}, {v7, v9, v10}}.

3 ONLINE (k, η)-CORES COMPUTATION

In this section, we first review an existing solution [9] for the
problem of η-core decomposition, as several key concepts
and ideas intuitively fit our problem. Then, we provide our
online solution for computing (k, η)-cores.

3.1 An Existing Solution for η-Core Decomposition
Given an uncertain graph G, let G≥ku be the set of all possible
graph instances where u has a degree of at least k, i.e.,
G≥ku = {G v G|deg(u,G) ≥ k}. We have the following
equation [9]:

Pr[deg(u,G) ≥ k] =
∑

G∈G≥k
u

Pr(G). (2)

Based on Equation 2, the definition for the η-degree and the
η-core number for each vertex follows.

DEFINITION 4. (η-DEGREE) Given an uncertain graph
G(V,E, p) and a probabilistic threshold η ∈ [0, 1], the η-degree
of a vertex u ∈ V , denoted by η-deg(u,G), is the largest integer
of k that satisfies Pr[deg(u,G) ≥ k] ≥ η. [9]

DEFINITION 5. (η-CORE NUMBER) Given an uncertain graph
G(V,E, p) and a probabilistic threshold η ∈ [0, 1], the η-core
number for a vertex u, denoted as η-core(u), is the largest integer
of k such that a (k, η)-core containing u exists.

LEMMA 1. Given an uncertain graph G and a probability thresh-
old η ∈ [0, 1], a vertex u is in a (k, η)-core iff η-core(u) ≥ k.

The problem of computing the η-core numbers for all
vertices is called η-core decomposition. The solution pro-
posed in [9] is provided in Algorithm 1. Algorithm 1 shares
the similar idea with deterministic core decomposition, and
the pseudocode is self-explanatory. The key steps in the
algorithm are computing (line 1) and updating (line 8) the
η-degrees of the vertices. We introduce their details below.
η-Degree Computation. To compute the η-degree, we first
present the following equation:

4

Algorithm 1: η-CORE DECOMPOSITION

Input: An uncertain graph G(V,E, p) and a
probability threshold η

Output: η-core numbers for all vertices in G
1 compute η-deg(u,G) for all u ∈ V ;
2 while G is not empty do
3 k ← minu∈V η-deg(u,G);
4 while ∃u ∈ V s.t. η-deg(u,G) ≤ k do
5 η-core(u)← k;
6 foreach v ∈ N (u,G) do
7 remove edge (u, v) from G;
8 update η-deg(v,G);
9 V ← V \ {u};

10 return η-core(u) for all vertices u;

Pr[deg(u) ≥ k] =
Deg(u)∑
i=k

Pr[deg(u) = i] = 1−
k−1∑
i=0

Pr[deg(u) = i].

(3)
Based on Equation 3, we can start with Pr[deg(u) ≥

0] = 1. Iteratively, we increase i by one and compute
Pr[deg(u) = i] for a vertex u. We calculate Pr[deg(u) ≥
i + 1] as Pr[deg(u) ≥ i] − Pr[deg(u) = i]. We repeat this
step and terminate once Pr[deg(u) ≥ i + 1] < η. Then we
have η-deg(u) = i.

To compute Pr[deg(u) = i] for a vertex u, we use
the dynamic-programming method given in [9]. Assume
that E(u) = {e1, e2, ..., eDeg(u)} is the set of all the edges
connected to u in some order. The intuitive idea of dynamic
programming is that, if a vertex u has a degree of i, one of
the following two cases applies: either (i) i−1 edges exist in
{e1, e2, ..., eDeg(u)−1} and eDeg(u) exists; or (ii) i edges exist
in {e1, e2, ..., eDeg(u)−1} and eDeg(u) does not exist.

Given a subset E′(u) ⊆ E(u), let deg(u|E′(u)) be the
degree of u in the subgraph G′(V,E\(E(u)\E′(u)), p), and
X(h, j) = Pr[deg(u|{e1, e2, ..., eh}) = j]. We have the
following dynamic-programming recursive function [9] for
all h ∈ [1, Deg(u)], j ∈ [0, h]:

X(h, j) = pehX(h− 1, j − 1) + (1− peh)X(h− 1, j). (4)

Several initialization cases are also given as follows:
X(0, 0) = 1,
X(h,−1) = 0, for all h ∈ [0, Deg(u)],
X(h, j) = 0, for all h ∈ [0, Deg(u)], j ∈ [h+ 1, i].

(5)
LEMMA 2. The time complexity to compute the η-degree of a
vertex u is O(η-deg(u) ·Deg(u)). [9]
η-Degree Update. Given the incident edge set E(u) of a
vertex u, assume that an edge e is removed from E(u). To
compute the updated probability Pr[deg(u|E(u)\{e}) = i],
we introduce the following equation [9]:

Pr[deg(u|E(u)\{e}) = i)] =

Pr[deg(u) = i]− pePr[deg(u|E(u)\{e}) = i− 1]

1− pe
.

(6)

Based on the equation above, we compute
Pr[deg(u|E(u)\{e}) = i] for each i ∈ [1, η-deg(u)] in
constant time, given that Pr[deg(u|E(u)\{e}) = 0] =

1
1−pe

Pr[deg(u) = 0].

Algorithm 2: (k, η)-CORES COMPUTATION

Input: An uncertain graph G(V,E, p), an integer k
and a probability threshold η

Output: All (k, η)-cores in G
1 while ∃u ∈ V s.t. Deg(u) < k do
2 foreach v ∈ N (u,G) do
3 remove the edge (u, v) from G;
4 Deg(v)← Deg(v)− 1;

5 V ← V \ {u};
6 compute η-deg(u) for all u ∈ V ;
7 while ∃u ∈ V s.t. η-deg(u) < k do
8 foreach v ∈ N (u,G) do
9 remove the edge (u, v) from G;

10 update η-deg(v);

11 V ← V \ {u};
12 R ← ∅;
13 foreach connected component G[C] ∈ G do
14 R ← R∪ {C};
15 return R;

LEMMA 3. Given an uncertain graph G and a removed incident
edge e to a vertex u, the time complexity to update the η-degree of
u is O(η-deg(u)). [9]

LEMMA 4. Given an uncertain graph G(V,E, p), the time com-
plexity of Algorithm 1 is O(

∑
u∈V η-deg(u) ·Deg(u)). [9]

3.2 An Online Approach to Compute (k, η)-Cores
Based on several concepts introduced in the previous sec-
tion, we turn to the online approach for computing all
(k, η)-cores. Our approach is similar to Algorithm 1, which
iteratively removes the vertex that does not belong to the
result set. Before presenting the algorithm, we make the
following observation for optimization.
OBSERVATION 1. Given an uncertain graph G and a (k, η)-core
G[C] for any parameter settings for k and η, there exists a k-core
G[C ′] containing G[C], i.e., C ⊆ C ′.

Based on Observation 1, we first recursively remove the
vertices with degrees of less than k, since these vertices
cannot be in the result set for any (k, η)-core. We provide
the pseudocode for our approach in Algorithm 2.

Lines 1–5 compute the k-cores. Lines 6–11 recursively
remove the vertices with η-degrees of less than k and gen-
erate a subgraph containing all result vertices. Lines 12–14
determine the connected components in the result. The time
complexity of Algorithm 2 is O(

∑
u∈V η-deg(u) · Deg(u)),

which is the same as that of Algorithm 1.
Drawbacks of the Online Approach. Even though Algo-
rithm 2 successfully computes all the (k, η)-cores, several
drawbacks still exist. First, changing the input parameters
may heavily influence the resulting (k, η)-cores, especially
in large graphs. We consider the case in Figure 1. If we
change the input parameter η from 0.3 to 0.4 and keep
k = 2, vertex v4 will be removed and the result will change
to {{v2, v3, v5}, {v7, v9, v10}}. Additionally, we find that the
major cost in Algorithm 2 is computing and updating the
η-degrees of the vertices. This is extremely time-consuming
and means the algorithm cannot be scaled to big graphs.

Motivated by the above challenges, we propose an
index-based approach. Based on the proposed index, we can

5v90.90.4 v100.90.4v10.6 v20.92 v3 v4 v5 v6 v7 v80.80.60.76 0.90.920.92 0.1 0.40.480.30.480.480.1 0.040.040.04 0.04123
k

Fig. 2: The UCO-Index of G

answer a query for any given k and η with a time complexity
that is only proportional to the size of the results.

4 AN INDEX-BASED APPROACH
4.1 The Index Structure
In this section, we introduce an index structure, called the
uncertain core η-orders index (UCO-Index). The general idea
of this index is to maintain the result vertices for every
possible k and η. In other words, given an integer k and
a probability threshold η, we aim to efficiently compute all
the result vertices based on the index structure. To complete
this task, we start by computing all result vertices from
any given probability threshold η under a specific fixed
integer k, as there is only a limited number of possible k.
We provide the range of integer k as follows.

OBSERVATION 2. Given an uncertain graph G, we only need
to consider the parameter 1 ≤ k ≤ kmax, where kmax =
maxu∈V core(u).

If k > kmax, the probability that a (k, η)-core exists is
0. We also provide the largest possible integer for k of each
vertex in the following observation.

OBSERVATION 3. Given an uncertain graph G and an integer k,
a vertex u cannot be in the (k, η)-core if core(u) < k.

Based on Observation 3, we derive a candidate set of
resulting vertices by only considering the parameter k,
which is {u ∈ V |core(u) ≥ k}. Now, given the candidate set
for each integer k, we consider computing the exact result
set by the probability threshold η. Recall that a vertex u is in
the (k, η)-core if the η-degree of u is at least k. We have the
following lemma.

LEMMA 5. Given an uncertain graph G, a parameter k and two
probability threshold 0 ≤ η ≤ η′ ≤ 1, a vertex u is in (k, η)-core
if it is in (k, η′)-core.

According to the monotonicity in Lemma 5, we only
need to save the largest probability value η for each vertex
u that will be in the (k, η)-core. We call such value the η-
threshold, which is formally defined as follows.
DEFINITION 6. (η-THRESHOLD) Given an uncertain graph
G(V,E, p) and an integer k, the η-threshold of a vertex u, denoted
by η-thresholdk(u), is the largest η such that a (k, η)-core
containing u exists.

Based on Observation 3 and Definition 6, we have
η-thresholdk(u) = 0 for any vertex u if core(u) < k, and
we give a necessary and sufficient condition that a vertex
will be in the (k, η)-core as follows.

LEMMA 6. Given an uncertain graph G, an integer k and a
probability threshold η, a vertex u is in the (k, η)-core if and
only if η-thresholdk(u) ≥ η.

To efficiently compute all result vertices, we save all η-
thresholds of each vertex u in an order, which is formally
defined as follows.

Algorithm 3: UCO-BASED QUERY

Input: An uncertain graph G(V,E, p), an integer k, a
probability threshold η and UCO-Index

Output: All (k, η)-cores in G
1 V ′ ← {u ∈ V |η-thresholdk(u) ≥ η};
2 R ← ∅;
3 foreach connected component G[C] ∈ G[V ′] do
4 R ← R∪ {C};
5 return R;

DEFINITION 7. (η-ORDER) Given an uncertain graph G and
a vertex u, the η-order of u, denoted by η-order(u), is a
probability order such that (i) the i-th value in η-order(u) is
η-thresholdi(u), and (ii) the length of η-order(u) is core(u).

EXAMPLE 2. The η-orders for all vertices in the uncertain graph
G in Figure 1 are given in Figure 2. Consider the vertex v4. Given
k = 2, we have η-threshold2(v4) = 0.3. That means v4 is in a
(2, 0.3)-core, but not in any (2, η)-core if η > 0.3.

Given the η-order of a vertex u and an integer k, we use
a constant time complexity to compute the η-thresholdk(u).
We save the η-orders for all vertices as our UCO-Index. The
size of the UCO-Index is well-bounded.

THEOREM 1. Given an uncertain graph G(V,E, p), the space
complexity of the UCO-Index is O(

∑
u∈V core(u)).

Since core(u) ≤ Deg(u) for each vertex u, the size of the
UCO-Index is also roughly bounded by O(|E|).

4.2 Query Processing
Before discussing the query processing, we give an alterna-
tive definition for the (k, η)-core based on Definition 6.

LEMMA 7. Given a set of vertices C in G, the induced subgraph
G[C] is a (k, η)-core iff (i) ∀u ∈ C, η-thresholdk(u) ≥ η; (ii)
G[C] is connected; and (iii) C is maximal.

We present the pseudocode for query processing in
Algorithm 3. It first identifies all vertices whose η-threshold
is not less than η in line 1. The η-threshold of a vertex u
can be computed by checking the k-th item in the η-order
of u according to Definition 7. The algorithm then computes
each (k, η)-core in lines 3–4. The correctness of Algorithm 3
can be guaranteed by Lemma 7.

THEOREM 2. Given an uncertain graph G(V,E, p), an integer k
and a probability threshold η, the time complexity of Algorithm 3
is O(|V | +

∑
u∈C Deg(u)), where C is the set of all result

vertices, i.e., C = {u ∈ V |η-thresholdk(u) ≥ η}.

4.3 Index Construction
DEFINITION 8. (k-PROBABILITY) Given an uncertain graph G
and an integer k, the k-probability of a vertex u, denoted by
k-prob(u,G), is the probability that Pr[deg(u,G) ≥ k].

For each integer k, the η-thresholds for vertices in k-
core can be derived by iteratively removing the vertex
with the minimum k-probability. The detailed algorithm for
UCO-Index construction can be found in [20].

5 MAKING QUERY PROCESSING OPTIMAL

We proposed a UCO-Index based approach in the previous
section. Even though computing the η-degree is avoided,
and the used space can be well-bounded, the UCO-Index

6

0.10.30.40.48
!-threshold!-tree

v10
v1 v6v7 v9

v4v2 v3 v5
Fig. 3: The η-tree of G for k = 2

still needs to detect all vertices in query processing, and this
may be hard to tolerate in big graphs. To address this issue,
we propose a forest-based index structure, namely uncertain
core η-forest index (UCF -Index). Based on the UCF -Index,
we compute the result set in optimal time.

The index structure is introduced in Section 5.1. We
provide the query processing algorithm in Section 5.2. We
also propose an algorithm to construct the UCF -Index and
two optimizations to improve algorithmic efficiency. The
details can be found in the conference version [20].

5.1 Forest-based Index Structure
According to Lemma 7, the key to query processing is com-
puting all vertices of u such that η-thresholdk(u) ≥ η. This
costs O(|V |) time in Algorithm 3. A straightforward idea
to improve the query’s efficiency is to sort the vertices in a
non-increasing order of their η-threshold for each integer k.
Based on this structure, we can compute all result vertices
in optimal time, and the total size of this structure can
still be bounded by O(

∑
u∈V core(u)). However, given that

there is no topological information between vertices, we
still use O(

∑
u∈C Deg(u)) time to identify the connected

components, where C = {u ∈ V |η-thresholdk(u) ≥ η}.
Motivated by this, we propose the UCF -Index, which

organizes the vertices and their η-thresholds into a tree
structure, for each integer k. The tree is built based on
Lemma 5. Vertices with smaller η-thresholds are on the
upper side of the tree, and vertices with larger η-thresholds
are on the lower side. We name the tree structure η-tree,
which is denoted by η-treek. Specifically, let Ck be the set
of vertices whose core numbers are not less than k, i.e.,
Ck = {u ∈ V |core(u) ≥ k}. We divide all vertices in Ck into
different tree nodes in η-treek. Considering a tree node X in
the η-treek, the attributes of X are summarized as follows:
• X.vertices: return a set of vertices.
• X.η-threshold: return η-thresholdk(u) for any vertex
u ∈ X.vertices.

• X.parent: return the parent node of X.
• X.children: return the children nodes of X.
The details to implement these attributes are presented

below. Formally, the vertex set for each tree node is com-
puted using the following rule.
LEMMA 8. Given an uncertain graph G and an integer k, we
group a vertex set S into a tree node X, i.e., X.vertices = S
if (i) ∀u, v ∈ S, η-thresholdk(u) = η-thresholdk(v); (ii) let
η = η-thresholdk(u) for any u ∈ S, there is a (k, η)-core G[C],
such that S ⊆ C ; and (iii) S is maximal.

Then we give the rules for the parent-children relation-
ship of tree nodes. Let G[VX] be the (k,X.η-threshold)-core
containing X.vertices, and N(GX) be the set of tree nodes in
which each tree node Y satisfies ∃u ∈ VX, v ∈ Y.vertices :
(u, v) ∈ E ∧ v 6∈ VX. Note that there does not exist a tree
node Y ∈ N(GX) such that Y.η-threshold ≥ X.η-threshold.
Otherwise, the vertices in Y also belong to VX. The parent
for each tree node is defined as follows.

Algorithm 4: UCF-BASED QUERY

Input: An uncertain graph G(V,E, p), an integer k, a
probability threshold η and UCF -Index
index

Output: All (k, η)-cores in G
1 T ← the set of all tree nodes in η-treek;
2 S ← initialize an empty stack;
3 while T is not empty do
4 X← argmaxX∈T X.η-threshold;
5 if X.η-threshold ≥ η then S.push(X);
6 else break;
7 T ← T \ {X};
8 R ← ∅;
9 while S is not empty do

10 X← S.pop();
11 if X is visited then continue;
12 C ← ∅;
13 Q ← initialize an empty queue;
14 Q.insert(X);
15 while Q is not empty do
16 Y← Q.pop();
17 mark Y as visited;
18 C ← C ∪ Y.vertices;
19 foreach Z ∈ Y.children do Q.insert(Z);
20 R ← R∪ {C};
21 return R;

LEMMA 9. Given an uncertain graph G and an integer k, a
tree node Y is the parent of the tree node X in η-treek, if
Y is the tree node in N(GX) with the largest η-threshold, i.e.,
Y = argmaxY∈N(GX) Y.η-threshold.

In the case of N(GX) = ∅, the tree node X is the root
node, and there may exist more than one trees for each
integer k. We give an example as follows.

EXAMPLE 3. Still considering the uncertain graph G in Figure 1,
we give the η-tree of G for k = 2 in Figure 3. The η-threshold
for each tree node is listed on the right side. For the tree node
{v2, v3, v5}, the corresponding (2, 0.48)-core is the induced sub-
graph of the same vertex set. There are two neighbor tree nodes —
{v1, v6} and {v4}. The η-threshold of {v4} is larger, and we set
{v4} as the parent of {v2, v3, v5}.
THEOREM 3. Given an uncertain graph G(V,E, p), the space
complexity of the UCF -Index is O(

∑
u∈V core(u)).

5.2 Optimal Query Processing

We give an alternative definition for (k, η)-core based on the
proposed UCF -Index.
LEMMA 10. Given an uncertain graph G, an integer k, and a
probability threshold η, let R be a tree node in η-treek such that
(i) R.η-threshold ≥ η; and (ii) there does not exist a parent R′
of R such that R′.η-threshold ≥ η. The induced subgraph of all
vertices in the subtree rooted by R is a (k, η)-core.

According to Lemma 10, we process queries by collecting
all tree nodes in the subtree rooted by the tree node R.
Following this idea, we provide the pseudocode for query
processing in Algorithm 4. We first collect all resulting tree
nodes in lines 1–7. We derive the tree node with the largest
η-threshold in line 4, if tree nodes are sorted in a non-

7

increasing order of their η-thresholds. The order can be
precomputed in the index construction.

We iteratively process each tree node in the stack in
lines 9–20. Once an unvisited tree node is found in line 11,
we find a root node satisfying the conditions in Lemma 10.
We use a queue to compute all tree nodes rooted by X, and
collect all vertices in the tree nodes into C in lines 12–19. We
add C into the result set in line 20.
EXAMPLE 4. Given an example for computing the (k = 2, η =
0.3)-core in G of Figure 1 based on the UCF -Index. The η-tree
for k = 2 is given in Figure 3. We first locate the tree nodes R
in Lemma 10, which are {v4} and {v7, v9, v10}. Then we get two
result cores, {v4, v2, v3, v5} and {v7, v9, v10}.
THEOREM 4. Given an uncertain graph G(V,E, p), an integer k
and a probability threshold η, the time complexity of Algorithm 4
is O(|C|), where C is the set of all result vertices, i.e., C = {u ∈
V |η-thresholdk(u) ≥ η}.

Based on the above theorem, we claim that the time
complexity of our query processing algorithm is optimal,
since it is bounded by the result size.

5.3 Optimizations for Index Construction
The algorithm to construct UCF -Index is called
UCF-Construct∗. For each integer 1 ≤ k ≤ kmax,
UCF-Construct∗ contains two phases. The task of the first
phase is to compute η-threshold for each vertex, which is the
same as that of UCO-Index construction. We further pro-
pose two optimizations in [20], called core-based ordering and
core-based reduction, to speed up the first phase. The second
phase constructs the η-tree. Given an integer k, we process
vertices in non-increasing order of their η-thresholds, and
the running time of η-tree construction can be bounded
by O(Ek) where Ek is the set of edges in the induced
subgraph of k-core. More details and the final pseudocode
of UCF-Construct∗ can be found in [20].

6 INDEX CONSTRUCTION IN EXTERNAL MEMORY

In this section, we discuss the (k, η)-core computation when
graphs cannot be entirely stored in main memory. Assume
that graph is stored in a CSR format in external memory. We
adopt the semi-external setting, which allows O(n) memory
usage. This assumption is reasonable in practice, and it has
been widely adopted in massive graph analysis [18], [19].
We design an index-based solution for I/O efficient (k, η)-
core computation. We introduce the data structure to store
UCF -Index in external memory and give the correspond-
ing query processing algorithm in Section 6.1. Section 6.2
proposes a new strategy to locally compute η-thresholds,
and Section 6.3 presents the corresponding algorithm for in-
dex construction. Section 6.4 proposes several optimizations
to further reduce I/Os and improve efficiency.

6.1 UCF-Index in External Memory
We can naturally extend the structure of UCF -Index for
the external memory setting, which is called UCEF -Index.
Specifically, for each integer k, all tree nodes are arranged
in a non-increasing order of their η-thresholds. For each
tree node, we store the following three elements, (1) the
node’s η-threshold, (2) the node’s parent ID, and (3) the
containing vertices. Note that the nodes’ IDs are assigned

v2 v3 v50.48 3 3 v7 v9 v100.4 4 3 0.3 4 1 v4 0.1 NA 2 v1 v6

!-threshold
parent ID

number of vertices

Fig. 4: The UCEF -Index of G for k = 2

in the index construction by the order they arranged in the
hard disk. Consequently, we can derive the current vertex ID
in query processing accordingly and avoid the ID storage in
the index. For the containing vertices of each node, we store
an integer in the front to indicate the number of vertices. We
give an example of the index as follows.

EXAMPLE 5. We show the UCEF -Index of G (Figure 1) for
k = 2 in Figure 4. The corresponding tree structure is in Figure 3.
We mark the fragment of the tree node containing {v7, v9, v10} by
gray. The node is the second one in the sequence, and its implicit
ID is 2. The parent ID is 4, which is the last tree node.

I/O Efficient Query Processing. Based on UCEF -Index,
we can use a similar idea as Algorithm 4 to answer (k, η)-
core queries. We call the query processing algorithm for the
external index UCEF-Query. Given an integer k and a prob-
ability threshold η, we sequentially scan the UCEF -Index
for k. Since tree nodes are arranged in a non-increasing
order of η-thresholds, each scanned node naturally satisfies
line 4 of Algorithm 4. After loading all nodes with η-
threshold not less than η, we derive the tree structure based
on the parent ID of each node. The tree size is bounded by
O(n), and the result can be computed using lines 8 – 21 of
Algorithm 4. The I/O cost of UCEF-Query is still optimal.
THEOREM 5. Given an integer k and a probability threshold η,
the I/O complexity of UCEF-Query is O(|C|/B), where C =
{u ∈ V |η-thresholdk(u) ≥ η}, and B is the block size.

6.2 Local η-Threshold Computation
We can naively perform an in-memory algorithm, e.g.,
UCF-Construct∗ [20], to construct UCEF -Index. Specifi-
cally, for each integer k, we always first process the vertex
with the smallest k-probability. Under the O(n) memory
limitation, we load neighbors of each vertex from external
memory for computing k-probability and release the mem-
ory for loading neighbors of the next vertex. However, this
strategy incurs significant I/O cost due to frequent random
access of the external memory.

To improve the efficiency, we propose a new framework,
called UCEF-Construct, tailored for the external memory
setting. The framework releases the order limitation and
computes the η-threshold of each vertex only using the
neighbors’ η-thresholds. Given an integer k and a proba-
bility value p, let Np

k (u) be the neighbors of u whose η-
threshold is at least p in the (k, η)-core, i.e., Np

k (u) = {v ∈
N(u)|η-thresholdk(v) ≥ p}. The key theorem to support
UCEF-Construct is given as follows.

THEOREM 6. Given an integer k, a probability value p, and a
vertex u with core(u) ≥ k, we have p = η-thresholdk(u) iff

1) the k-probability of u in Np
k (u) is not smaller than p, i.e.,

k-prob(u,G[{u} ∪Np
k (u)]) ≥ p; and

2) there does not exists a probability value p′ s.t. p′ > p and p′

satisfies condition (1).

8

EXAMPLE 6. We give an example to explain Theorem 6. We
consider the vertex v4 in Figure 1. Given k = 2, the η-thresholds
for neighbors of v4 can be found in Figure 2. Assume that
p = 0.48. We have N0.48

2 (v4) = {v2, v3, v5}. The probability
that v4 connects at least 2 neighbors in N0.48

2 (v4) is 0.3. Since
0.3 < 0.48, p is not the η-threshold of v4, which does not satisfy
the condition 1 in Theorem 6. In this case, the correct η-threshold
for v4 should be 0.3.

Based on Theorem 6, the procedure local thres in Algo-
rithm 5 shows the pseudocode for locally computing the
η-threshold of u. Given a vertex u and a set of vertices N ,
we also use N to represent the induced subgraph of u and
N , i.e., G[{u} ∪N], for ease of presentation when context is
clear. For example, in line 7 of local thres, k-prob(u,Ni) is
short for k-prob(u,G[{u} ∪Ni]).

LEMMA 11. Given an integer k, a query vertex u and the η-
thresholds for its neighbors N , local thres correctly computes the
η-threshold for u.

PROOF. According to the condition 1 of Theorem 6, all η-
thresholds for the selected neighbors in computing k-probability
are not smaller than p, and we have t̂(u) ≤ p1. The computed
k-probability is not smaller than p, and we have t̂(u) ≤ p2. By
setting t̂(u) = min(p1, p2), we guarantee t̂(u) in each iteration
always satisfies the condition 1 of Theorem 6. Note that we start
from i = k since p2 would be 0 if i < k.

The condition 2 in Theorem 6 actually guarantees that p is
the largest possible value satisfying the condition 1. local thres
computes such p in a bottom-up strategy. Specifically, we can
find that the variable p1 is monotonic decreasing, and p2 is
monotonic increasing. As a result, min(p1, p2) first monotoni-
cally increases to a peak and then monotonically decreases. Line
8 of local thres checks whether the current t̂(u) reaches the
peak. Once min(p1, p2) stops increasing, the procedure breaks
the iteration and derives the correct t̂(u).

In line 7 of local thres, we do not need to compute
k-prob(u,Ni) from scratch in each iteration. Based on Equa-
tion 3, we maintain Pr[deg(u,Ni) = j] for 0 ≤ j ≤ k − 1
in each iteration. The first iteration takes O(k2) time. In
the iteration i with i > 1, assume Ni = Ni−1 ∪ {v}. We
have Pr[deg(u,Ni) = j] = (1− p(u,v)) · Pr[deg(u,Ni−1) =
j] + p(u,v) ∗ Pr[deg(u,Ni−1) = j − 1]. Therefore, the total
time complexity of line 7 is O(k ·Deg(u)), which is the same
as that of computing k-probability of u in G.

6.3 The Algorithm
Based on Theorem 6, we give the pseudocode of
UCEF-Construct in Algorithm 5. To derive core numbers of
all vertices under the semi-external setting, we adopt the
algorithm SemiCore∗ in [18]. SemiCore∗ uses O(n) memory
space and computes core numbers in several iterations of
sequentially reading the external graph. For each integer k,
we compute η-thresholds in lines 3–13.

For each vertex u, we maintain a core number core(u), a
probability value t̂(u) as an estimation of η-thresholdk(u),
and an indicator to represent whether the vertex is active.
Lines 3–4 initialize t̂(u) and mark all vertices in the k-core
as active. Line 10 computes a new t̂(u) according to the
current t̂ values of neighbors. Lines 12–13 mark possibly in-
fluenced neighbors as active. The η-threshold computation

Algorithm 5: UCEF-INDEX CONSTRUCTION

Input: An uncertain graph G(V,E, p)
Output: UCEF -Index of G

1 compute core(u) for all u ∈ V ; [18]
2 for k ← kmax to 1 do
3 foreach u ∈ V : core(u) ≥ k do
4 t̂(u) = 1, and mark u as active;

5 while active vertex exists do
6 foreach u ∈ V : u is active do
7 mark u as inactive;
8 load N(u) from the disk;
9 t̂old ← t̂(u);

10 t̂(u)← local thres(u,N(u), k);
11 if t̂(u) = t̂old then continue;
12 foreach v ∈ N(u) : t̂(u) < t̂(v) ≤ t̂old do
13 mark v as active;

// construct η-tree for k
14 sort vertices of k-core in non-increasing order of t̂

values, and write their neighbors accordingly in
external memory;

15 invoke Algorithm 8 in [20] to construct η-tree;

1 Procedure local thres(u,N, k) :
2 sort vertices in N in non-increasing order of t̂

values;
3 t̂(u)← 0;
4 for k ≤ i ≤ |N | do
5 p1 ← the i-th t̂ value in N ;
6 Ni ← the first i vertices in N ;
7 p2 ← compute k-prob(u,Ni);
8 if t̂(u) ≥ min(p1, p2) then break;
9 t̂(u)← min(p1, p2);

10 return t̂(u);

terminates if there is no active vertex. For each vertex u, t̂(u)
is always an upper bound of η-threshold(u), which never
increases and converges to η-threshold(u) finally. The proof
of the algorithmic correctness is similar to that of [18], [23],
and we omit the details here.

Note that the condition in line 12 significantly reduces
unnecessary active vertices. We explain the rationale as
follows. For a vertex u, the computation of t̂(u) of each
vertex is based on the neighbors in N

t̂(u)
k (u) according to

Theorem 6. t̂(u) requires to be updated if N t̂(u)
k (u) changes.

Since t̂(u) for any vertex u never increases, we mark a vertex
v as active if its neighbor u leaves N

t̂(v)
k (v). In line 12,

t̂(v) ≤ t̂old means that u is in N
t̂(v)
k (v) when computing

t̂(v), and t̂(u) < t̂(v) means that u leaves N t̂(v)
k (v).

THEOREM 7. The I/O complexity of computing η-thresholds of
all vertices for every possible k is O(l·mB), where l is the total
number of iterations, and B is the block size.

η-Tree Construction. We construct η-trees in lines 14–15. In
the in-memory algorithm to construct η-tree (Algorithm 8
in [20]), vertices are processed in a non-increasing order
of their η-thresholds. We adopt the same idea here and
create a temporary file to arrange neighbors of vertices in

9

k-core in such order. As a result, we can construct the
tree by sequentially reading the required vertex neighbors
from external memory in only one iteration. The temporary
file can be constructed using a traditional external-sorting
algorithm with the I/O complexityO(mB logM

B

m
B), whereM

is the memory size [24]. The semi-external setting allows us
to useO(n) memory. Since n2 ≥ m, log n

B

m
B can be regarded

as a constant, and the I/O complexity of external sorting is
reduced to O(m/B). For an integer k, the I/O cost of η-tree
construction is bounded by O(m/B), and the overall I/O
cost of Algorithm 5 is still O(l·mB).

6.4 Further Optimizations
It is obvious to see that the dominating cost in Algorithm 5
is incurred by computing η-thresholds. We propose several
optimizations to reduce the I/O cost of this step and further
improve the efficiency of Algorithm 5.

6.4.1 Reducing η-Threshold Estimations
Recall that for each vertex u in Algorithm 5, we initialize
t̂(u) by 1, which is a very loose upper bound of the η-
threshold for u. We reduce unnecessary η-threshold com-
putations by setting a relatively tighter upper bound. Given
an integer 1 < k ≤ kmax and an arbitrary vertex u, we
can naturally use η-thresholdk−1(u) as an upper bound
of η-thresholdk(u) based on Lemma 5. To implement this
idea, we adopt a bottom-up strategy which computes η-
thresholds from k = 1 to k = kmax. In this way, we set
t̂(u) = η-thresholdk−1(u) in line 4 of Algorithm 5.

6.4.2 Partial Neighbor Loading
According to Theorem 6, the η-threshold computation only
requires the neighbors whose core numbers are not smaller
than k. We reduce the I/O cost of the η-threshold compu-
tation by only loading necessary neighbors of each vertex.
We implement this idea by sorting neighbors of each vertex
after computing core numbers in line 1 of Algorithm 5.
Specifically, we load neighbors of each vertex from the
external memory. We sort the neighbors in non-increasing
order of their core numbers and write back to the external
memory. The I/O complexity of this step is O(m/B). Given
the sorted neighbors of each vertex, in line 8 of Algorithm 5,
we sequentially read neighbors one by one from external
memory until a neighbor is found with the core number
smaller than k. This step reduces the I/O cost of line 8 from
O(|N(u)|/B) to O(|Nk(u)|/B).

6.4.3 Vertex Ordering
Compared with the in-memory index construction, Algo-
rithm 5 may perform line 10 several times for each vertex u
until t̂(u) converges to η-thresholdk(u) even using a tighter
upper bound in Section 6.4.1. Intuitively, t̂(u) will be close
to η-thresholdk(u) if t̂ values for all neighbors are close to
their η-thresholds. A special case is shown as follows.

LEMMA 12. Given an integer k, assume that all vertices are
sorted in a non-decreasing order of their η-thresholds for k, i.e.,
∀u, v ∈ V, η-thresholdk(u) ≤ η-thresholdk(v) if u < v.
Line 10 of Algorithm 5 performs only once in computing
η-thresholdk(u) for every vertex u.

In the case of the lemma, vertices in line 6 are processed
in non-decreasing order of η-thresholds. t̂(u) derived in

TABLE 1: Network statistics

Datasets |V | |E| degmax kmax

Krogan 2,559 7,031 141 15
Flickr 24,125 300,836 546 225
DBLP 684,911 2,284,991 611 114
BioMine 1,008,201 6,722,503 139,624 448
Web-Google 875,713 4,322,051 6,332 44
Cit-Patents 3,774,768 16,518,947 793 64
LiveJournal 3,997,962 34,681,189 14,815 360
Orkut 3,072,441 117,185,083 33,313 253

line 10 is exactly η-thresholdk(u) according to Theorem 6.
Based on Lemma 12, we aim to improve the efficiency of
Algorithm 5 by postponing the η-threshold computations
of some vertices if their η-thresholds are relatively large
with a high probability. To implement this idea, we sort
vertices in external memory after line 1 of Algorithm 5
using several heuristic rules. We first arrange vertices in
a non-decreasing order of their core numbers. We break a
tie by considering the probability that the vertex u has at
least one neighbor. Specifically, given two vertices u and
v with core(u) = core(v), we assign u to the front if
Pr[deg(u,G) ≥ 1] < Pr[deg(v,G) ≥ 1]. The computation
of Pr[deg(u,G) ≥ 1] for all vertices u takes O(m/B) I/Os
since neighbors of each vertex are required.

We perform an external sorting algorithm to rearrange
the graph structure according to the new vertex order, which
takes O(m/B) I/Os, similar to the discussion in Section 6.3.
Note that the neighbor ordering discussed in Section 6.4.2
can be done as a byproduct in the vertex ordering.

7 EXPERIMENTS

We conducted extensive experiments to evaluate the perfor-
mance of our proposed solutions. All algorithms were im-
plemented in C++ and compiled using a g++ compiler at a
-O3 optimization level. All the experiments were conducted
on a Linux Server with an Intel Xeon 3.46GHz CPU, 96GB
DDR3-RAM, and a 2TB 7200 RPM SATA III Hard Drive.
Datasets. We used eight publicly-available real-world
graphs to evaluate the algorithms. The edge probabilities
in the first four datasets come from real-world applications.
Krogan is a protein-protein interaction (PPI) network [25].
The edge probability represents the possibility of an in-
teraction between the pair of proteins connected by this
edge [26]. Flickr is an online community for sharing photos.
The edge probability is the Jaccard coefficient of interest
groups two users share [9], [17]. DBLP is a computer science
bibliography website. The edge probability is an exponential
function based on the number of collaborations [9], [17].
BioMine is a snapshot of the database of the BioMine
project [27] containing biological interactions. The edge
probability is based on the confidence that the interaction
actually exists [9], [17]. The last four datasets are from
SNAP (http://snap.stanford.edu/index.html). Web-Google
is a web network. Cit-Patents is a citation network. Live-
Journal and Orkut are social networks. Edge probabilities
are assigned at random between 0 and 1. Detailed statistics
of these datasets are summarized in Table 1. The maximum
degree (degmax) and the maximum core number (kmax) are
shown in the last two columns.

Due to space limitation, we omit the evaluations for
the algorithms of in-memory index construction. Interested
readers can find the details in [20].

10

10
-9

10
-7

10
-5

10
-3

10
-1

10

10
3

K
rogan

Flickr

D
B
LP

B
ioM

ine

W
eb-G

oogle

C
it-Patents

LiveJournal

O
rkut

R
u
n
n
in

g
 T

im
e

(s
)

UC-Online UCO-Query UCF-Query UCEF-Query

Fig. 5: Query time on different datasets

1

10

10
2

10
3

10
4

10
5

K
rogan

Flickr

D
B
LP

B
ioM

ine

W
eb-G

oogle

C
it-Patents

LiveJournal

O
rkut

I/
O

Fig. 6: I/O cost of external query processing

1MB

10MB

100MB

1GB

10GB

100GB

K
rogan

Flickr

D
B
LP

B
ioM

ine

W
eb-G

oogle

C
it-Patents

LiveJournal

O
rkut

M
em

o
ry

 U
sa

g
e

UCF-Construct* UCF-Construct*-EM UCEF-Construct*

Fig. 7: Memory usage for external index construction

7.1 Performance of Query Processing
Evaluation-I: Query Performance on Different Datasets.
The running time of UC-Online (Algorithm 2), UCO-Query,
and UCF-Query with the default parameters k = 15 and
η = 0.5 on all datasets are shown in Figure 5. UCF-Query is
not only more efficient than UCO-Query but is also several
orders of magnitude faster than UC-Online on all datasets.
The running time of UCF-Query on Krogan is about 0.012µs,
which is the smallest value in all results. Meanwhile, the
running times of UCO-Query and UC-Online are about 8µs
and 2ms respectively on the same dataset. On the Orkut
dataset with over 100 million edges, UCF-Query only takes
about 17ms, while UCO-Query and UC-Online takes approx-
imately 857ms and 190s respectively. We also evaluate the
performance of query processing by varying k and η. The
details can be found in [20]. Regarding the external memory
setting, the running time of UCEF-Query is shown in the
last bar for each dataset in Figure 5, and the corresponding
number of I/Os is shown in Figure 6. The only difference
between UCEF-Query and UCF-Query is that UCEF-Query
loads the index from external memory.

7.2 Performance of External Index Construction
We use UCF-Construct∗-EM to represent the naive extension
of UCF-Construct∗, which loads neighbors of each vertex
from external memory. We use UCEF-Construct∗ to denote
our final algorithm for index construction in external mem-
ory with all optimizations in Section 6.4.
Evaluation-II: Memory Usage. We report the memory us-
age of UCEF-Construct∗ with UCF-Construct∗-EM and the
in-memory algorithm UCF-Construct∗ as comparisons. We
can see a considerable decrease in memory usage from

10
-2

1

10
2

10
4

10
6

K
rogan

Flickr

D
B
LP

B
ioM

ine

W
eb-G

oogle

C
it-Patents

LiveJournal

O
rkut

R
u
n
n
in

g
 T

im
e

(s
)

UCF-Construct*-EM UCEF-Construct*

Fig. 8: Time cost for external index construction

10
3

10
5

10
7

10
9

10
11

K
rogan

Flickr

D
B
LP

B
ioM

ine

W
eb-G

oogle

C
it-Patents

LiveJournal

O
rkut

I/
O

UCF-Construct*-EM UCEF-Construct*

Fig. 9: I/O cost for external index construction

20%

40%

60%

80%

100%

K
rogan

Flickr

D
B
LP

B
ioM

ine

W
eb-G

oogle

C
it-Patents

LiveJournal

O
rkut

P
er

ce
n
ta

g
e

UCEF-Construct+1 UCEF-Construct+2 UCEF-Construct*

Fig. 10: Speedup for external index construction

40%

60%

80%

100%

K
rogan

Flickr

D
B
LP

B
ioM

ine

W
eb-G

oogle

C
it-Patents

LiveJournal

O
rkut

P
er

ce
n
ta

g
e

UCEF-Construct+1 UCEF-Construct+2 UCEF-Construct*

Fig. 11: I/O reduction for external index construction

UCF-Construct∗ to other external algorithms, since we limit
the memory usage to O(n). In the largest dataset Orkut,
UCEF-Construct∗ takes about 430MB, while UCF-Construct∗

takes up to 26GB.
Evaluation-III: External Index Construction. The running
time and I/O cost of our final algorithm UCEF-Construct∗

for external index construction are reported in Fig-
ure 8 and Figure 9, respectively. The performance of
UCF-Construct∗-EM is also reported as a comparison. We
can find that the strategy for η-threshold computation in
Theorem 6 is effective. In several datasets, UCEF-Construct∗

is one order of magnitude faster than UCF-Construct∗-EM,
and the I/O cost of UCEF-Construct∗ is almost two orders of
magnitude smaller than that of UCF-Construct∗-EM. For ex-
ample, in DBLP, UCEF-Construct∗ and UCF-Construct∗-EM
take 11s and 189s, respectively.
Evaluation-IV: Optimizations for External Index Con-
struction. We evaluate the effectiveness of optimizations
proposed in Section 6.4. We use UCEF-Construct to de-
note Algorithm 5 without any optimizations in Section 6.4
and record its running time and I/O cost in each dataset.
We use UCEF-Construct+1 to denote the algorithm with
the upper bound optimization in Section 6.4.1. We use

11

UCF-Construct*-EM UCEF-Construct*

10
6

10
7

10
8

10
9

10
10

10
11

20% 40% 60% 80% 100%

I/
O

(a) I/O (Vary |V |)

10
7

10
8

10
9

10
10

10
11

20% 40% 60% 80% 100%

I/
O

(b) I/O (Vary |E|)

10

10
2

10
3

10
4

10
5

10
6

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
(s

)

(c) Time (Vary |V |)

10
2

10
3

10
4

10
5

10
6

20% 40% 60% 80% 100%

R
u

n
n

in
g

 T
im

e
(s

)

(d) Time (Vary |E|)

Fig. 12: Scalability of external index construction on Orkut

UCEF-Construct+2 to denote the algorithm with both upper
bound optimization in Section 6.4.1 and neighbor ordering
optimization in Section 6.4.2. Recall that UCEF-Construct∗ is
the final algorithm with all three optimizations. We record
the running time and I/O cost of these algorithms. For
each dataset, we compute the percentages that the running
time and the I/O cost of these algorithms account for those
of UCEF-Construct, respectively. The results are shown in
Figure 10 and Figure 11. The upper bound optimization is
the most effective among them, and the speedup is obvi-
ous especially in large datasets. Note that in several small
datasets of Figure 11, UCEF-Construct+2 takes a little more
I/Os than UCEF-Construct+1 due to the external sorting
of vertex neighbors. However, this optimization reduces a
large number of unnecessary neighbors for the η-threshold
computation and still achieves a speedup.
Evaluation-V: Scalability of External Index Construc-
tion. We evaluate the scalability of UCEF-Construct∗ and
UCF-Construct∗-EM. We vary the size and the density of
Orkut by randomly sampling vertices and edges from 20%
to 100%. When sampling vertices, we derive the induced
subgraph of the sampled vertices, and when sampling
edges, we select the incident vertices of the edges as the
vertex set. The I/O cost is reported in Figure 12 (a) and
Figure 12 (b). The running time is reported in Figure 12 (c)
and Figure 12 (d).

8 RELATED WORK

Uncertain Graphs. Many fundamental problems have
been studied in uncertain graphs. Jin et al. [5] study
the distance-constraint reachability problem in uncertain
graphs. Potamias et al. [17] answer k-nearest neighbor
queries in uncertain graphs. Gao et al. [28] study the
problem of reverse k-nearest neighbor search in uncertain
graphs. Zou et al. [6] investigate the problem of discovering
and mining frequent subgraph patterns in uncertain graphs.
Jin et al. [7] consider the problem of discovering highly
reliable subgraphs of uncertain graphs. The truss decom-
position of uncertain graphs is studied by [29].
K-Core Computations. k-core is defined by Seidman [8].
Batagelj and Zaversnik [21] propose a linear algorithm
for core decomposition. I/O efficient algorithms for core

decomposition are studied in [18], [22], [30]. Montresor et
al. [23] investigate a distributed algorithm for core decom-
position. Core decomposition in random graphs is studied
in [31], [32], [33], [34]. Additionally, k-core is studied using
weighted graphs in [35], directed graphs in [36], dynamic
graphs in [37], [38], [39] and multi-dimensional graphs in
[40]. [9] first explores the k-core model in uncertain graphs.
The details of this approach are presented in Section 3.
A variation for the (k, η)-core, denoted by (k, θ)-core, is
proposed in [41] to capture the k-core probability of each
individual vertex in the uncertain graph.

9 CONCLUSION

This paper presents an index-based solution for computing
all the (k, η)-cores in uncertain graphs. Our proposed index,
called UCF -Index, maintains a tree structure for each inte-
ger k. The size of UCF -Index is well-bounded by O(m).
Based on UCF -Index, queries for any input parameter k
and η can be answered in optimal time. We also propose
an algorithm to construct the index in external memory.
The paper also opens several future problems. For example,
a potential task is to efficiently maintain the UCF -Index
given that many real-world graphs are highly dynamic. In
addition, approximate solutions can be designed to speed
up the index construction.
Acknowledgements. Lu Qin is supported by ARC
FT200100787. Ying Zhang is supported by ARC
FT170100128 and DP180103096. Lijun Chang is supported
by ARC DE150100563 and DP160101513. Rong-Hua Li is
supported by NSFC Grants 61772346 and Beijing Institute
of Technology Research Fund Program for Young Scholars.

REFERENCES

[1] C. C. Aggarwal, Managing and Mining Uncertain Data. Springer,
2009.

[2] E. Adar and C. Re, “Managing uncertainty in social networks.”
IEEE Data Eng. Bull., 2007.

[3] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem
for social networks,” JASIST, 2007.

[4] P. Boldi, F. Bonchi, A. Gionis, and T. Tassa, “Injecting uncertainty
in graphs for identity obfuscation,” PVLDB, 2012.

[5] R. Jin, L. Liu, B. Ding, and H. Wang, “Distance-constraint reacha-
bility computation in uncertain graphs,” PVLDB, 2011.

[6] Z. Zou, H. Gao, and J. Li, “Discovering frequent subgraphs over
uncertain graph databases under probabilistic semantics,” in KDD,
2010.

[7] R. Jin, L. Liu, and C. C. Aggarwal, “Discovering highly reliable
subgraphs in uncertain graphs,” in KDD, 2011.

[8] S. B. Seidman, “Network structure and minimum degree,” Social
networks, 1983.

[9] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core
decomposition of uncertain graphs,” in KDD, 2014.

[10] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of commu-
nities in large graphs,” in SIGMOD, 2014.

[11] C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis,
“Corecluster: A degeneracy based graph clustering framework.”
in AAAI, 2014.

[12] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using the
k-core decomposition,” in NIPS, 2006.

[13] H. Zhang, H. Zhao, W. Cai, J. Liu, and W. Zhou, “Using the k-
core decomposition to analyze the static structure of large-scale
software systems,” The Journal of Supercomputing, 2010.

[14] G. D. Bader and C. W. Hogue, “An automated method for finding
molecular complexes in large protein interaction networks,” BMC
bioinformatics, 2003.

12

[15] R. Andersen and K. Chellapilla, “Finding dense subgraphs with
size bounds,” in International Workshop on Algorithms and Models
for the Web-Graph, 2009, pp. 25–37.

[16] J. Healy, J. Janssen, E. Milios, and W. Aiello, “Characterization of
graphs using degree cores,” in International Workshop on Algorithms
and Models for the Web-Graph, 2006.

[17] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-nearest
neighbors in uncertain graphs,” PVLDB, 2010.

[18] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/O efficient core
graph decomposition at web scale,” in ICDE, 2016.

[19] Z. Zhang, J. X. Yu, L. Qin, and Z. Shang, “Divide & conquer:
I/O efficient depth-first search,” in SIGMOD, T. K. Sellis, S. B.
Davidson, and Z. G. Ives, Eds., 2015.

[20] B. Yang, D. Wen, L. Qin, Y. Zhang, L. Chang, and R. Li, “Index-
based optimal algorithm for computing k-cores in large uncertain
graphs,” in ICDE, 2019.

[21] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores
decomposition of networks,” arXiv preprint cs/0310049, 2003.

[22] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core
decomposition of large networks on a single pc,” PVLDB, 2015.

[23] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-
core decomposition,” TPDS, 2013.

[24] D. E. Knuth, The Art of Computer Programming, Volume 3: (2nd Ed.)
Sorting and Searching. Addison Wesley Longman Publishing Co.,
Inc., 1998.

[25] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko,
J. Li, S. Pu, N. Datta, A. P. Tikuisis et al., “Global landscape of
protein complexes in the yeast saccharomyces cerevisiae,” Nature,
2006.

[26] A. D. Fox, B. J. Hescott, A. C. Blumer, and D. K. Slonim, “Connect-
edness of ppi network neighborhoods identifies regulatory hub
proteins,” Bioinformatics, 2011.

[27] L. Eronen and H. Toivonen, “Biomine: predicting links be-
tween biological entities using network models of heterogeneous
databases,” BMC bioinformatics, 2012.

[28] Y. Gao, X. Miao, G. Chen, B. Zheng, D. Cai, and H. Cui, “On
efficiently finding reverse k-nearest neighbors over uncertain
graphs,” VLDBJ, 2017.

[29] X. Huang, W. Lu, and L. V. Lakshmanan, “Truss decomposition
of probabilistic graphs: Semantics and algorithms,” in SIGMOD,
2016.

[30] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decompo-
sition in massive networks,” in ICDE, 2011.

[31] S. Janson and M. J. Luczak, “A simple solution to the k-core
problem,” Random Structures & Algorithms, 2007.

[32] M. Molloy, “Cores in random hypergraphs and boolean formulas,”
Random Structures & Algorithms, 2005.

[33] T. Łuczak, “Size and connectivity of the k-core of a random
graph,” Discrete Mathematics, 1991.

[34] B. Pittel, J. Spencer, and N. Wormald, “Sudden emergence of a
giantk-core in a random graph,” Journal of Combinatorial Theory,
Series B, 1996.

[35] A. Garas, F. Schweitzer, and S. Havlin, “A k-shell decomposition
method for weighted networks,” New Journal of Physics, 2012.

[36] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “D-cores: Mea-
suring collaboration of directed graphs based on degeneracy,” in
ICDM, 2011.

[37] A. E. Sarı́yüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V.
Çatalyürek, “Streaming algorithms for k-core decomposition,”
PVLDB, 2013.

[38] R.-H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” TKDE, 2014.

[39] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based
approach for core maintenance,” in ICDE, 2017.

[40] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “When engage-
ment meets similarity: efficient (k, r)-core computation on social
networks,” PVLDB, 2017.

[41] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient
probabilistic k-core computation on uncertain graphs,” in ICDE,
2018.

Dong Wen reveived the BEng degree from
Nankai University in 2013, and the PhD degree
from the Faculty of Engineering and Information
Technology, University of Technology Sydney in
2019. He is currently a postdoctoral research
fellow in the Centre for Artificial Intelligence,
University of Technology Sydney. His research
interests include I/O efficient graph processing
and streaming graph analysis.

Bohua Yang received the BEng degree from
Renmin University of China in 2016. He is cur-
rently working toward the PhD degree in the
Centre for Artificial Intelligence, University of
Technology, Sydney. His major research inter-
ests include cohesive subgraph detection and
graph traversal algorithms on massive graphs.

Lu Qin received the BEng degree from the De-
partment of Computer Science and Technology,
Renmin University of China, in 2006, and the
PhD degree from the Department of Systems
Engineering and Engineering Management, Chi-
nese University of Hong Kong, in 2010. He is
currently an associate professor with the Centre
for Artificial Intelligence, University of Technol-
ogy, Sydney. His research interests include big
graph analytics and graph query processing.

Ying Zhang is a professor and ARC Future Fel-
low at CAI, the University of Technology Sydney
(UTS). He received his BSc and MSc degrees in
Computer Science from Peking University, and
PhD in Computer Science from the University of
New South Wales. His research interests include
query processing on data stream, uncertain data
and graphs. He was an Australian Research
Council Australian Postdoctoral Fellowship (ARC
APD) holder (2010 – 2013) and ARC DECRA
research fellow (2014 – 2016).

Lijun Chang is a Senior Lecturer and ARC Fu-
ture Fellow in the School of Computer Science at
the University of Sydney. He received Bachelor
degree from Renmin University of China in 2007,
and Ph.D. degree from The Chinese University
of Hong Kong in 2011. He worked as a Postdoc
and then DECRA research fellow at the Univer-
sity of New South Wales from 2012 to 2017. His
research interests are in the fields of big graph
(network) analytics, with a focus on designing
practical algorithms and developing theoretical

foundations for massive graph analysis. He has co-authored two mono-
graphs, and published over 50 papers in top venues such as SIGMOD,
KDD, PVLDB, ICDE, VLDB Journal, TKDE, and Algorithmica.

Rong-Hua Li received the Ph.D. degree from
the Chinese University of Hong Kong in 2013.
He is currently an associate Professor at Bei-
jing Institute of Technology (BIT), Beijing, China.
Before joining BIT in 2018, he was an assistant
professor at Shenzhen University. His research
interests include graph data management and
mining, social network analysis, graph compu-
tation systems, and graph-based machine learn-
ing.

