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Abstract—Public speaking is a critical skill in daily communication. While more practicing such as rehearsal is helpful to improve such
a skill, lack of personalized feedback limits the effectiveness of practicing. Therefore, we formulate the task of personalized feedback as
an affective audio annotation problem by learning knowledge from online public speech videos. Considering the great success of deep
learning techniques such as convolutional neural networks in a wide range of applications including speech recognition and object
recognition, we propose a novel convolutional clustering neural network (CCNN) to solve this multi-label classification problem. Instead
of aggregating the features of different channels through pooling, we introduce a novel clustering layer to derive intermediate
representation for improved annotation performance. In order to evaluate the performance of our proposed method, we purposely built
an affective audio annotation dataset by collecting more than 2,000 video clips from the TED website. Experimental results on this
dataset demonstrate that our proposed method outperforms traditional CNN-based approaches with a lower hamming loss for affective
annotation.

Index Terms—affective annotation, public speech, convolutional neural network, intermediate representation, clustering.
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1 INTRODUCTION

PUBLIC speaking is almost an inevitable part of our daily
life, from sharing experiences with friends to giving a

presentation for a project in school or at the workplace. It
has been an essential skill for everyone in a modern soci-
ety [1]. However, public speaking is very challenging and
could be the worst nightmare for many people [2]. Various
books and training courses have been available to guide
individuals to practice their public speaking skills, as it is
widely believed that practice makes perfect. Nevertheless,
the effectiveness of practicing may not be optimal without
the adequate level of personalized feedback.

With the advancements in computing techniques, many
studies have been conducted to help people with their
public speaking skills. Batrinca et al. [3] introduced a sys-
tem with the virtual audience for public speaking training.
Similarly, Torsten [4] used the virtual audience to assess
the anxiety level of speakers. And Chollet et al. [5] studied
how virtual audience feedback can improve speaking per-
formance. Overall, all these attempts only focus on building
systems or virtual agents so that speakers can gain more
realistic experiences during self-practicing.

Some other studies have been recently conducted to
provide speakers feedback in various settings. Tanveer et
al. [6] proposed a framework which can extract non-verbal
behavioral cues (e.g., gestures and body movements) from
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Fig. 1: A sample TED talk and its user ratings.

public speech videos without supervision. In [7], a Google
Glass interface was also implemented in public speaking
scenarios to provide speakers with real-time in-situ feed-
back, and different feedback strategies were experimented
to balance effectiveness and distraction. Ali et al. [8] de-
veloped LISSA (Live Interactive Social Skill Assistance),
an interactive conversation system, to provide live feed-
back to users, aiming to assist them in socializing with
others. Similarly, Hoque et al. [9] built a coaching system,
namely MACH (My Automated Conversation Coach), to
help users to improve their performance in job interviews.
In the system, a user will be asked to answer interview
questions, and the interactions are recorded and analyzed
to provide the user with visual feedback such as speaking
speed. Both LISSA and MACH utilized a human-like virtual
agent to simulate interpersonal communication. However,
these studies mainly focus on providing basic and statistics
feedback, such as speaking volume and speed, which does
not directly reflect the audience affective states of a speech.

In general, a public speech is given for a purpose, such as
inspiring or persuading the audience, and its effectiveness is
measured in terms of the audience’s affective perception [1].
Therefore, providing feedback from the audience’s perspec-
tive is helpful for speakers. Meanwhile, there have been a
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large number of high-quality public speech videos available
online together with affective ratings from viewers, which
makes it possible to train computers to predict the affective
outcomes of public speeches. Therefore, we formulate the
task of personalized feedback as an affective audio annota-
tion problem by learning from online resources such as TED
talks from the TED website1 as shown in Fig. 1.

In recent years, convolutional neural network (CNN)
based deep learning techniques have demonstrated sig-
nificantly superior performance over traditional machine
learning approaches in many applications, such as object
recognition [10], image annotation [11], as well as speech
recognition [12].While these methods are able to learn dis-
criminative features layer by layer, the learned convolu-
tional masks mainly focus on low-level patterns such as
lines and dots. As a result, a gap exists between low-level
patterns and high-level semantics. The presence of the gap
may not be optimal for problems where the output labels are
at high semantic level, such as the affective states conveyed
through audio signals of a public speech. For example, funny
speeches often consist of a number of attributes or high-
level features such as exaggerated imitation and deliberated
pauses, while convoluting and pooling on low-level features
may not be able to represent such information.

Meanwhile, it has been shown that mid-level features
are helpful for many machine learning tasks [13], [14]. For
example, Lefter et al. [14] used modulation as mid-level
representation to help stress recognition. Both speech and
gesture inputs are decomposed into semantics and modu-
lation (e.g., speech intonation and gesture speed) as that
is how humans perceive stress. However, it is unknown
what types of mid-level features could benefit the affective
annotation. Therefore, we propose a neural network model
to derive mid-level representation from deep CNN features,
and to annotate public speeches with multiple affective
labels simultaneously. That is, instead of taking a two-
step approach — extracting CNN features and performing
traditional clustering, we devise a novel convolutional clus-
tering neural network (CCNN), which includes a clustering
layer to derive speech attributes as mid-level representation.
CCNN dynamically update the cluster centroids in the
training process, effectively represent the training instances
and enhance the affective annotation performance. Different
clustering strategies have also been investigated within the
proposed network structure. We introduce discriminative
clustering to better annotate the samples with more ambigu-
ous labels. As CCNN is a general framework, other unsu-
pervised clustering strategies (such as Self-organizing Map
or Radial Basis Function) could also be easily integrated
used for classification or regression tasks.

Several studies have been undertaken for different tasks
by combining convolutional neural networks and clustering
techniques [15]–[17]. However, our model is different from
these methods in two aspects. First, instead of following
fixed rules to update cluster centroids, we utilize error back-
propagation through the network to learn cluster centroids.
Second, our model further derives cluster based represen-
tation for characterizing inter-mediate features, which is
different from those studies.

1. http://www.ted.com/

In summary, the key contributions of our work are as
follows:

• We formulate the task of personalized feedback for
public speaking as an affective audio annotation
problem so that speakers can have their speeches
rated with affective labels. In particular, we propose
the first deep learning method for affective annota-
tion of public speeches.

• We propose a novel network model, namely convo-
lutional clustering neural network (CCNN), to learn
mid-level features by introducing a new network
layer, clustering layer, measuring the distances be-
tween convoluted features and clustering weights as
mid-level representation.

• Under the proposed framework, different clustering
strategies have been investigated. We propose a dis-
criminative clustering method to mitigate the impact
of ambiguity in labels during the annotation process.

• To evaluate our proposed method, we purposely
built a public speeches dataset of more than 2,000
public speech videos collected from the TED website.
To the best of our knowledge, this dataset is the first
of its kind on public speeches with user ratings.

The rest of this paper is organized as follows. In Section
2, we review the relevant studies. In Section 3, we describe
the proposed method in detail. In Section 4, we present
the experimental results on the dataset we purposely built,
followed by conclusions and future work in Section 5.

2 RELATED WORK

Our work is related to affective analysis of audio signals,
such as emotion recognition [18] and emotion detection
[19]. However, most of these methods formulate affective
analysis as a single label classification which aims to exclu-
sively categorize a given input audio signal into one of the
affective states such as Angry and Happy. Meanwhile, some
other studies adopt multi-label approaches, such as emo-
tional profiles in [20] where emotional content is described
by multiple probabilistic class labels and the adoption of
parallel categories of valence, arousal, and dominance in
[21].

Technically, our work is closely related to audio anno-
tation [22] which aims to assign multiple labels or tags to
an audio clip. By formulating audio annotation as a multi-
label classification problem, many multi-label classification
methods have been proposed (e.g., [23], [24]). Recently,
deep learning techniques have been successfully utilized for
audio annotation with promising performance. Therefore, in
this section, we focus on reviewing deep learning based au-
dio annotation methods. In terms of different types of audio
signals, we organize related literature into two categories,
music tagging and audio event tagging.

2.1 Music Tagging
Music tagging is to associate a piece of music with multiple
musical attributes (e.g., happy, rock, guitar) which cover
several aspects of the music (e.g., emotion, genre, and instru-
ment). Some studies treat music tagging as a combination of
multiple distinct classification tasks.
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Hamel and Eck [25] first examined the feasibility of
learning music audio features with deep belief networks.
The learned features had been proved superior to hand-
crafted features such as MFCCs (Mel-Frequency Cepstral
Coefficients) and can be tailored for music tagging. In [26],
Hamel et al. further demonstrated that combining several
pooling functions can improve annotation performance.
They also introduced a multi-scale learning method to com-
bine feature learning, time pooling, and classification all
together through a deep learning framework.

Based on such success, Dieleman and Schrauwen [27]
proposed to use convolutional neural networks (CNN)
for music tagging and achieved results comparable to
spectrogram-based approaches. Their end-to-end learning
framework can learn useful features from raw audio signals
and discover phase invariant features with pooling layers.
Meanwhile, Zhang et al. [28] achieved superior performance
in music genre classification using CNN. They utilized both
max pooling and average pooling to keep more statistical in-
formation and adopted shortcut connections between layers
inspired by ResNet [29].

In addition to CNN, Choi et al. [30] applied fully convo-
lutional neural networks (FCNs) to music tagging by taking
Mel-spectrogram as input. However, the proposed method
can only handle fixed length input. Later in [31], Choi et al.
introduced a CNN framework integrated with a recurrent
neural network (RNN) for music classification. The hybrid
structure achieved better results than standalone CNN as
the recurrent layers can handle the temporal information
better than plain fully connected layers. The later work from
the same group [32] demonstrated the feasibility of transfer
learning in music tasks using CNNs with spectrogram as
input. More recently, Oramas [33] proposed a deep learning
based method to fuse features of multi-modal data (e.g.,
audio, text, and image) for music tagging on a large scale
multi-modal music dataset MuMu (i.e., 31K albums with 250
genre classes).

However, these methods cannot be directly applied to
our task. For example, the public speeches are generally
much longer than music clips. Hence the deep learning
models proposed for music tagging may not be able to
characterize rich information about a speech thoroughly.
Note that even music tagging is generally formulated as
a multi-label classification task, the tags are generally from
different distinct aspects (e.g., genre and instrument), while
the affective attributes of a TED talk could be more relevant
to each other.

2.2 Audio Event Tagging

Audio event tagging aims to identify various audio events
(e.g., Child Speech and Percussion) which constitute an acous-
tic scene. It has attracted increasing attention from re-
searchers due to the initiative of DCASE (Detection and
Classification of Acoustic Scenes and Events) challenge.

The study by Cakir et al. [34] was the first attempt of
applying deep learning models on audio event tagging task,
which outperformed the state-of-the-art methods at that
time. In their later work [35], they adopted a convolutional
recurrent neural network (CRNN) to replace the conven-
tional acoustic features such as MFCCs and achieved higher

accuracy. In [36], Kong et al. proposed a joint detection-
classification neural network model to detect and classify
an audio event simultaneously in an audio clip. Phanet al.
[37] proposed to use CNN with different filter sizes and 1-
max pooling to tag the events in audio signals.

A series of studies has been carried out by Xu et al. [24],
[38], [39]. In [24], Xu et al. proposed a DNN(deep neural
network) framework to address audio annotation as a multi-
label classification task in a regression approach. As the
data are weakly-labeled (no frame-level labels available), all
frames were fed into DNN to perform a multi-label regres-
sion for expected tags. The fully connected DNN can well
utilize the long-term temporary information and map se-
quences of acoustic features into multi-tag vectors. Besides,
they also designed a deep pyramid structure to extract more
robust high-level features for target tags to achieve better
performance. Compared with the conventional methods, the
proposed DNN method could preserve and utilize the long-
term temporal information and achieve better performance.
In [38], Xu et al. proposed a symmetric deep denoising
auto-encoder to derive unsupervised features for multi-label
classification. Moreover, in their recent work [39], Xu et al.
applied an attention module and a localization module on
a deep convolutional recurrent model and achieved further
improvement on annotation accuracy.

While audio event tagging aims to localize the tem-
poral position of an audio event, our affective annotation
aims to identify affective state based on an audio input
instead of specific audio events contained in the audio.
In addition, there is little research on annotating public
speeches. Therefore, we propose a novel deep architecture to
derive intermediate representation for affective annotation
of public speeches.

3 PROPOSED ANNOTATION METHOD

As shown in Fig. 2, our proposed annotation method takes
audio signals with arbitrary lengths as input,and the output
are the corresponding affective labels (e.g., funny, persuasive,
inspiring). It consists of four key components: audio pro-
posal selection, proposal feature learning, proposal feature
clustering, and proposal feature pooling. Firstly, a set of
proposals are selected from the raw audio signals and trans-
formed into spectrogram representation. Secondly, proposal
spectrograms are fed into a convolutional framework to ex-
tract convolutional features. Thirdly, a novel clustering layer
is applied to the extracted mid-level representation of all the
proposals. In the clustering layer, each weight vector can be
seen as the location of a cluster center, while the distances
between convolutional features and cluster centers will be
calculated and used as the mid-level representation. Finally,
average pooling and concatenation will be performed on
the convoluted features and clustered features, and fully
connected layers with final sigmoid activation are utilized
to generate final multi-label predictions.

As mentioned above, we formulate this annotation task
as a multi-label classification problem. Different from other
deep multi-class classification models, our ground truth
labels are not mutually exclusive, as any input audio signal
could have multiple labels at the same time.
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Fig. 2: Illustration of the proposed Convolutional Clustering Neural Network (CCNN) for affective audio annotation, which
consists of four components (from left to right): (1) Proposal Selection, (2) Proposal Feature Learning, (3) Proposal Feature
Clustering, and (4) Proposal Feature Pooling for multi-label annotation with fully connected layers.

3.1 Audio Proposal Selection

Proposals represent the highlighted segments of audio sig-
nals. While existing proposal extraction methods [40], [41]
focus on image proposals for computer vision tasks, we
design our proposal selection method with the following
two criteria:

Representativeness: Proposals generally explain the ma-
jor content of the raw data [42]. In our study, proposals
should be emotional-salient segments within the whole
speech. As public speeches are essentially long audio signal
sequences, not all the parts of a sequence are of the same
importance. Therefore, in order to better represent the whole
signal, the selected proposals should be representative to
describe the major emotional content.

Data Efficiency: Though deep models are always data-
demanding, the size of every single training sample is ex-
pected to be small. In our model, all selected proposals from
an input audio signal will be used as the representation and
fed into the convolutional layers to extract deep convolu-
tional features. As a result, a larger number of proposals will
lead to exponentially higher computational cost. Therefore,
we have to consider the data efficiency when selecting
proposals, to ensure a low computational cost while not
sacrificing the discriminative power.

Fig. 3: Illustration of the proposal selection method.

To meet the criteria above, we propose a proposal selec-

tion method as illustrated in Fig. 3, by drawing inspirations
from the natural language processing (NLP) field. Briefly,
we use the bag-of-audio-words model to represent each
input audio signal as a sequence of audio words, and select
proposals whose audio words have higher TF-IDF (Term
Frequency-Inverse Document Frequency) values. We finally
select the top K segments as final proposals based on
average TF-IDF ranking.

Firstly, we build a dictionary of audio words using K-
means clustering on sliding-window frames from all the
input audio signals, where MFCC features are used to
represent the frames. Secondly, we split each audio signal
into proposal candidates, which are adjacent fixed-length
overlapping pieces. Thirdly, we represent the proposal can-
didates as sequences of audio words with the dictionary
built earlier. In this case, we treat each proposal candidate
as a document, and treat each audio word as a term, then
we calculate the TF-IDF value of each audio word in the
proposal candidates. Finally, we select the top K candidates
with the largest average TF-IDF values, as the final propos-
als to represent an input audio signal. While K is a hyper-
parameter and we describe the setting of K in Section 4.

TF-IDF value is a good indicator of the importance of
a term in a document, and has been widely used in many
language processing tasks. TF-IDF value of a given term in a
document can be obtained by calculating the term frequency
divided by the total occurrence of the term in the whole cor-
pus. In our study, each “Term” is an audio word extracted
using 25ms sliding-window, while “Document” means the
candidates extracted in the first step. Mathematically, the
TF-IDF value of audio word t in segment d and entire
audio signals set D could be calculated with the following
equation:

TF-IDF(t, d,D) = tf(t, d) · idf(t,D), (1)
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subject to:

tf(t, d) = ft,d,

idf(t,D) = log
N

1 + | {d ∈ D : t ∈ d} |
,

(2)

where ft,d indicates the frequency count of a specific audio
word t in a proposal d. N is the total number of audio
signals in the training set, and | {d ∈ D : t ∈ d} | indicates
the total number of training audio which contains the audio
word t.

Moreover, the nature of public speaking scenarios makes
it necessary to do some preprocessing, such as removing
the environmental sounds (e.g., background noise, audience
chatting and applause). Therefore, we mask the input audio
signals using voice activity detection (VAD) to exclude
non-speech parts within audio signals before selecting the
proposals with the proposed method described above.

3.2 Proposal Feature Learning
With the same number of proposals representing each input
audio signal, the second stage of our whole framework is
feature learning on the proposals, aiming to extract deep
convolutional features for the annotation task.

Directly taking audio signals as input to deep model has
been proven to have limited efficiency [43], and using spec-
trograms as the input of CNN has been proven successful in
various audio tasks [32], [44]–[46]. Besides, the handcrafted
audio features are limited in the capacity of mapping audio
signals into a spatial domain, therefore cannot be used in
CNN. To address this issue, we firstly convert input signals
into log-Mel spectrograms. More specifically, we segment
the input audio signals according to the proposals selected,
and feed the spectrograms of the proposal segments as the
input to the convolutional layers for feature learning.

Fig. 4: Illustration of the convolutional layers used in the
proposed CCNN framework.

With the spectrograms generated, we now have each
input audio signal represented by a set of log-Mel spec-
trograms, where the number of spectrograms is equal to
the number of proposals. Our proposed network uses a
similar convolutional structure as in [32], where there are
five convolutional layers and the first two convolutional
layers have max-pooling layers attached. ReLU (Rectified
Linear Unit) activation is applied to all layers to introduce
the non-linearity. After each convolutional layer, a 2D global
average pooling will be carried out. Finally these pooled

features are concatenated as the final deep convolutional
features as shown in Fig. 4.

3.3 Proposal Feature Clustering

With the deep convolutional features, existing multi-label
learning models such as [47] will directly feed those fea-
tures into fully connected layers for final predictions. How-
ever,such network structure makes the transition between
the convolutional layers and fully connected layers vul-
nerable to spatial information loss during the flattening
operation (also known as vectorization). To address this
problem, we design the clustering layer, to bridge the gap
between low-level audio features and high-level user rat-
ings. This clustering layer will be used to transform and
prepare the deep convolutional features before feeding into
fully connected layers.

3.3.1 Design of Clustering Layer
An shown in Fig. 5, high dimensional vectors are projected
into 2D space for visualization. For each audio signal, we
calculate the Euclidean distances between K deep convo-
lutional features (denoted as the black dots) and I cluster
centers in the clustering layer (denoted as the white stars).
The mid-level representation dij denotes the Euclidean dis-
tance between the ith proposal feature and the jth cluster
centroid.

We now describe how the clustering layer is different
from conventional network layers. We first consider a fully
connected layer in a network. For the deep convolutional
features Xconv , its output through a fully connected layer
will be calculated as follows:

f(Xconv) = σ(WXconv + b), (3)

where W denotes the weights of the fully connected layer,
b is the bias which is also known as the offset in some
literature, and σ is the non-linear activation function (e.g.,
ReLU, sigmoid and tanh).

Now considering our proposed clustering layer, the
clustered features Xcl can be derived by calculating the
distances between convolutional feature Xconv ∈ RD×K

and the layer weights W ∈ RD×I as

Xcl = g(Xconv) = ‖W −Xconv‖ . (4)

In our study, we adopt Euclidean distance as the metric. As
a result, for the distance between proposal xconv

k and cluster
centroid wi, we can rewrite Equation (4) as

xcl
k,i = g(xconv

k )i =

√√√√ D∑
j=1

(wi,j − xconv
k,j )2, (5)

where xconv
k denotes the kth proposal of a training sample

and wi denotes the ith cluster centroids in the clustering
layer. We specify the clustering layer weights to have the
same dimension D to the convolutional features. The
dimensions of clustering layer output will be determined
by the total number of proposals K, as well as the size of
clustering layer I , Xcl ∈ RK×I . Since the calculation here
is not linear, no further activation is required to introduce
non-linearity.
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Fig. 5: Illustration of the proposal feature clustering and proposal feature pooling in the CCNN framework.

In the proposed framework, the clustering layer weights
will be first initialized by clustering all training instances
with K-means algorithm, and refined in the training process
similar to the weights in conventional network layers with
back-propagation.

3.3.2 Back-propagation Based Clustering
In neural network training, back-propagation chain rule

is used to calculate the gradients of each layer in regard
to the loss function, and to update the network weights
correspondingly aiming to minimize the loss. Similarly, our
proposed clustering layer can also be optimized with back-
propagation. The derivative of the distance calculation in
Equation (5) to xconv

k can be calculated as

∂g(xconv
k )

∂xconv
k

=
W − xconv

k√∑D
j=1(Wj − xconv

k,j )2
, (6)

where W ∈ RD×I is the weights of the clustering layer,
D is the dimension of the convoluted feature xconv

k , and I
is the size of the clustering layer. Then the derivative of the
clustering layer to convoluted features Xconv can be defined
as

∂g(Xconv)

∂Xconv
=

I∑
i=1

∑K
k=1(W − xconv

k )

‖Wi − xconv‖2
. (7)

According to the chain rule, the total model loss can be prop-
agated to clustering layer from the fully connected layers,
and then can be further back-propagated to convolutional
layers as

∂J(θ)

∂Xconv
=

∂J(θ)

∂g(Xconv)

∂g(Xconv)

∂Xconv
, (8)

where J(θ) is the loss function used for the proposed
network. Similar to multi-class classification tasks, we adapt
sigmoid cross entropy loss as the basis of our loss function.

Suppose there are N speech audio signals in the dataset
labeled with L classes, and yi = [yi1, yi2..., yiL] is the
ground truth label of the ith audio. yil = 1(j = 1, 2..., L)
if the audio is annotated with class l, and otherwise yil = 0.

The ground-truth probability of the ith audio signal for class
l is defined as pil = yil (1 or 0), and the predicted probability
of the ith audio signal for class l is defined as the sigmoid
activation of last layer output xout, denoted as

p̂il = ŷil =
1

1 + e−x
out
il

(9)

Therefore, the corresponding loss function is defined as

J(θ) = −
N∑
i=1

L∑
j=1

pij log p̂ij + (1− pij) log (1− p̂ij)
N × L

. (10)

3.3.3 Discriminative Clustering Based Clustering

As our proposed clustering layer is very different from
existing types of network layers, the conventional loss func-
tion focusing on the annotation error only cannot effectively
optimize the clustering layer weights in our case. To solve
this problem, we propose to introduce an extra penalty term
to better supervise the clustering.

The idea of discriminative clustering is very straightfor-
ward: we want the clusters to be better at discriminating
different classes by positioning them into locations with
less ambiguity. Though the proposals which share the same
labels are generally close to each other, there are some
proposals existing in all audio signals. These inter-class
evenly distributed proposals are not very helpful in our task,
so during clustering we should alleviate these influences
by penalizing the cluster centroid if it is moving towards
locations surrounded by these ambiguous proposals.

To guide the update of the clustering layer weights to
alleviate ambiguity, we introduce the discriminative clus-
tering (DC) penalty term to restrict the proposals closer
to cluster centroids having similar labels, by accumulating
the total number of different labels in the neighborhood
proposals divided by their distances to each cluster centroid.
The discriminative clustering penalty term is defined as

P =
λ

N ×K × L

N∑
n=1

K∑
k=1

max(
I∑

i=1

∑L
l=1 yn,l

‖wi − xconv
i,k ‖2

), (11)
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where λ is the coefficient of the penalty term, N is the total
number of input audio signals,K is the number of proposals
for each audio signal, and I is the number of clusters in
the clustering layer. Besides, wi is the ith cluster in the
clustering layer while xconv

n,k is the convoluted feature of the
kth proposal in the nth signal. For a given cluster in the
clustering layer, if its surrounding proposals do not have
many different labels then the penalty term will be smaller,
and vice versa. So the new loss function is now defined as

J ′(θ) = J(θ) + P, (12)

where J(θ) and P have been defined in Equation (10) and
Equation (11). With the discriminative clustering penalty
term, the clusters in the clustering layer will tend to move
towards locations closer to proposals with the same labels.
As a result, the learned weights are more discriminative as
they less influenced by the ambiguity.
3.4 Proposal Feature Pooling

After the clustering layer, each input audio signal is repre-
sented by a set of clustered features. The dimensions of these
clustered features are equal to the clustering layer size and
the number of proposals for each audio signal. As shown in
the right-hand part of Fig. 5, we carry out average pooling
across the clustered features of the proposals.

Suppose that xi(i = 1, 2, ... , K) is the clustered feature of
the ith proposal, and xj

i (j = 1, 2, ... , I) is the jth dimension
of xi. The proposal average pooling can be formulated as

xj =
1

K

K∑
i=1

xj
i , (13)

where K is the total number of proposals selected for each
audio signal. Same pooling will be done on the convoluted
features, both pooled features will be concatenated as final
representation, which will be fed into fully connected layers
for annotation. As we formulate the annotation as a multi-
label learning problem, we apply sigmoid activation over
the last fully connected layer and treat each dimension in
the final output as a binary indicator of the presence of a

specific label. For each class label, 1 means positive and 0
means negative.

We choose average pooling with the intuition of how
users give ratings on a speech. As most human audiences
rate public speeches based on the overall impression rather
than one or two specific sentences, we decide to fuse these
features using average pooling. By applying the pooling
before the fully connected layers, the overall computation
can also be reduced, leading to faster iteration.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 Dataset

To evaluate the effectiveness of our proposed method, we
built a public speeches dataset including both videos and
their affective ratings as collected from the TED website.
TED talks are hosted by a not-for-profit organization en-
couraging people to share ideas worth spreading. The talks
spread over various topics, ranging from life stories to
cutting-edge technologies, and their speakers are from all
over the world. Many of the videos have attracted millions
of online viewings as shown on the TED website. Note that
the videos may have been viewed on other online platforms
such as Youtube. The diversity and scale of TED talks make
them perfectly suitable resources for our research.

The ratings were provided by viewers to as affective
responses to TED talks. Each user can rate a video with one
or more of the 14 affective labels: Confusing, Ingenious, Un-
convincing, Beautiful, Informative, Inspiring, Persuasive, Funny,
OK, Fascinating, Obnoxious, Courageous, Longwinded, Jaw-
dropping. Six sample talks are shown in TABLE 1.

In July 2017, we crawled all the talks uploaded before
July 2016, as the newly uploaded videos do not have enough
user ratings which could lead to biased labels. We excluded
the talks with voiced segments less than half of the total
length (e.g., silent show, drama, and some other perfor-
mances). Some corrupted videos have also been removed
from the raw dataset. The final dataset consists of 2,056
video clips with duration ranging from 3 minutes to half
an hour across more than ten years (from 2006 to 2016). The

TABLE 1: Some samples of the talks in our collected TED Talk data set

Thumbnail Talk Title URL Labels

The mothers who found
forgiveness, friendship

https://www.ted.com/talks/9 11 healing
the mothers who found forgiveness friendship

beautiful, courageous,
inspiring

America’s native
prisoners of war https://www.ted.com/talks/aaron huey courageous, jawdropping,

persuasive

Visualizing ourselves ...
with crowd-sourced data https://www.ted.com/talks/aaron koblin beautiful, fascinating,

ingenious, jawdropping

Making sense of a
visible quantum object

https://www.ted.com/talks/aaron o connell
making sense of a visible quantum object

confusing, fascinating,
ingenious, jawdropping,
unconvincing

What we learned from
teetering on the fiscal cliff

https://www.ted.com/talks/adam davidson
what we learned from teetering on the fiscal cliff

informative, longwinded,
obnoxious, persuasive,
unconvincing

How I turned a deadly plant
into a thriving business

https://www.ted.com/talks/achenyo idachaba
how i turned a deadly plant into a thriving business

beautiful, courageous,
ingenious, inspiring, ok
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total length of the video data is more than 500 hours. We
randomly select 30% of the videos as the testing set and use
the rest 70% as the training set.

As users tend to rate more on some labels such as
beautiful and OK, the ratings are unbalanced across the 14
labels. For each class, we manually label 30% of the top rated
video as positive samples, to alleviate the impact of inter-
class unbalanced number of ratings. In the dataset, there are
about 600 positive samples for each class, and the average
number of labels per video is 4.08.

4.2 Experimental Settings
Our proposed model has four hyper-parameters which
could impact the final annotation performance, including:
the size of audio word dictionary, the time duration of
each proposal, the number of proposals selected as input
of CCNN and the number of clusters in the clustering
layer. We carry out a series of experiments with brute-force
search (exhaustive search) for the optimal combination of
the aforementioned hyper-parameters. We use Keras with
Tensorflow backend and set 10% validation split to tune
the parameters. Experiments were conducted on a server
with Intel i7 CPU, 2 NVIDIA GTX 1080Ti GPUs and 16GB
memory. In this section, we describe our model with the
optimal hyper-parameters combination which is also used
to report the performance in Section 4.4. We further explore
the impact of different parameters in Section 4.5.

We first slice input speech audio signals into 2-second
segments with 50% overlap, and use these segments as
the proposal candidates. For proposal selection, we build
a dictionary of 3,000 audio words by applying the k-means
clustering to MFCC features of each 25ms audio-words from
the whole audio corpus. MFCC is used due to its popularity
in a wide range of applications and its low computation
requirements, though other audio features can also be used.
Then we select the top 100 proposal candidates in terms
of average TF-IDF value, and each proposal is represented
using a log-Mel spectrogram extracted using 25ms analysis
window before being fed into our network.

Due to the lack of pre-trained models for affective audio
annotation, we take a hybrid approach for network train-
ing: we first pre-train the convolutional layers on binary
classification tasks which classify the existence of a specific
label, and then fine-tune the convolutional layers weights in
proposed network afterwards for final annotation. For pre-
training, we use the same convolutional layers but alter the
fully connected layers to predict the existence of each class
label. For final annotation, we transfer the trained weights
of convolutional layers, and initialize the clustering layer
by applying K-means clustering on convoluted features and
use the cluster centroids as the starting weights of the
clustering layer.

4.3 Evaluation Metric
Commonly used multi-label evaluation metrics include MaP
(Mean Average Precision), Hamming score, Hamming loss,
and AUC (Area Under Curve) of ROC (Receiver Operating
Characteristic) curve. As some videos are not ranked in the
top 30% in any of the 14 classes and do not have class
labels, leading some of the measures could to divide by 0

errors, we use Hamming loss as our evaluation metric in
our experiment instead of others.

Hamming loss can effectively evaluate how many times
an input is classified incorrectly on each label for multi-label
classification tasks, and is defined as an exclusive-or (XOR)
operation between predicted label vector ŷt and ground
truth label vector yt as

LHamming(ŷ,y) =
N∑
i=1

L∑
l=1

(ŷli ⊕ yli)
N × L

, (14)

where N is the number of input samples, L is the number
of total labels which is 14 in our study, and the operator ⊕
outputs the symmetric difference between ŷi and yi as the
output of XOR operation.

4.4 Experimental Results
We compare our proposed CCNN models with several rele-
vant methods as shown in TABLE 2. The Hypotheses Cross
Pooling (HCP) model (also known as multi-label CNN)
described in [47] achieved state-of-the-art performance for
image annotation under a setting similar to our task. A
plain CNN with sigmoid loss (namely CNN-Sigmoid) and a
plain CNN with Weighted Approximate-Rank Pairwise loss
(namely CNN-WRAP) aim to produce confidence scores
for individual labels as multi-label classifiers. CNN-SVM
and HCP-Softmax perform multi-class classification on each
label. For our models, CCNN-BP refer to plain back-
propagation based CCNN, and CCNN-DC refer to discrim-
inative clustering based CCNN. Both models we proposed
outperform the baseline method, which indicates that the
mid-level representations derived through the proposed
clustering layer are more effective for high-level affective
annotation than the convolutional features.

TABLE 2: Comparison of performance in terms of hamming
loss, convergence speed and computational cost

Methods
With pre-trained

Conv Layers
Without

pre-training Time Cost
(seconds)
/EpochHamming

Loss
Epochs to
converge

Hamming
Loss

Epochs to
converge

CNN-SVM
(Binary Relevance) 0.4059 - - - -

HCP-Softmax 0.3960 56 - - -
CNN-Sigmoid 0.3729 43 - - 42

CNN-WARP [11] 0.3665 37 - - 44
HCP [47] 0.3457 31 0.3506 46 70

CCNN-BP 0.3250 49 0.3197 100* 35
CCNN-DC 0.3088 27 0.3104 42 37

* Maximum number of Epochs reached in this case, the performance had not been
improved in the last 10 epochs though not converged.

As shown in the second and third column of TABLE 2,
there is no clear difference in annotation effectiveness be-
tween using pre-training and not using pre-training (i.e.,
training from scratch), although it takes longer for the
latter to converge. It is also observed in the last column
of TABLE 2 that our proposed methods are more com-
putationally efficient. Such a reduction of computational
cost is also owing to the CCNN architecture. Instead of
connecting all deep convoluted features directly with fully
connected layers, our proposed architecture retains only one
pooled and concatenated feature vector for fully connected
layers, which reduces the number of connections and the
computation cost.
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TABLE 3: T-test for the significance of improvement from
our proposed methods over baseline method

Methods
Compared CCNN-BP over HCP CCNN-DC over HCP

Class Label t-statistic p-value t-statistic p-value
beautiful -1.3116 1.90E-01 -4.1086 4.24E-05
confusing -1.1641 2.45E-01 -3.6110 3.17E-04
courageous -1.6705 9.51E-02 -2.3087 2.11E-02
fascinating -3.3427 8.54E-04 -1.3928 1.64E-01
funny -3.3361 8.75E-04 -1.0456 2.96E-01
informative -1.7540 7.97E-02 -1.8624 6.28E-02
ingenious -1.6379 1.02E-01 -1.4161 1.57E-01
inspiring -3.4126 6.64E-04 -1.7016 8.91E-02
jawdropping -4.6308 4.03E-06 -4.3907 1.23E-05
longwinded -1.5728 1.16E-01 -2.4103 1.61E-02
obnoxious -0.9452 3.45E-01 -2.6312 8.62E-03
ok -1.6599 9.72E-02 -1.7456 8.11E-02
persuasive -1.3741 1.70E-01 -1.4622 1.44E-01
unconvincing -0.9652 3.35E-01 -5.1371 3.24E-07
Overall -2.8733 4.13E-03 -2.9435 3.31E-03

In addition to the comparison on the overall annotation
performance, we use the statistical t-test (also known as
Student’s t-test) to demonstrate that the performance im-
provement over HCP is significant. The t-test is a widely
used statistical hypothesis test to verify whether test statistic
follows t-distribution as stated in the null hypothesis. In our
case, we calculate the cross entropy loss of each class label
for each predicted testing instance and compare them in
pairs. So the null hypothesis here is that both samples follow
a same distribution, which means the improvement is no
more than random deviation. The t-statistic and p-values are
shown in Table 3. We can see that for most label classes the
improvement of our proposed methods is significant at 90%
confidence level (with p-value< 0.1), and at 99% confidence
level the overall performance improvement is significant (p-
value < 0.01).

Fig. 6: Comparison between CCNN-BP and CCNN-DC in
terms of label-wise precision

In order to investigate the advantage of CCNN-DC over
CCNN-BP, we evaluate annotation performance for each
class in terms of precision (i.e., the percentage of correctly
classified samples). As shown in Fig. 6, CCNN-DC is able
to improve annotation performance for all classes except
inspiring, which confirms that the discriminative label in-

formation is helpful for producing discriminative cluster
centers as well as discriminative mid-level representation.

TABLE 4: Label statistics of the dataset: the average number
of labels appearing in a video annotated with a specific label

Class Label Average Number of Labels
beautiful 4.2
confusing 5.7
courageous 4.1
fascinating 4.4
funny 4.5
informative 4.4
ingenious 4.3
inspiring 3.8
jawdropping 4.2
longwinded 5.6
obnoxious 5.6
ok 5.4
persuasive 4.4
unconvincing 5.7

For label inspiring, the lower precision could be due to
the distribution of our data. As shown in TABLE 4, the
average number of labels appearing in a video annotated
with a specific label (e.g., those appearing at each row in the
table) ranges from 3.8 to 5.7. A large value of a label means
that the videos containing the label are generally annotated
with more other labels. As Inspiring has the smallest value,
which may not be able to provide sufficient discriminative
information for the clustering process. On the contrary,
for labels with larger number of co-existed labels, such as
confusing and unconvincing (both 5.7), the improvement of
CCNN-DC over CCNN-BP is most significant.

Fig. 7: Convergence curves for the training with different
methods.

We further look into how these methods converge dur-
ing training. All methods are trained with a commonly used
strategy in deep learning, named early stopping strategy
which monitors a criterion during training and stops the
training process when there is no further improvement so
as to avoid over-training and over-fitting. As shown in Fig.
7, all these three methods converge relatively fast, although
CCNN-BP and CCNN-DC achieve lower final loss than
that of the HCP method. It is also noticed that there are
stronger oscillation patterns along the convergence curve
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of CCNN-BP than that of CCNN-DC. This demonstrates
that the discriminative clustering strategy can also reduce
oscillation by imposing label information for more effective
training.

4.5 Impact of Experimental Settings
As stated in Section 4.2, we investigate the impact of
four different hyper-parameters of our proposed method
on annotation performance. The four hyper-parameters we
studied are the time duration of each proposal, the size of
the dictionary established, the number of proposals selected
and the size of clustering layer.

TABLE 5: Experimental results with different duration of
proposals in terms of Hamming Loss

Duration of Proposals
(seconds) Hamming Loss

1 0.3651
2 0.3088
4 0.3097
8* 0.3420

* Some audio signals are not long enough to
have sufficient proposals.

We first study how proposal duration could influence
annotation performance in our proposed model. As shown
in TABLE 5, a moderate proposal length would lead to a
better performance. Setting the proposal duration too short
would reduce the representative power, while setting the
proposal duration too long will lead to insufficient proposals
generated in our study, which also leads to a higher annota-
tion hamming loss.

TABLE 6: Experimental results with different dictionary
sizes in terms of Hamming Loss and computational time
on building the dictionary

Dictionary
Size

Hamming
Loss

Time Cost
(seconds)

200 0.4413 66
500 0.4071 314

1000 0.3568 1,175
2000 0.3207 5,823
3000 0.3088 11,979
5000 0.3122 45,781

To investigate the impact of dictionary size in proposal
selection on annotation performance, we conduct various
experiments with different dictionary sizes. When applying
the K-means clustering algorithm on MFCC features ob-
tained from audio-word frames to build the dictionary, the
number of words in the dictionary will affect the selection
of proposals and overall performance. Whereas a larger
dictionary takes exponentially longer to build as shown in
TABLE 6, better annotation performance can be achieved
when the dictionary size increases. However, we need
to balance performance improvement and computational
costs. Therefore, we set the dictionary size to 3,000 in our
experiments.

The impact of the number of proposals on annotation
performance is also investigated. As shown in TABLE 7, in
general increasing the number of proposals will improve an-
notation effectiveness (i.e., reducing Hamming Loss values)

with certain variations, while resulting in increased training
time, as more proposals will provide more representative
training samples with higher training time cost. Therefore,
in our study, we select 100 proposals for each input audio
signal.

TABLE 7: Experimental results with different numbers of
proposals

Number of
Proposals Hamming Loss Training Time

(second)
10 0.3918 35
20 0.3674 35
30 0.3351 36
50 0.3126 36

100 0.3088 37
150* 0.3097 39
200* 0.3161 41

* Not all audio signals are long enough to have
sufficient proposals.

Similarly, the impact of the number of clusters in the
clustering layer, which is essentially the size of clustering
layer, is investigated. As shown in TABLE 8, increasing
the size of clustering layer generally improves annotation
performance as well as increases training time. Therefore, in
our experiments, we set the number of clusters to 4096 in
the clustering layer, as further increasing clustering layer
size cannot lead to significant performance improvement
but requires much more computational resources.

TABLE 8: Experimental results with different clustering
layer sizes

Clustering Layer Size Hamming Loss Training Time
(seconds)

64 0.3907 30
256 0.3411 30

1,024 0.3253 31
4,096 0.3088 37
8,192* 0.3102 46
16,384* 0.3075 79

* Two extra GPUs are used as more memory is required.

5 CONCLUSION

In this paper, we present a novel deep neural network,
namely Convolutional Clustering Neural Network (CCNN),
for affective annotation of public speeches. Instead of di-
rectly using deep features, we introduce a clustering layer
in front of fully connected layers to obtain mid-level repre-
sentation as there is a gap between low-level deep features
and high-level annotation labels. Such an architecture is
suitable for our multi-label classification problem where
affective labels do not correspond to specific audio events.
We further explore different clustering strategies and inves-
tigate their impact on annotation performance. In order to
evaluate our proposed method, we built the first dataset of
its kind from the TED website with more than 2,000 video
clips. Experimental results on this dataset demonstrate that
our proposed method outperforms traditional CNN based
approaches with lower Hamming loss. To the best of our
knowledge, our work is one of the first studies on affective
annotation of public speeches. Our future work will aim
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to further improve the annotation performance by differ-
entiating salient proposals, and exploring new clustering
techniques such as fuzzy clustering [48] for interpretable
clustered features.
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