
“©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

 



Efficiently Answering Span-Reachability Queries
in Large Temporal Graphs

Dong Wen\, Yilun Huang\, Ying Zhang\, Lu Qin\, Wenjie Zhang‡ and Xuemin Lin‡

\Centre for Artificial Intelligence, University of Technology Sydney, Australia
‡The University of New South Wales, Australia

\{dong.wen, ying.zhang, lu.qin}@uts.edu.au; yilun.huang@student.uts.edu.au;
‡{zhangw, lxue}@cse.unsw.edu.au

Abstract—Reachability is a fundamental problem in graph
analysis. In applications such as social networks and collabo-
ration networks, edges are always associated with timestamps.
Most existing works on reachability queries in temporal graphs
assume that two vertices are related if they are connected by a
path with non-decreasing timestamps (time-respecting) of edges.
This assumption fails to capture the relationship between entities
involved in the same group or activity with no time-respecting
path connecting them. In this paper, we define a new reachability
model, called span-reachability, designed to relax the time order
dependency and identify the relationship between entities in a
given time period. We adopt the idea of two-hop cover and
propose an index-based method to answer span-reachability
queries. Several optimizations are also given to improve the
efficiency of index construction and query processing. We conduct
extensive experiments on 17 real-world datasets to show the
efficiency of our proposed solution.

Index Terms—Reachability, Temporal Graphs

I. INTRODUCTION

Computing the reachability between vertices is a fundamen-
tal problem in network analysis. A true result is returned if
there exists a path connecting two query vertices. Extensive
studies have been done to answer the reachability queries in
graphs [1]–[11], a problem which has applications across a
wide range of domains such as road network, social network,
collaboration networks, PPI (protein-protein-interaction) net-
works, XML and RDF databases.

In real-world applications, edges in graphs are always
associated with temporal information. For example, in col-
laboration network, each vertex is a researcher, and an edge
represents the co-authorship of two researchers at a time. In
a social network, an edge with a timestamp t represents a
communication (sending a message or leaving a comment)
between two users at t. Due to the widely spread temporal
information in entity relationships, research problems in tem-
poral graphs (sometimes called evolving graphs, link stream
or dynamic networks) have recently drawn a lot of attention.
Motivation. In this paper, we study the vertex reachability
problem in temporal graphs. An existing method to model
the temporal reachability is based on the concept of time-
respecting paths [12]–[14]. Specifically, a vertex u reaches v
if there exists a path connecting u and v such that the times
on the path follow a non-decreasing order. For example, in the
temporal graph G of Fig. 1, v6 reaches v10 since there exists a
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Fig. 1. A temporal graph G where each number represents the timestamp of
the edge below

path {〈v6, v2, 5〉, 〈v2, v1, 6〉, 〈v1, v10, 8〉} connecting them and
the times 5, 6, 8 are in a non-decreasing order. Semertzidis et
al. [15] also model the temporal reachability that two vertices
u, v are reachable if there exists path connecting them and
the times of all edges in the path are consistent, i.e., u, v are
reachable in a snapshot of the temporal graph at a given time.

Unfortunately, in many scenarios of temporal graph mining,
we may only focus on the relationship between vertices in the
projected graph of a small time interval without addressing
any order limitation in the edge sequence. Here, the projected
graph is the static graph containing all edges at times falling
in the interval. For example, Gurukar el al. [16] compute the
communication motifs in temporal graphs and show that two
edges sharing a common vertex are related if the difference
of their timestamps is very small. Authors in [17], [18]
compute the community structures called ∆-clique and (θ, k)-
persistent-core, respectively, in temporal graphs. Their models
require that the resulting subgraph satisfies some structural
properties (e.g. vertex degree threshold) in the projected graph
of a time interval. The aforementioned two reachability models
are too strict and might fail to capture entity relationship in
these scenarios.
Span-Reachability. In this paper, we define a span-
reachability model. Given a temporal graph and a time interval
I, we say a vertex u span-reaches v if u reaches v in the
projected graph of I. We investigate the problem of efficiently
answering the span-reachability query for an arbitrary pair of
vertices and any possible time interval.

EXAMPLE 1. In the temporal graph G of Fig. 1, we have v1
span-reaches v8 in the time interval [3, 5], since there exists
a path {〈v1, v5, 5〉, 〈v5, v8, 4〉} from v1 to v8 in the projected
graph of [3, 5].



Applications. Using this model, we can effectively analyze
the potential relationship between entities by focusing on the
item interactions in a specific time period. Several real-world
applications can benefit from this study. For example:

• Biology Analysis. In PPI networks, it is important to
identify whether two proteins participate in a common
biological process or molecular function [19]. In monitor-
ing the protein activities in a specific period, two proteins
belonging to the same biological organization may not
have direct time-respecting paths, but are controlled by
or interacted with a common protein. Our model can be
used to identify the relationship between these proteins.

• Security Assessment & Recommendation. In the context
of assessing security, we need to understand whether
certain person are related to a known terrorist [20]. In
organizing a terrorist activity, there may exist several
phone calls among the suspects with a short time period.
We may be not able to find a time-respecting path from
the known terrorist to others, especially when not all
people in the organization take orders from this terrorist.
Our model can be used to capture the related suspects of a
targeted terrorist. Similarly, in social networks, our model
can be used to detect whether two users are involved in a
social group in the time period of some big events, such
as FIFA World Cup and Olympic Games.

• Money Transaction Monitor. In e-commerce platforms
and bank systems, we often have a graph in which each
vertex represents a user account and each edge with a
timestamp represents a money transaction between two
user accounts. In monitoring money transactions, or some
other illegal financial activities, such as money laundering
and fake transactions, it is crucial to detect whether there
exists a path between two user accounts. Normally, a
series of money transactions should follow an increasing
order of timestamps. However, some skilled users may
borrow some untraceable money to finish the transfer and
try to dodge any monitoring. For example, an account in
the transaction path may transfer the money to the next
account in advance and receive the money from the prior
account later. The existing order-dependent reachability
model cannot capture this activity, but our model can be
used here by setting a specified time interval.

Based on the concept of span-reachability, we also study a
θ-reachability problem, which is a generalized version of span-
reachability. Given a time interval I and a length threshold θ,
two vertices are θ-reachable in I if they are span-reachable in a
θ-length subinterval of I. Taking the above case of monitoring
money transactions, a more general task is to identify whether
there exists a transaction chain between two accounts finished
in a short period over a long monitoring period. Note that
when the length of query interval equals to θ, θ-reachability
is equivalent to span-reachability. The other special case is
that when θ is 1, it is equivalent to the disjunctive historical
reachability model studied in [15].
Online Solution. Given a time interval I, a straightforward

method to answer span-reachability queries is to perform a
bidirectional modified breath-first search between two query
vertices. We only scan the edges in the query interval and
return true if a common vertex is found in the searches
of two query vertices. This method works but incurs high
computational cost especially when the graph is very large.
Index-based Solution. To efficiently process the query and
achieve high scalability, we propose an index-based solution
(called TILL-Index) based on the concept of two-hop cover,
sometimes called hop labeling [21], [22]. Specifically, for each
vertex u in the temporal graph, we maintain an out-label set
Lout(u) and an in-label set Lin(u). Each item in Lout(u)
(resp. Lin(u)) is a triplet 〈w, ts, te〉 which means that u span-
reaches (resp. is span-reachable from) w in the interval [ts, te].
Given a query interval [t1, t2], we answer the span-reachability
from a vertex u to a vertex v by checking Lout(u) and Lin(v).
We have u span-reaches v if there exists a common vertex w
such that u span-reaches w in a subinterval of [t1, t2] and v
is also span-reachable from w in a subinterval of [t1, t2].

Efficiently computing a small-size TILL-Index is not a
trivial task. We construct the index in n iterations where n is
the number of vertices in the temporal graph. In each iteration,
we pick a vertex u to compute all its reachable vertices with
corresponding time interval, and add u to the in-label or out-
label set of other vertices if necessary. This index construction
algorithm incorporates several optimizations. First, we use a
priority queue to explore the reachable vertices of the picked
vertex u in each iteration. Based on the priority queue, our
first step is always to process the vertex with the shortest
time interval that is reachable from u. This guarantees that
each found vertex reachable from u with a corresponding
interval is never dominated by others and significantly reduces
unnecessary visits. In addition, by studying the dominance
relationship between different intervals, we stop exploring
neighbors of a visited reachable vertex if a specific condition
is satisfied. This pruning rule significantly reduces the search
space for each vertex.

Note that even though the concept of the two-hop cover has
been studied or used in several existing works [4], [21]–[23],
our method is not a naive extension of existing techniques.
Unlike the previous studies, our method exploits the charac-
teristics of temporal graphs. The proposed optimizations for
index construction centers mainly on the relationships between
different time intervals, such as containment and intersection.
We also propose several optimization techniques to improve
the efficiency of query processing.
Contributions. We summarize the main contributions in this
paper as follows.
• An elegant reachability model in temporal graphs. We

define a span-reachability model to capture the interac-
tions between entities in a specific period of a temporal
graph. Besides answering the span-reachability query,
we further study a generalized version of the span-
reachability problem, called θ-reachability.

• A two-hop index-based method to answer the queries. We
exploit the characteristics of the span-reachability model



and adopt the idea of two-hop cover to propose an index-
based method to answer both research problems.

• Several optimizations to improve the efficiency of index
construction and query processing. We propose two opti-
mizations to improve the efficiency of index construction.
We also use a sliding window like method to improve the
efficiency of θ-reachability query processing.

• Extensive performance studies on more than ten real-
world datasets. We conduct experiments on 17 real-
world datasets from different categories. The results
demonstrate the effectiveness of our optimizations and
the efficiency of our proposed solutions.

Organization. The rest of this paper is organized as follows.
Section II introduces some background knowledge and defines
the problem. Section III gives an overview of our index-based
solution. Section IV studies the index construction algorithms.
Section V studies the query processing algorithms. Section VI
reports the experimental results. Section VII introduces related
works, and Section VIII concludes the paper.

II. PRELIMINARY

Let G(V, E) be a directed temporal graph, where V and
E denote the set of vertices and the set of temporal edges
respectively. Each temporal edge e ∈ E is a triplet 〈u, v, t〉,
where u, v are the vertices in V and t is the connection
time from u to v. Without loss of generality, we assume t
is an integer since the timestamp in real-world applications
is normally an integer. We use n = |V| and m = |E| to
denote the number of vertices and the number of temporal
edges respectively. Given a vertex u ∈ V , the out-neighbor
set of u is defined as Nout(u) = {〈v, t〉|(u, v, t) ∈ E}, and
the in-neighbor set is defined similarly. The out-degree (resp.
in-degree) of u is denoted as degrout(u) = |Nout(u)| (resp.
degrin(u) = |Nin(u)|). Given a time interval [ts, te], the
projected graph of G in [ts, te], denoted by G[ts,te], where
V (G[ts,te]) = V and E(G[ts,te]) = {(u, v)|(u, v, t) ∈ E , t ∈
[ts, te]}. The length or width of an interval [ts, te] is the
number of timestamps in the interval, i.e., te−ts+1. Given the
temporal graph G in Fig. 1, its projected graph in the interval
[2, 4] is given in Fig. 2.

v1 v2 v3v5

v7

v4

v8

v11

v9

Fig. 2. The projected static graph of G in the time interval [2, 4]

Based on the concept of the projected graph, we define the
span-reachability as follows.

DEFINITION 1. (SPAN-REACHABILITY) Given a temporal
graph G, two vertices u, v, and a time interval [ts, te], u span-
reaches v in [ts, te], denoted as u [ts,te] v, if u reaches v in
the projected graph G[ts,te].

Given the temporal graph G in Fig. 1, we have v1  [2,4] v3
since v1 reaches v3 in the projected graph of [2, 4] in Fig. 2.

We define the first problem studied in this paper based on
Definition 1 as follows.

PROBLEM 1. Given a temporal graph G, an arbitrary pair of
verices u, v, and a time interval I, we aim to efficiently answer
whether u span-reaches v in the interval I.

In addition to identifying the span-reachability, we further
define a generalized reachability model in a temporal graph G
as follows.

DEFINITION 2. (θ-REACHABILITY) Given a temporal graph
G, two vertices u, v, a parameter θ, and a time interval [ts, te]
s.t. te − ts + 1 ≥ θ, u θ-reaches v if there exists an interval
[t′s, t

′
e] ⊆ [ts, te] such that t′e − t′s + 1 = θ and u reaches v in

G[t′s,t′e].
EXAMPLE 2. Given the temporal graph G in Fig. 1, let θ = 3.
We have v1 3-reaches v12 in the interval [1, 5] since there exists
an interval [3, 5] ⊆ [1, 5] such that the length of [3, 5] is 3 and
v1 reaches v12 in the projected graph G[3,5].
Relationship of Two Reachability Models. Given an arbitrary
pair of vertices u, v, a threshold θ and a time interval I, we
also study the issue of computing θ-reachability from u to v
in I, denoted by Problem 2. Definition 1 is a special case
of Definition 2 when θ is equal to the length of the input
interval. We also see a growing strictness from Definition 1 to
Definition 2, which is shown in the following lemma.

LEMMA 1. Given an arbitrary pair of vertices u, v and an
interval I, u span-reaches v in I if u θ-reaches v in I.

For ease of presentation, we assume the input temporal
graph is a directed graph, and our proposed techniques can
easily handle undirected graphs. We omit the proofs of several
lemmas and theorems when they are straightforward due to
space limitation.

III. SOLUTION OVERVIEW

We give an overview of our solution in this section. We
start by presenting a straightforward online algorithm for our
research problems and then introduce several basic ideas of
our index-based method.

A. A Straightforward Online Approach

Given a time interval [ts, te], the span-reachability of two
vertices u and v in [ts, te] can be answered by a modified
bidirectional breath-first search. Specifically, we begin by
alternatively picking one of u and v in each round, and
exploring the unvisited vertices that are reachable from u or
can reach v. We have u reaches v once the search scopes
of two vertices intersect. The detailed pseudocode of this
approach is given in Algorithm 1. Note that we assume u 6= v
in all proposed algorithms to answer the reachability queries
in this paper. Alternatively, we directly return true without the
algorithm invocation.

In line 1, Ru and Rv are used to collect all vertices that u
can reach and all vertices that can reach v, respectively. In line
5, Qu ∪ Qv = ∅ means there does not exist any unexplored



vertex for both u and v. The variable toggle initialized in line
4 represents the processed vertex in the last iteration, and we
process u in lines 7–15 if toggle = v. We explore the out-
neighbors of all vertices in the queue in lines 9–15. In line 11,
we only access edges whose time falls into the input interval.
We return true if a common vertex of Ru and Rv is found in
line 12, or push the new found vertex into the queue in line 14.
The algorithm essentially performs a bidirectional BFS in the
projected graph G[t1,t2]. The time complexity of Algorithm 1
is given as follows.

Algorithm 1: Online-Reach()

Input: a temporal graph G, two vertices u and v, and
an interval [t1, t2]

Output: the span-reachability of u and v in [t1, t2]
1 Ru ← {u}, Rv ← {v};
2 Qu ← a queue containing u;
3 Qv ← a queue containing v;
4 toggle← v;
5 while Qu ∪Qv 6= ∅ do
6 if toggle = v ∧Qu 6= ∅ then
7 toggle← u;
8 l← |Qu|;
9 for 1 ≤ i ≤ l do

10 w ← Qu.pop();
11 foreach 〈w′, t〉 ∈ Nout(w) : t ∈ [t1, t2] do
12 if w′ ∈ Rv then return true;
13 if w′ 6∈ Ru then
14 Qu.push(w′);
15 Ru ← Ru ∪ {w′};

16 else
17 repeat lines 7–15 to search the vertices that

reach v by toggling between u and v, and
replacing the subscript out with in

18 return false;

LEMMA 2. The running time of Algorithm 1 is bounded by
O(m+ n).

Problem 2 can be answered by invoking Algorithm 1 as a
subroutine. We can sequentially check each possible θ-length
subinterval in the given query interval [t1, t2] and return true
immediately if u reaches v in any one of them. In the worst
case, the time complexity of this algorithm is bounded by
O((t2 − t1 − θ) · (n+m)).

Even though the bidirectional search method can suc-
cessfully answer span-reachability queries and θ-reachability
queries, the algorithms suffer from a poor scalability since
the whole graph may be visited during query processing. To
improve query efficiency, we propose an index-based method
in the following section.

B. The Time Interval Labeling Index
We introduce our index structure called Time Interval

Labeling (TILL-Index) in this section. TILL-Index adopts the
idea of two-hop cover (or two-hop labeling) [21], [22]. In a

TABLE I
A TIME INTERVAL LABELING OF G

Lin(v2) 〈v1, 2, 2〉 〈v1, 7, 7〉 Lout(v2) 〈v1, 6, 6〉 Lin(v3)
〈v1, 2, 4〉 〈v1, 4, 5〉 〈v2, 3, 4〉 Lin(v4) 〈v1, 1, 4〉 〈v1, 4, 5〉
〈v2, 3, 5〉 〈v2, 1, 4〉 〈v3, 1, 1〉 〈v3, 5, 5〉 〈v3, 6, 8〉 Lout(v4)
〈v3, 4, 4〉 Lin(v5) 〈v1, 2, 3〉 〈v1, 5, 5〉 〈v2, 3, 3〉 Lout(v5)
〈v3, 4, 4〉 Lout(v6) 〈v1, 5, 6〉 〈v2, 5, 5〉 〈v4, 6, 9〉 Lin(v7)
〈v1, 7, 7〉 Lout(v7) 〈v3, 3, 6〉 Lin(v8) 〈v1, 1, 3〉 〈v1, 2, 4〉
〈v1, 4, 5〉 〈v2, 1, 3〉 〈v2, 3, 4〉 〈v3, 8, 8〉 〈v5, 1, 1〉 〈v5, 4, 4〉
〈v6, 9, 9〉 Lout(v8) 〈v3, 4, 6〉 〈v4, 6, 6〉 Lin(v9) 〈v1, 1, 1〉
〈v1, 3, 7〉 〈v2, 1, 4〉 〈v3, 1, 1〉 〈v7, 3, 3〉 Lout(v9) 〈v3, 6, 6〉
Lin(v10) 〈v1, 8, 8〉 Lout(v10) 〈v1, 9, 9〉 Lout(v11) 〈v1, 3, 3〉
Lout(v12) 〈v1, 6, 9〉 〈v10, 6, 6〉

nutshell, for each vertex u, we maintain an in-label set Lin(u)
and an out-label set Lout(u). Each item in Lin(u) is a triplet
〈w, ts, te〉 which means that w reaches u in the projected graph
G[ts,te]. Each item in Lout(u) is a triplet 〈w, ts, te〉 which
means that u reaches w in G[ts,te]. A triplet is called a w-
triplet if the first item of the triplet is w. We call 〈u, v, ts, te〉
a reachability tuple if u  [ts,te] v, and we say a vertex w
covers a reachability tuple 〈u, v, ts, te〉 if u  [ts,te] w and
w  [ts,te] v. For ease of presentation, we focus mainly on
Problem 1 now. Problem 2 can also be solved based on the
TILL-Index, and Section V will discuss its solution in detail
by extending the techniques in answering Problem 1. Given
two vertices u and v, u span-reaches v in an interval [t1, t2]
if any one of the following equations holds:

1) ∃〈v, ts, te〉 ∈ Lout(u): [ts, te] ⊆ [t1, t2];
2) ∃〈u, ts, te〉 ∈ Lin(v): [ts, te] ⊆ [t1, t2];
3) ∃〈w, ts, te〉 ∈ Lout(u), 〈w′, t′s, t′e〉 ∈ Lin(v): w = w′ ∧

[ts, te] ⊆ [t1, t2] ∧ [t′s, t
′
e] ⊆ [t1, t2].

Based on the above equations, a TILL-Index is a minimal
index that can be used to answer correctly all possible span-
reachability queries in G. Here, by minimal, we mean that
removing any item in the index cannot correctly determine
all possible span-reachability in the graph. An example of a
TILL-Index of the temporal graph G in Fig. 1 is given in
Table I.

EXAMPLE 3. Assume that we aim to answer the span-
reachability from v6 to v3 in the time interval [4, 8]. We
first locate the out-label set of v6 in Table I, which are
Lout(v6) = {〈v1, 5, 6〉, 〈v2, 5, 5〉, 〈v4, 6, 9〉}. The in-label set
of v3 are Lin(v3) = {〈v1, 2, 4〉, 〈v1, 4, 5〉, 〈v2, 3, 4〉}. We
can see that there is a common vertex v1 such that both
〈v1, 5, 6〉 ∈ Lout(v6) and 〈v1, 4, 5〉 ∈ Lin(v3) fall in the query
interval [4, 8]. Therefore, the answer of this query is true.

Even though the idea of two hop cover is simple, it is non-
trivial to efficiently compute a small TILL-Index and answer
the reachability queries based on the index. We give the details
about index construction and query processing in Section IV
and Section V, respectively.

IV. INDEX CONSTRUCTION

A. The Labeling Framework

We begin by presenting several basic concepts before intro-
ducing the details of the index construction.



DEFINITION 3. (DOMINANCE AND SKYLINE REACHABIL-
ITY TUPLE) Given two vertices u and v, a reachability tuple
〈u, v, t′s, t′e〉 dominates 〈u, v, ts, te〉 if [t′s, t

′
e] ⊂ [ts, te]. A

reachability tuple 〈u, v, ts, te〉 is a skyline (or non-dominated)
reachability tuple (SRT) if it is not dominated by other tuples.

Given a vertex u, we also use the term skyline in Defi-
nition 3 for the triplets in Lout(u) (resp. Lin(u)) since a
triplet 〈w, ts, te〉 ∈ Lout(u) represents a reachability tuple
〈u,w, ts, te〉. In constructing TILL-Index, we only need to
compute labels that can cover all SRTs since a vertex covering
an SRT also covers all its dominating tuples. Therefore, our
research task in the index construction is to cover all SRTs in
the graph with the total index size as small as possible.
The Minimum Two-Hop Cover. [4] studies the two-hop
cover for the shortest distance and reachability queries in
general graphs. They proved that computing the minimum two-
hop cover is NP-hard and can be transformed to a minimum
cost set cover problem [24]. They use a greedy algorithm to
compute a two-hop cover and achieve an O(log n) approxi-
mation factor. The proposed algorithm is inefficient since a
procedure of densest subgraph computation is invoked every
time they select a vertex to cover several reachability (or
shortest distance) vertex pairs.
Hierarchical Two-Hop Cover. The aforementioned theoreti-
cal results also hold in our scenario, and we omit the detailed
proof. Due to the difficulty of the optimal cover computation,
we adopt a hierarchical labeling approach [21], [22] which
follows a strict total order on the vertices in G, and we will
prove the minimality of our TILL-Index under the total order
constraint. We use O to denote the vertex order. We say
the rank of a vertex u is higher than that of a vertex v if
O(u) < O(v). By the total order, we mean to sequentially
process each vertex in O. Once we process a vertex w, we
add w and corresponding intervals to the labels of u and v for
all uncovered reachability tuples containing u, v covered by
w. Intuitively, a vertex playing an important role in G should
be put at the front of the order. Next, we adopt the ordering
method in [9]. Given each vertex u, we use the formula
(degrin(u)+1)×(degrout(u)+1) as the importance of u. We
sort the vertices in a decreasing order of their importance and
break the tie by selecting a vertex with smaller ID. Given the
total vertex order, we immediately have the following lemmas
for our TILL-Index.

LEMMA 3. Given an arbitrary vertex u, for every triplet
〈w, ∗, ∗〉 in Lout(u) ∪ Lin(u), O(w) < O(u).

LEMMA 4. Given an SRT 〈u, v, ts, te〉 in G, let w be the first
vertex (the highest rank) in O that can cover 〈u, v, ts, te〉.
w 6= u 6= v. There exists a triplet 〈w, t′s, t′e〉 ∈ Lout(u) such
that [t′s, t

′
e] ⊆ [ts, te] and a triplet 〈w, t′′s , t′′e 〉 ∈ Lin(v) such

that [t′′s , t
′′
e ] ⊆ [ts, te].

Without loss of generality, we maintain only skyline triplets
in labels of TILL-Index since a dominated triplet can be
always replaced by a corresponding skyline triplet without
influencing calculation’s accuracy. We define an important

concept in computing TILL-Index as follows.

DEFINITION 4. (CANONICAL REACHABILITY TUPLE) A
reachability tuple 〈u, v, ts, te〉 is a canonical reachability tuple
(CRT) if (i) 〈u, v, ts, te〉 is a skyline reachability tuple, and
(ii) there does not exist a vertex w such that u  [ts,te] w,
w  [ts,te] v, O(w) < O(u), and O(w) < O(v).

Given a vertex order O and a vertex u, we say a tuple is
an SRT (resp. CRT) of u if the tuple is an SRT (resp. CRT)
containing u and the rank of u is higher in the tuple. We have
following lemmas based on Definition 4.

LEMMA 5. Given an arbitrary vertex u and any (skyline)
triplet 〈w, ts, te〉 in Lout(u) (resp. Lin(u)), 〈u,w, ts, te〉 (resp.
〈w, u, ts, te〉) is a CRT.

LEMMA 6. For each CRT 〈u, v, ts, te〉 in G, there is a triplet
〈u, ts, te〉 in Lin(v) if O(u) < O(v). If this is not the case,
there is a triplet 〈v, ts, te〉 in Lout(u).

EXAMPLE 4. The labels in Table I are computed following
the total alphabetical order of the vertices in G of Fig. 1.
For the in-labels of v8, we can find that the rank of all
vertices v1, v2, v3, v4, v5 and v6 appearing in Lin(v8) have
ranks higher than v8. For an arbitrary triplet 〈v2, 3, 4〉 in
Lin(v8), there does not exist any vertex with higher rank than
v8, and v2 that can cover the reachability tuple 〈v2, v8, 3, 4〉.

Based on Lemma 5 and Lemma 6, there is a one-to-one
correspondence between CRTs and triplets in TILL-Index. It
now follows that we can construct TILL-Index by computing
all CRTs. A framework to construct TILL-Index is presented
in Algorithm 2.

Algorithm 2: A Framework of Index Construction

1 for 1 ≤ i ≤ n do
2 ui ← the i-th vertex in the order O;
3 compute all SRTs of ui;
4 compute all CRTs by refining the computed SRTs;
5 add corresponding triplet of each CRT to in-labels

or out-labels of other vertices;

In the framework, we process each vertex sequentially in
the vertex order. In line 3, the SRTs of ui can be computed
in two phases. One computes all vertices and corresponding
time intervals that are reachable from u, while the other
computes those that can reach u. Taking the first one as an
example, a basic implementation uses a queue to maintain the
discovered reachable triplets of ui. To be specific, the queue
is initialized as a special triplet containing ui. We iteratively
pop a triplet 〈v, ts, te〉, which means u can reach v in [ts, te].
For each out-neighbor 〈v′, t〉 of v, we expand 〈v, ts, te〉 to
〈v′,min(ts, t),max(te, t)〉, which means ui reaches v′ in
the interval [min(ts, t),max(te, t)]. We mark this new triplet
〈v′,min(ts, t),max(te, t)〉 as discovered and push it into the
queue if it is not dominated by other discovered triplet, and
remove all its dominating discovered triplets. In line 3, for



every SRT computed in line 2, we check whether there exists
a vertex with a higher rank that can cover the SRT based
on Definition 4. This can be done by performing a query
processing procedure based on the labels computed by higher-
rank vertices. The details of query processing will be given in
the Section V. If yes, we omit such SRT, and derive all CRTs
when all SRTs are checked.

B. Theoretical Analysis

We prove the correctness and the minimality of TILL-Index
computed by Algorithm 2.

THEOREM 1. (CORRECTNESS) The span-reachability query
of any pair of vertices can be correctly answered (any one
of three conditions presented in Section III-B holds) based on
the index computed by Algorithm 2.

PROOF. The theorem can be easily derived according to
Definition 4, Lemma 5 and Lemma 6.

THEOREM 2. (MINIMALITY) For any vertex u and any triplet
〈w, ts, te〉 in Lin(u) or Lout(u) of the index computed by
Algorithm 2, there exists a pair of vertices u′, v′ and a
corresponding interval [t′s, t

′
e] such that the span-reachability

of u′ and v′ in [t′s, t
′
e] cannot be correctly answered after

removing 〈w, ts, te〉.
PROOF. Given a triplet 〈w, ts, te〉 ∈ Lout(u), we prove that
after removing 〈w, ts, te〉, the span-reachability from u to w
in [ts, te] cannot be correctly answered. If this query can
be correctly answered, then at least one of the following
two condition hold: (i) there exists a triplet 〈u, t′s, t′e〉 in
Lin(w) such that [t′s, t

′
e] ⊆ [ts, te]; (ii) there exists a triplet

〈v, t′s, t′e〉 ∈ Lout(u) and a triplet 〈v, t′′s , t′′e 〉 ∈ Lin(w) such
that [t′s, t

′
e] ⊆ [ts, te] and [t′′s , t

′′
e ] ⊆ [ts, te].

Given that 〈w, ts, te〉 ∈ Lout(u), we have O(w) > O(u)
according to Lemma 3, and a triplet containing u cannot
appear in Lin(w) and Lout(w). Therefore, condition i cannot
hold. Condition ii holds if v covers the reachability tuple
〈u,w, ts, te〉 and the rank of v is higher than those of u and
w. This contradicts Lemma 5 that 〈u,w, ts, te〉 is a CRT. This
completes the proof of the theorem.

C. Implementation

The basic implementation incurs high computational cost.
We discuss several techniques to efficiently compute SRTs and
CRTs as follows.

1) Efficient SRT Computation: We propose a priority queue
based method to efficiently compute all SRTs of a given vertex.
A key idea of this method is given in the following lemma.

LEMMA 7. Given a vertex u and a set of known SRTs S
containing u, a reachability tuple 〈u, v, ts, te〉 is an SRT if
(i) 〈u, v, ts, te〉 is not dominated by any other SRT in S, and
(ii) the length of [ts, te] is the smallest among those of all
tuples that are not in S.

EXAMPLE 5. We consider the temporal graph G in Fig. 1.
Assume that we aim to compute SRTs of v5. For ease of

presentation, we only consider the SRTs starting from v5. Ini-
tially, S = ∅ and we have several reachability tuples with the
smallest interval length. They are 〈v5, v3, 4, 4〉, 〈v5, v8, 1, 1〉,
and 〈v5, v8, 4, 4〉, and all of them are SRTs. Now we have
S = {〈v5, v3, 4, 4〉, 〈v5, v8, 1, 1〉, 〈v5, v8, 4, 4〉}. 〈v5, v8, 4, 8〉 is
not an SRT since it is dominated by 〈v5, v8, 4, 4〉 in S, and
〈v5, v12, 4, 5〉 is an SRT since its interval length is smallest
among all possible reachability tuples except the SRTs in S.

Based on Lemma 7, to compute all non-dominated reach-
ability triplets (a target and the corresponding time interval)
from a vertex u, we preserve all discovered reachability triplets
in a priority queue, and always pop the triplets with the
smallest time interval length in the priority queue. According
to Lemma 7, a popped triplet 〈v, ts, te〉 must be an SRT if it
is not dominated by any previously found SRT. We compute
the new interval of each neighbor of v that can be reached
from 〈v, ts, te〉 and push the corresponding new triplet into
the priority queue if necessary. Following this, we compute all
SRTs when the priority queue is empty. A detailed pseudocode
of our final algorithm will be given in the following section.

2) Efficient CRT Computation: We reduce the CRT checks
by making use of the transitive property of the dominance re-
lationship. The following lemma provides an early termination
condition in the search of SRT computation.

LEMMA 8. Given a reachability tuple 〈u, v, ts, te〉 and a
vertex w, for any reachability tuple 〈u, v′, t′s, t′e〉, we have w
covers 〈u, v′, t′s, t′e〉 if (i) w covers 〈u, v, ts, te〉, (ii) [ts, te] ⊆
[t′s, t

′
e], and (iii) v span-reaches v′ in [t′s, t

′
e].

Given the i-th vertex ui in O, assume that we have detected
a vertex v that ui can reach in an interval [ts, te], and the
corresponding tuple 〈ui, v, ts, te〉 has been covered. Based on
Lemma 8, we immediately terminate any further exploration
of v since all other vertices that are reachable from 〈v, ts, te〉
must have been covered too. By adopting this pruning tech-
nique, we not only avoid a large number of CRT checks but
also reduce the search scope in SRT computation. We give the
pesudocode of the final algorithm for the index construction
by combing two optimization techniques in Algorithm 3.

In Algorithm 3, we use a parameter ϑ to achieve a trade-
off between the index size and the index coverage practically.
ϑ represents the largest interval length of span-reachability
query that TILL-Index can support. In most applications, users
may be only interested in the span-reachability queries in a
small-length interval. We will show the index size and its
construction time under different ϑ selections in Section VI.

Lines 4–16 of Algorithm 3 compute all reachable verices
and corresponding intervals from ui. As discussed in Sec-
tion IV-C1, we always pop a triplet 〈v, ts, te〉 with the smallest
value of te− ts in line 8. Based on Lemma 8, we check if the
reachability tuple 〈ui, v, ts, te〉 has been covered in line 10.
Here, ui  L[ts,te] v means the answer of the span-reachability
query from ui to v in [ts, te] is true according to the current
TILL-Index L (L includes the in-label Lin and out-label Lout

of every vertex). Note that L dynamically increases during the



Algorithm 3: TILL-Construct∗()
Input: a temporal graph G(V, E), a vertex order O

and a parameter ϑ
Output: the TILL-Index of G

1 foreach u ∈ V do
2 Lin(u),Lout(u)← ∅;
3 for 1 ≤ i < n do
4 ui ← the i-th vertex in O;
5 Q ← an empty priority queue;
6 Q.push(〈ui,+∞,−∞〉);
7 while Q is not empty do
8 〈v, ts, te〉 ← Q.pop();
9 if ui 6= v then

10 if ui  L[ts,te] v then continue;
11 else Lin(v)← Lin(v) ∪ {〈ui, ts, te〉};
12 foreach 〈v′, t〉 ∈ Nout(v) do
13 if O(v′) ≤ O(u) then continue;
14 t′s ← min(ts, t), t

′
e ← max(te, t);

15 if t′e − t′s + 1 > ϑ then continue;
16 else Q.push(〈v′, t′s, t′e〉);

17 repeat lines 2–16 to construct Lout of each vertex
by toggling between the subscripts in and out;

execution process of the algorithm. We omit this tuple and
stop further exploration of it if it is covered by the previously
computed index (line 10). Lemma 7 and Lemma 8 guarantee
that 〈ui, v, ts, te〉 must be an CRT, and we safely add ui with
corresponding interval to the in-labels of v in line 11. Lines
12–16 explore the out-neighbors of v. We omit the neighbor
with higher rank in line 13 since their reachability tuples have
been covered in previous iterations. We compute the updated
reachability interval for each neighbor v′ in line 14. We push
the triplet into the priority queue in line 16 if the interval gap
is not larger than the threshold ϑ.

EXAMPLE 6. We give a running example of Algorithm 3. The
default value of the parameter ϑ is +∞. Given a graph G
in Fig. 1 and an alphabetical order, assume that we have
processed the first 4 vertices. We have i = 5 in line 3 and
ui = v5 in line 4. The priority queue is initialized with one
special element 〈v5,+∞,−∞〉. We pop 〈v5,+∞,−∞〉 in line
8 and scan out-neighbors of v5 including 〈v3, 4〉, 〈v8, 1〉, and
〈v8, 4〉. We omit the out-neighbor 〈v3, 4〉 since O(v3) > O(v5)
in line 13, and push 〈v8, 1, 1〉 and 〈v8, 4, 4〉 into Q. Assume
the next popped triplet in line 8 is 〈v8, 1, 1〉. v8 has only one
out-neighbor 〈v4, 6〉 and we have t′s = 1, t′e = 6 in line 14. We
push 〈v4, 1, 6〉 into Q. In the next round, we pop 〈v8, 4, 4〉 and
push 〈v4, 4, 6〉 into Q. Now, Q contains two triplets, 〈v4, 4, 6〉
and 〈v4, 1, 6〉. We do not push any new triplet into Q in
the following rounds since both 〈v4, 4, 6〉 and 〈v4, 1, 6〉 are
covered by v3, and the condition in line 10 holds. Till now,
we have computed all CRTs of v5 which start from v5.

Let Cout
≤ϑ (u) (resp. Cin

≤ϑ(u)) be the set of all CRTs
containing u whose interval length is not larger than

ϑ and the first (resp. second) item is u. Let c≤ϑ =
maxu∈V(max(|Cout

≤ϑ (u)|, |Cin
≤ϑ(u)|) and d be the largest out-

degree or in-degree of the vertices in the graph, i.e., d =
maxu∈V max(degrout(u), degrin(u)). The time complexity
of Algorithm 3 is summarized as follows.

THEOREM 3. The running time of Algorithm 3 is bounded by
O(ndc≤ϑ(log dc≤ϑ + c≤ϑ)).

PROOF. We first focus on one iteration of line 3. Based on
Lemma 5 and Lemma 6, line 11 is performed O(c≤ϑ) times.
We scan the out-neighbors of v′ if line 11 holds. Therefore,
lines 13-16 are performed O(dc≤ϑ) times, and the total
number of items appended to the priority queue is bounded by
O(dc≤ϑ). In line 10, we check whether 〈ui, v, ts, te〉 is covered
by prior verices. This can be done by sequentially scanning
the existing out-label of ui and in-label of v and returning true
if there is a common vertex in the interval [ts, te]. The running
time can be bounded by O(|Cout

≤ϑ (ui)|+|Cin
≤ϑ(v)|) or O(c≤ϑ).

In line 7 and 16, it requires O(log dc≤ϑ) to push a new item or
get the top item in the priority queue. By combing the results,
we have the total time complexity O(ndc≤ϑ(log dc≤ϑ+c≤ϑ)).

Undirected Graphs. In undirected graphs, we only need to
maintain one label set for each vertex. Therefore, we omit
line 17 of Algorithm 3 when constructing the index of an
undirected graph.

V. QUERY PROCESSING

We study the query processing strategies based on the TILL-
Index computed by Algorithm 3. We discuss the algorithm to
answer the span-reachability followed by a full discourse of
the algorithms for the θ-reachability query.

A. Span-Reachability Query Processing

Our first step is to present several basic pruning strategies to
check span-reachability. Given a vertex u, let tmin(Nout(u))
(resp. tmax(Nout(u))) be the smallest (resp. largest) timestamp
in out-neighbors of u. tmin(Nin(u)) and tmax(Nin(u)) are
defined similarly. We have the following lemmas.

LEMMA 9. A vertex u span-reaches a vertex v in [t1, t2] only
if there exist a neighbor 〈w, t〉 ∈ Nout(u) and 〈w′, t′〉 ∈
Nin(v) such that t ∈ [t1, t2] and t′ ∈ [t1, t2].

LEMMA 10. A vertex u span-reaches a vertex v in [t1, t2]
only if t2 ≥ max(tmin(Nout(u)), tmin(Nin(v))) and t1 ≤
min(tmax(Nout(u)), tmax(Nin(v))).

We can check the conditions in above two lemmas simply by
scanning the neighbors of each query vertex. If the conditions
do not hold, we immediately return false and do not invoke
any query processing procedure.

Given a pair of query vertices u, v and an interval [ts, te],
a straightforward method to answer the span-reachability of
u and v is to scan Lout(u) and Lin(v). Let Lout(u)[ts,te]
(resp. Lin(u)[ts,te]) be the set of all triplets in Lout(u) (resp.
Lout(v)) falling in the interval [ts, te]. We answer true if
there exists a common vertex in Lout(u)[ts,te] ∪ {u} and



Lin(v)[ts,te] ∪ {v}. Otherwise, we return false. This can be
done by using a hash table to preserve the vertices.

To improve the query efficiency, we group the triplets in the
out-label or in-label of each vertex by their target vertices (the
first item in the triplet). Let V(Lout(u)) be the set of vertices
in the reachability triplet of Lout(u), i.e., V(Lout(u)) = {v ∈
V|〈v, ts, te〉 ∈ Lout(u)}. Given a vertex w in V(Lout(u)), we
use Lout(u)w to denote the intervals that u can reach w in
Lout(u), i.e., Lout(u)w = {[ts, te]|〈w, ts, te〉 ∈ Lout(u)}. We
check the span-reachability in two phases. In the first one,
we check if there exists a common vertex in u ∪ V(Lout(u))
and v ∪ V(Lout(v)). This can be done in a merge sort like
strategy by arranging the vertices in the label of each vertex
by their ranks. Once finding a common vertex w, we further
check if there exist intervals falling in the query interval in
Lout(u)w and Lin(v)w, respectively. If yes, we immediately
return true. Otherwise, we resume the search and look for the
next common vertex. Recall that in Algorithm 3, the triplets
appended to the out-label or in-label of each vertex follow the
order of the vertex rank. Therefore, the group operation can
be done naturally in the index construction without incurring
extra cost.

To check whether there exists an interval falling in the query
interval, we sort the intervals of each vertex in chronological
order. So, given two intervals [ts, te] and [t′s, t

′
e], [ts, te] is prior

to [t′s, t
′
e] if (i) ts < t′s, or (ii) ts = t′s ∧ te < t′e. Therefore,

given a query interval [t1, t2] and an arbitrary interval [ts, te],
if an interval [t∗s, t

∗
e] ⊆ [t1, t2] exists, [t∗s, t

∗
e] must appear

after [ts, te] if ts < t1 or appear before [ts, te] if te > t2.
This sorting task can be done at the end of Algorithm 3
after all labels are completely computed. The time usage for
sorting can be bounded by O(nc≤ϑ log c≤ϑ), and this would
not increase the total time complexity in Theorem 3.

[1,4] [4,5] [3,5] [1,4] [1,1] [5,5] [6,8]

v1 0 v2 2 v3 4

0 1 2 3 4 5 6

Lin(v4) :
<latexit sha1_base64="p8feN20cz5wxORCO2HnuVJ5GKOc=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBahbkoiBcVV0Y0LFxXsA9oQJtNJO3TyYGZSKCHgr7hxoYhbv8Odf+O0zUJbD1w4nHMv997jJ5xJZdvfxsrq2vrGZmnL3N7Z3du3Dg5bMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO2Pbqd+e0yFZHH0qCYJdUM8iFjACFZa8qxj08x6BHN0n3sZi/LK2KudX3tW2a7aM6Bl4hSkDAUanvXV68ckDWmkCMdSdh07UW6GhWKE09zspZImmIzwgHY1jXBIpZvNzs/RmVb6KIiFrkihmfp7IsOhlJPQ150hVkO56E3F/7xuqoIrV3+VpIpGZL4oSDlSMZpmgfpMUKL4RBNMBNO3IjLEAhOlEzN1CM7iy8ukdVF17KrzUCvXb4o4SnACp1ABBy6hDnfQgCYQyOAZXuHNeDJejHfjY966YhQzR/AHxucPEyuUQw==</latexit><latexit sha1_base64="p8feN20cz5wxORCO2HnuVJ5GKOc=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBahbkoiBcVV0Y0LFxXsA9oQJtNJO3TyYGZSKCHgr7hxoYhbv8Odf+O0zUJbD1w4nHMv997jJ5xJZdvfxsrq2vrGZmnL3N7Z3du3Dg5bMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO2Pbqd+e0yFZHH0qCYJdUM8iFjACFZa8qxj08x6BHN0n3sZi/LK2KudX3tW2a7aM6Bl4hSkDAUanvXV68ckDWmkCMdSdh07UW6GhWKE09zspZImmIzwgHY1jXBIpZvNzs/RmVb6KIiFrkihmfp7IsOhlJPQ150hVkO56E3F/7xuqoIrV3+VpIpGZL4oSDlSMZpmgfpMUKL4RBNMBNO3IjLEAhOlEzN1CM7iy8ukdVF17KrzUCvXb4o4SnACp1ABBy6hDnfQgCYQyOAZXuHNeDJejHfjY966YhQzR/AHxucPEyuUQw==</latexit><latexit sha1_base64="p8feN20cz5wxORCO2HnuVJ5GKOc=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBahbkoiBcVV0Y0LFxXsA9oQJtNJO3TyYGZSKCHgr7hxoYhbv8Odf+O0zUJbD1w4nHMv997jJ5xJZdvfxsrq2vrGZmnL3N7Z3du3Dg5bMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO2Pbqd+e0yFZHH0qCYJdUM8iFjACFZa8qxj08x6BHN0n3sZi/LK2KudX3tW2a7aM6Bl4hSkDAUanvXV68ckDWmkCMdSdh07UW6GhWKE09zspZImmIzwgHY1jXBIpZvNzs/RmVb6KIiFrkihmfp7IsOhlJPQ150hVkO56E3F/7xuqoIrV3+VpIpGZL4oSDlSMZpmgfpMUKL4RBNMBNO3IjLEAhOlEzN1CM7iy8ukdVF17KrzUCvXb4o4SnACp1ABBy6hDnfQgCYQyOAZXuHNeDJejHfjY966YhQzR/AHxucPEyuUQw==</latexit><latexit sha1_base64="p8feN20cz5wxORCO2HnuVJ5GKOc=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBahbkoiBcVV0Y0LFxXsA9oQJtNJO3TyYGZSKCHgr7hxoYhbv8Odf+O0zUJbD1w4nHMv997jJ5xJZdvfxsrq2vrGZmnL3N7Z3du3Dg5bMk4FoU0S81h0fCwpZxFtKqY47SSC4tDntO2Pbqd+e0yFZHH0qCYJdUM8iFjACFZa8qxj08x6BHN0n3sZi/LK2KudX3tW2a7aM6Bl4hSkDAUanvXV68ckDWmkCMdSdh07UW6GhWKE09zspZImmIzwgHY1jXBIpZvNzs/RmVb6KIiFrkihmfp7IsOhlJPQ150hVkO56E3F/7xuqoIrV3+VpIpGZL4oSDlSMZpmgfpMUKL4RBNMBNO3IjLEAhOlEzN1CM7iy8ukdVF17KrzUCvXb4o4SnACp1ABBy6hDnfQgCYQyOAZXuHNeDJejHfjY966YhQzR/AHxucPEyuUQw==</latexit>

[5,6] [5,5] [6,9]v1 0 v2 1 v4 2
0 1 2

Lout(v6) :
<latexit sha1_base64="46uSrf4/Zwb9p9h9/wRzc7suyO4=">AAAB/nicbVDLSsNAFJ34rPEVFVduBotQNyURUXFVdOPCRQX7gDaEyXTSDp3MhJlJoYSAv+LGhSJu/Q53/o3TNgttPXDhcM693HtPmDCqtOt+W0vLK6tr66UNe3Nre2fX2dtvKpFKTBpYMCHbIVKEUU4ammpG2okkKA4ZaYXD24nfGhGpqOCPepwQP0Z9TiOKkTZS4BzaWRcjBu/zIBOpziuj4OL0OnDKbtWdAi4SryBlUKAeOF/dnsBpTLjGDCnV8dxE+xmSmmJGcrubKpIgPER90jGUo5goP5uen8MTo/RgJKQpruFU/T2RoVipcRyazhjpgZr3JuJ/XifV0ZWfUZ6kmnA8WxSlDGoBJ1nAHpUEazY2BGFJza0QD5BEWJvEbBOCN//yImmeVT236j2cl2s3RRwlcASOQQV44BLUwB2ogwbAIAPP4BW8WU/Wi/Vufcxal6xi5gD8gfX5A9IQlLw=</latexit><latexit sha1_base64="46uSrf4/Zwb9p9h9/wRzc7suyO4=">AAAB/nicbVDLSsNAFJ34rPEVFVduBotQNyURUXFVdOPCRQX7gDaEyXTSDp3MhJlJoYSAv+LGhSJu/Q53/o3TNgttPXDhcM693HtPmDCqtOt+W0vLK6tr66UNe3Nre2fX2dtvKpFKTBpYMCHbIVKEUU4ammpG2okkKA4ZaYXD24nfGhGpqOCPepwQP0Z9TiOKkTZS4BzaWRcjBu/zIBOpziuj4OL0OnDKbtWdAi4SryBlUKAeOF/dnsBpTLjGDCnV8dxE+xmSmmJGcrubKpIgPER90jGUo5goP5uen8MTo/RgJKQpruFU/T2RoVipcRyazhjpgZr3JuJ/XifV0ZWfUZ6kmnA8WxSlDGoBJ1nAHpUEazY2BGFJza0QD5BEWJvEbBOCN//yImmeVT236j2cl2s3RRwlcASOQQV44BLUwB2ogwbAIAPP4BW8WU/Wi/Vufcxal6xi5gD8gfX5A9IQlLw=</latexit><latexit sha1_base64="46uSrf4/Zwb9p9h9/wRzc7suyO4=">AAAB/nicbVDLSsNAFJ34rPEVFVduBotQNyURUXFVdOPCRQX7gDaEyXTSDp3MhJlJoYSAv+LGhSJu/Q53/o3TNgttPXDhcM693HtPmDCqtOt+W0vLK6tr66UNe3Nre2fX2dtvKpFKTBpYMCHbIVKEUU4ammpG2okkKA4ZaYXD24nfGhGpqOCPepwQP0Z9TiOKkTZS4BzaWRcjBu/zIBOpziuj4OL0OnDKbtWdAi4SryBlUKAeOF/dnsBpTLjGDCnV8dxE+xmSmmJGcrubKpIgPER90jGUo5goP5uen8MTo/RgJKQpruFU/T2RoVipcRyazhjpgZr3JuJ/XifV0ZWfUZ6kmnA8WxSlDGoBJ1nAHpUEazY2BGFJza0QD5BEWJvEbBOCN//yImmeVT236j2cl2s3RRwlcASOQQV44BLUwB2ogwbAIAPP4BW8WU/Wi/Vufcxal6xi5gD8gfX5A9IQlLw=</latexit><latexit sha1_base64="46uSrf4/Zwb9p9h9/wRzc7suyO4=">AAAB/nicbVDLSsNAFJ34rPEVFVduBotQNyURUXFVdOPCRQX7gDaEyXTSDp3MhJlJoYSAv+LGhSJu/Q53/o3TNgttPXDhcM693HtPmDCqtOt+W0vLK6tr66UNe3Nre2fX2dtvKpFKTBpYMCHbIVKEUU4ammpG2okkKA4ZaYXD24nfGhGpqOCPepwQP0Z9TiOKkTZS4BzaWRcjBu/zIBOpziuj4OL0OnDKbtWdAi4SryBlUKAeOF/dnsBpTLjGDCnV8dxE+xmSmmJGcrubKpIgPER90jGUo5goP5uen8MTo/RgJKQpruFU/T2RoVipcRyazhjpgZr3JuJ/XifV0ZWfUZ6kmnA8WxSlDGoBJ1nAHpUEazY2BGFJza0QD5BEWJvEbBOCN//yImmeVT236j2cl2s3RRwlcASOQQV44BLUwB2ogwbAIAPP4BW8WU/Wi/Vufcxal6xi5gD8gfX5A9IQlLw=</latexit>

Fig. 3. The data structure used to store Lin(v4) and Lout(v6)

EXAMPLE 7. Fig. 3 shows the data structure used to store
the labels of each vertex. We take Lin(v4) and Lout(v6) as
examples. All triplets in these two label sets can be found
in Table I. Two arrays are used to store the triplets in the
label of each vertex. One interval array stores the intervals
for each vertex in the label, and the other vertex array stores
all vertices in the label and the start position of their intervals
in the interval array. For Lin(v4) in Fig. 3, the intervals of
v1, v2, and v3 are marked by white, light gray and dark gray,
respectively. The intervals of v2 in Lin(v4) in the interval
array start from the position of v2 (i.e., 2), and end at the
position of the next vertex v3 in the vertex array (i.e., 4).

A complete pseudocode of the span-reachability query pro-
cessing is presented in Algorithm 4, and is self-explanatory. In

Algorithm 4: Span-Reach()

Input: TILL-Index of G, two vertices u and v, and an
interval [t1, t2]

Output: the span-reachability of u and v in [t1, t2]
1 i, i′ ← 1;
2 while i ≤ |V(Lout(u))| ∧ i′ ≤ |V(Lin(v))| do
3 w ← the i-th vertex in V(Lout(u));
4 w′ ← the i′-th vertex in V(Lin(v));
5 if w = v ∧ ∃[ts, te] ∈ Lout(u)w : [ts, te] ⊆ [t1, t2]

then return true;
6 else if w′ = u ∧ ∃[t′s, t′e] ∈ Lin(v)w′ :

[t′s, t
′
e] ⊆ [t1, t2] then return true;

7 else if O(w) < O(w′) then i← i+ 1;
8 else if O(w) > O(w′) then i′ ← i′ + 1;
9 else if ∃[ts, te] ∈ Lout(u)w : [ts, te] ⊆ [t1, t2] ∧

∃[t′s, t′e] ∈ Lin(v)w′ : [t′s, t
′
e] ⊆ [t1, t2] then

10 return true;

11 else i← i+ 1, i′ ← i′ + 1;

12 return false;

lines 5, 6, and 9, we use the binary search method described
above to find a subinterval of [t1, t2].

EXAMPLE 8. Assume that we aim to answer the span-
reachability from v6 to v4 in the interval [3, 5]. We scan the
vertex array of Lout(v6) and Lin(v4) to look for a common
vertex. We first find a common vertex v1. However, there does
not exist a subinterval of [3, 5] of v1 in the interval array
of Lout(v6). We continue to search the next common vertex
and find v2. We find there exist a subinterval [5, 5] of v2 in
Lout(v6) and a subinterval [3, 5] of v2 in Lin(v4). Therefore,
we return true for this query.

THEOREM 4. Given a pair of vertices u and v, the running
time of Algorithm 4 is bounded by O(|Lout(u)|+ |Lin(v)|).

B. θ-Reachability

Based on the idea for the span-reachability query process-
ing, we study the θ-reachability query in this subsection.
Given two vertices u, v, a threshold θ and an interval [t1, t2],
a straightforward idea to answer the θ reachability query
is to invoke Algorithm 4 for every possible interval (from
[t1, t1 + θ − 1] to [t2 − θ + 1, t2]). The time complexity of
this method is O((t2 − t1 − θ) · (|Lout(u)| + |Lin(v)|)). We
improve the time complexity to O(|Lout(u)| + |Lin(v)|) by
taking a sliding window based approach. Before discussing
the details of the algorithm, we show that u θ-reaches v in
[t1, t2] if one of the following equations holds:

1) ∃〈v, ts, te〉 ∈ Lout(u): [ts, te] ⊆ [t1, t2]∧ te− ts + 1 ≤ θ;
2) ∃〈u, ts, te〉 ∈ Lin(v): [ts, te] ⊆ [t1, t2] ∧ te − ts + 1 ≤ θ;
3) ∃〈w, ts, te〉 ∈ Lout(u), 〈w′, t′s, t′e〉 ∈ Lin(v): w = w′ ∧

[ts, te] ⊆ [t1, t2] ∧ [t′s, t
′
e] ⊆ [t1, t2] ∧ max(te, t

′
e) −

min(ts, t
′
s) + 1 ≤ θ.

Based on the conditions above, we can follow the same
framework of Algorithm 4. We add the limitation te−ts+1 ≤
θ in line 5 and line 6 of Algorithm 4 respectively to check the



Algorithm 5: ES-Reach∗()
Input: TILL-Index of G, a parameter θ, two vertices u

and v, and an interval [t1, t2]
Output: the θ-reachability of u and v in [t1, t2]

1 i, i′ ← 1;
2 while i ≤ |V(Lout(u))| ∧ i′ ≤ |V(Lin(v))| do
3 w ← the i-th vertex in V(Lout(u));
4 w′ ← the i′-th vertex in V(Lin(v));
5 if w = v ∧ ∃[ts, te] ∈ Lout(u)w : [ts, te] ⊆

[t1, t2], te − ts ≤ θ then return true;
6 else if w′ = u ∧ ∃〈w′, t′s, t′e〉 ∈ Lin(v) : [t′s, t

′
e] ⊆

[t1, t2], t′e − t′s ≤ θ then return true;
7 else if O(w) < O(w′) then i← i+ 1;
8 else if O(w) > O(w′) then i′ ← i′ + 1;
9 else if ∃[ts, te] ∈ Lout(u)w : [ts, te] ⊆ [t1, t2] ∧

∃[t′s, t′e] ∈ Lin(v)w′ : [t′s, t
′
e] ⊆ [t1, t2] then

10 k ← the position of the first interval
[ts, te] ∈ Lout(u)w s.t. [ts, te] ⊆ [t1, t2];

11 k′ ← the position of the first interval
[t′s, t

′
e] ∈ Lin(v)w′ s.t. [t′s, t

′
e] ⊆ [t1, t2];

12 while k ≤ |Lout(u)w| ∧ k′ ≤ |Lin(v)w′ | do
13 [ts, te] the k-th interval in Lout(u)w;
14 [t′s, t

′
e] the k′-th interval in Lin(v)w′ ;

15 if [ts, te] 6⊆ [t1, t2] ∨ [t′s, t
′
e] 6⊆ [t1, t2] then

16 break;

17 else if max(te, t
′
e)−min(ts, t

′
s) ≤ θ then

18 return true;

19 else if te − ts > θ ∨ ts < t′s then
20 k ← k + 1;

21 else k′ ← k′ + 1;

22 i← i+ 1, i′ ← i′ + 1;

23 else i← i+ 1, i′ ← i′ + 1;

24 return false;

first two conditions. To check the third condition of finding
a common vertex w in V(Lout(u)) and V(Lin(v)), we first
filter out all intervals in Lout(u)w and Lin(v)w not found in
[t1, t2]. With the concept of sliding window, the window is
always θ. Recall that the intervals in each label are sorted in
chronological order. The initial start time of the window is the
smallest start time of the remaining intervals in the labels. If
both the first intervals of two labels fall in the sliding window,
we return true. Alternatively, we filter out the interval with the
smallest start time and move the sliding window forward to the
next smallest start time of the intervals. This step is repeated
until no interval remains.

The pseudocode to answer the θ-reachability query is given
in Algorithm 5. Lines 5 and 6 correspond to the θ-reachability
conditions 1 and 2 respectively. Lines 9–20 correspond to
condition 3. In lines 10 and 11, we use a binary search to
locate the first interval falling in [t1, t2]. The condition of line
15 holds if all intervals of Lout(u)w (or Lin(v)w) in [t1, t2]
are scanned, and we break the loop. Line 17 holds if we find

a pair of intervals falling in the same sliding window. In lines
19 and 21, we move the sliding window with a new start time
of min(ts, t

′
s).

THEOREM 5. Given a pair of vertices u and v, the running
time of Algorithm 5 is bounded by O(|Lout(u)|+ |Lin(v)|).

EXAMPLE 9. Given a query interval [1, 8] and θ = 3, assume
that we aim to answer 3-reachability from v6 to v4. The out-
label and in-label of v6 and v4 are given in Fig. 3, respectively.
In line 9 of Algorithm 5, we find a common vertex v1 in
V(Lout(v6)) and V(Lin(v4)). We have [ts, te] = [5, 6] in line
13 and [t′s, t

′
e] = [1, 4] in line 14. The conditions in lines 15,

17,and 19 do not hold. As a result, line 21 is executed. In
the next iteration, we have [t′s, t

′
e] = [4, 5] and [ts, te] is kept

constant. The condition in line 17 holds, and true is returned.

VI. EXPERIMENTS

We conducted extensive experiments to evaluate the perfor-
mance of our proposed algorithms, summarized as follows:
• Online-Reach: Algorithm 1.
• Span-Reach: Algorithm 4.
• ES-Reach: a naive method to answer θ-reachability by

invoking several runs of Span-Reach(). More details can
be found in Section V-B.

• ES-Reach∗: Algorithm 5.
• TILL-Construct: A basic implementation of Algorithm 2.

We use a queue to compute all SRTs and get CRTs by
checking whether every SRT can be covered by existing
labels. More details can be found in Section IV-A.

• TILL-Construct∗: Algorithm 3.
All algorithms were implemented in C++ and compiled

using a g++ compiler at a -O3 optimization level. All the
experiments were conducted on a Linux Server with an Intel
Xeon 2.7GHz CPU and 180GB RAM.
Datasets. We conducted experiments on seventeen publicly-
available real-world graphs. The detailed statistics of these
datasets are summarized in Table II. M demonstrates the
types of datasets, where D represents the directed graph
and U represents the undirected graph. ϑG demonstrates the
number of atomic units between the smallest timestamp and
the largest timestamp. All networks and corresponding detailed
descriptions can be found in SNAP1 and KONECT2.

The rest of this section is organized as follows. Sec-
tion VI-A provides the performance of answering span-
reachability queries. Section VI-B evaluates the index con-
struction algorithms, and Section VI-C reports the performance
of answering θ-reachability queries.

A. Span-Reachability Query Processing

We evaluate the performance of span-reachability query
processing. To generate input queries, we randomly pick 100
vertex pairs in each graph G. For each vertex pair, we randomly
generate subintervals of [1, ϑG ] and only keep intervals if the

1http://snap.stanford.edu/data/index.html
2http://konect.uni-koblenz.de/networks/



TABLE II
NETWORK STATISTICS

Dataset M |V| |E| ϑG

CollegeMsg D 1,899 59,835 16,736,181
Chess D 7,301 65,053 99
Slashdot D 51,083 140,778 1,157,361,660
MathOverflow D 24,818 506,500 203,068,736
Facebook f U 63,731 817,035 1,232,231,923
Epinions D 131,828 841,372 944
Facebook wp D 46,952 876,993 134,873,285
AskUbuntu D 159,316 964,437 225,834,442
Enron D 87,273 1,148,072 1,401,187,797
SuperUser D 194,085 1,443,339 239,614,928
Digg D 279,630 1,731,653 1,247,032,805
Wiki U 118,100 2,917,785 239,001,193
Prosper D 89,269 3,394,979 2,142
Arxiv U 28,093 4,596,803 3,649
Youtube U 3,223,589 9,375,374 225
DBLP U 1,314,050 18,986,618 76
Flickr D 2,302,925 33,140,017 197

conditions in Lemma 9 and Lemma 10 are satisfied. We repeat
this step until 10 intervals are found. This strategy works
because the query algorithm is only invoked if the conditions
in Lemma 9 and Lemma 10 hold. As a result, we fully prepare
1000 span-reachability queries. We report the running time of
Span-Reach with Online-Reach as a comparison in Fig. 4.
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Fig. 4. Performance of span-reachability query processing

We can see that the running time of Span-Reach is at least
two orders of magnitude smaller than that of Online-Reach
in all datasets in the experiment. For example, in the largest
dataset Flickr, Online-Reach takes over 300 seconds while our
Span-Reach algorithm takes only about 1.4 ms (1s= 103ms=
106µs).

B. Index Construction

This section is devoted to evaluating the performance of
index construction algorithms.

1) Index Size: We report the index size of all datasets in
Fig. 5, and also add the size of datasets as a comparison. We
can find that in several large datasets, the index size is smaller
than the graph size. For example, in Flickr, the dataset takes
about 400 MB while the index takes only about 350 MB.

2) Indexing Time: The running time of TILL-Construct∗

for all datasets is reported with TILL-Construct as a compar-
ison in Fig. 6

Note that the running time of TILL-Construct on sev-
eral datasets are not given as the algorithm cannot finish
in six hours. It is clear that in comparing all reported
times of TILL-Construct, TILL-Construct∗ is at least two
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Fig. 6. Indexing Time

orders of magnitude faster. In the largest dataset Flickr,
TILL-Construct∗ takes about 1.5 hours to compute TILL-
Index. TILL-Construct∗ takes about 1 second on Chess, which
is the shortest on all reported times. By contrast, the running
time of TILL-Construct on Chess is about 20 minutes.

3) Varying ϑ: The running times and index sizes of
TILL-Construct∗() are presented in Fig. 7 by varying the input
parameter ϑ from 20% to 100% of ϑG for each dataset G. Note
that ϑ = ϑG is equivalent to the default setting ϑ as +∞. Due
to limited space here, Fig. 7 shows only the results of four
datasets — Enron, Youtube, DBLP and Flickr. The results for
other datasets display similar trends.

We can see from the figures (a)–(d) that the increasing speed
of running time becomes small when both vertex and edge
sampling ratio increases. For example, the running time of
TILL-Construct∗ on Flickr is about 14 minutes when the edge
sampling ratio is 20%. It reaches to 22 minutes, 35 minutes
and 73 minutes when the edge sampling ratio is 40%, 60%,
and 80% respectively. Finally, on the ratio of 100%, the time
reaches about 90 minutes. The increasing trends for the index
size in figures (e)–(h) are similar and even more gentle.

Fig. 7 (a)–(d) reports the running times. We can see that
the increases on both Enron and DBLP are not obvious (does
not exceed 20 seconds) from 20% to 100%. The lines are
almost linear in Youtube and Flickr, which start from about
500 seconds and 25 minutes, ending at about 750 seconds
and 1.5 hours, respectively. Fig. 7 (e)–(h) reports the index
size. The change on all reported datasets is very small. The
group of figures shows that the index size and indexing time
are confined even though we do not set any interval length
limitation (ϑ = +∞) in TILL-Construct∗.

4) Scalability: This experiment tests the scalability of our
index construction algorithm. Again, with limited space, we
only report the results for four real-world graph datasets as
representatives — Enron, Youtube, DBLP and Flickr. The
results on other datasets show similar trends. For each dataset,
we vary the graph size and graph density by randomly sam-
pling vertices and edges from 20% to 100%. When sampling
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Fig. 7. Varying ϑ of TILL-Construct∗

vertices, we derive the induced subgraph of the sampled
vertices, and when sampling edges, we select the incident
vertices of the edges as the vertex set.

C. θ-Reachability Query Processing

The performance of answering θ-reachability is evaluated
next. To prepare the input queries, we adopt the same strategy
described in Section VI-A and randomly pick 100 vertex pairs
and 10 intervals for each vertex pair. For each interval, we set
θ as a fraction of its length, and adjust the fraction from 10%
to 90%. The running time of ES-Reach∗ on four representative
datasets is given in Fig. 9, with ES-Reach as a comparison.

We can see from Fig. 9 that ES-Reach∗ is faster than
ES-Reach on all parameter settings. Their times trend towards
equal when θ increases, since two algorithms are equivalent
when θ is the length of the query interval. For the perfor-
mance of ES-Reach∗, it is clear that all lines present roughly
downward trends.

VII. RELATED WORKS

Reachability in Temporal Graphs. The time-respecting path is
defined in [13] to model the reachability problem in temporal
graphs. The similar concept is also studied using the terms
journey [25], [26] or non-decreasing path [27]. Based on the
time-respecting path, an index-based algorithm to efficiently
answer the reachability problem in temporal graphs is studied
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Fig. 9. Performance of θ-reachability query processing

in [28] and is improved in [29] for the distributed environment.
The historical reachability problem is studied in [15]. Given
an interval [t1, t2] and a pair of vertices u, v, the conjunctive
historical reachability of u, v is true if for each possible t ∈
[t1, t2], there exists a path connecting u, v and all timestamps
in the path are t. The disjunctive historical reachability of
u, v is true if there exists a timestamp t ∈ [t1, t2] and a path
connecting u, v in which all timestamps in the path are t [15].



Other mining problems in temporal graphs can be found in
surveys [14], [30], [31].
Reachability in Static Graphs & Dynamic Graphs. A large
number of works have been done to design an index for
answering the reachability query in static graphs [1]–[11].
Interested readers can find more details in surveys [32], [33].
Several works study the index maintenance in dynamic graphs
[5], [34]–[36]. Estimating reachability based on random walks
is studied in [37].

VIII. CONCLUSION

In this paper, we define a span-reachability model to capture
entity relationships in a specific period of temporal graphs. We
propose an index-based method based on the concept of two-
hop cover to answer the span-reachability query for any pair
of vertices and time intervals. Several optimizations are given
to improve the efficiency of index construction. We also study
the problem of θ-reachability, which is a generalized version
of span-reachability. We conduct extensive experiments on 17
real-world datasets to show the efficiency of our proposed
algorithms. Several future problems are also highlighted by
this work. For example, the edges in temporal graphs often
come in streaming. An incremental algorithm is required for
index construction.
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