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Abstract

Topic modeling is an important application of natural
language processing (NLP) that can automatically
identify the set of main topics of a given, typically
large, collection of documents. In addition to iden-
tifying the main topics in the given collection, topic
modeling infers which combination of topics is ad-
dressed by each individual document (the so-called
topic-document inference), which can be useful for
their classification and organization. However, the
distributional assumptions for this inference are typi-
cally restricted to the Dirichlet family which can limit
the performance of the model. For this reason, in this
paper we propose modeling the topic-document infer-
ence with the Gumbel-Softmax distribution, a distri-
bution recently introduced to expand differentiability
in deep networks. To set up a performing system, the
proposed approach integrates Gumbel-Softmax topic-
document inference in a state-of-the-art topic model
based on a deep variational autoencoder. Experimen-
tal results over two probing datasets show that the
proposed approach has been able to outperform the
original deep variational autoencoder and other pop-
ular topic models in terms of test-set perplexity and
two topic coherence measures.

Topic models, topic-document inference, varia-
tional autoencoders, Gumbel-Softmax distribution,
deep neural networks.
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1 Introduction

Unstructured textual data are growing by the day in
the form of news, press releases, blogs, social media
posts and others. The possibility for humans to an-
notate such documents is limited since manual anno-
tation is labor-intensive and time-consuming. There-
fore, there is an urgent and widespread need for auto-
mated, unsupervised analysis tools that can provide
an understanding of such data and work at scale [7].
Topic modeling is an unsupervised, probabilistic ap-
proach of natural language processing (NLP) that
is capable of discovering the main topics of large
amounts of unstructured text,and presenting them to
a user in succinct and comprehensible forms. It has
established a strong reputation as a useful text an-
alytics technique and has found application in fields
ranging from business and finance to healthcare and
scientific corpora analysis [2, 4, 20, 21, 27, 29, 32]. In
topic modeling, a topic is typically represented by the
set of its most-frequent words. For instance, a topic
such as “cricket” may be represented by words such as
“innings”, “stump”, “wicket” and all the other typi-
cal terminology of cricket commentaries. As a more
sobering example, a topic such as “pandemic” may
be represented by words such as “infection”, “inten-
sive care”, “death”, “recovery” and so forth. In more
general terms, a topic can be seen as a probability
distribution over the words of an available vocabu-
lary, where the words that are distinctive for that
topic are characterized by the highest probabilities.

Topic modeling is able to parse a whole corpus
of documents and identify the most common top-
ics “shared” by these documents. Simultaneously,

it is able to determine what proportion of topics is
addressed by each individual document. The exist-
ing approaches for topic modeling are predominantly
based on non-negative matrix factorization and prob-
abilistic inference, and the most famous is undoubt-
edly the latent Dirichlet allocation (LDA) of Blei,
Ng and Jordan [3]. In this approach and many of
its derivatives, the topic proportions of the individ-
ual documents are modeled using the Dirichlet dis-
tribution which is a convenient conjugate prior for
the topic frequencies. However, limiting the mod-
els to this assumption may be restrictive, since other
distributions over the topic proportions may be able
to achieve better performance figures for the derived
topic models.

For this reason, in this paper we propose model-
ing the topic proportions of the individual documents
using the Gumbel-Softmax distribution [9, 18]. This
distribution has been recently introduced to expand
the applicability of backpropagation in deep learning
models with latent categorical variables, where it is
used to replace non-differentiable, categorical sam-
ples with “soft” samples from a differentiable trans-
formation. The main expected advantage of using
this distribution for topic modeling is that it can
effectively control the sparsity of its samples by a
pseudo-temperature hyperparameter, and can thus
be able to control the expected number of topics of
each individual document during the so-called topic-
document inference. To set up a performing system,
we have integrated this distribution into the sampling
step of a state-of-the-art topic model, the autoencod-
ing variational inference for topic models (AVITM)
of Srivastava and Sutton [28].
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Experiments have been carried out on two chal-
lenging text datasets: the popular 20 Newsgroups
dataset [14], consisting of 18,846 user-posted docu-
ments from newsgroups, and the recent, large-scale
COVID-19 news dataset1, aggregated by AYLIEN
using their news API on more than 400 different
sources. The experimental results show that the pro-
posed topic-document inference approach has been
able to achieve higher topic coherence and lower per-
plexity than all the other compared approaches.

The rest of this paper is organized as follows: Sec-
tion 2 presents the related work. Section 3 presents
the proposed model, preceding it with a concise re-
view of LDA and a state-of-the-art variational topic
model. Section 4 describes the experiments, and
presents and discusses the results. Section 5 con-
cludes the paper.

2 Related work

Topic modeling is unarguably one of the most re-
searched areas of natural language processing. Its
aim is to find concise descriptors for a typically-large
(> 10, 000 documents) given corpus and for its in-
dividual documents. This is generally achieved by
introducing a set of latent variables, known as the
“topics”, which are shared across the corpus and de-
scribe it, while simultaneously determining the pro-
portions of the topics in each document. The input to
topic modeling is typically a simplified representation
of the documents in the corpus known as the term-
document matrix. Topic modeling has found appli-
cation in a large number of areas including news [29],
social media [1,21] finance [4,21], healthcare [2,27,32]
and many others.

Among the many techniques proposed over the
years, latent semantic indexing (LSI, also known as
latent semantic analysis, or LSA) is credited as the
first explicit topic model [5]. It consists of the factor-
ization of the term-document matrix in a low-rank
latent space by means of a singular value decom-
position. To more clearly explain this factorization,

1https://aylien.com/resources/datasets/coronavirus-
dataset

which will also be useful for the remainder of the pa-
per, let us introduce the following notations: V is
the size of the given vocabulary, D is the number of
documents in the given corpus, K is the number of
topics chosen to describe the corpus, and W is the
term-document matrix, of V ×D size. The LSI fac-
torization can then be expressed as:

W ≈ βθ (1)

where β is a V ×K matrix usually referred to as the
term-topic matrix, and θ is a K ×D matrix referred
to as the topic-document matrix. The values for β
and θ can be obtained by applying singular value de-
composition to W , and incorporating the resulting
eigenvalues into either of the other two factors. This
ensures that βθ is the best possible approximation
of W in a least-square sense. For this factorization
to be of any practical utility, the chosen number of
topics, K, must satisfy K � D. However, since K
is typically chosen in a range such as [20, 100] and
the corpora are large, this condition is always easily
met. Among various uses, the LSI factorization can
be used to compare, cluster and classify documents
(e.g. [10]); to extract the top words of each topic; and
even to compare and cluster words.

Probabilistic latent semantic analysis (pLSA, or,
analogously, pLSI) [8] has overlaid a probabilistic in-
terpretation to the LSI factorization: the first factor,
the term-topic matrix, is interpreted as the probabil-
ity of a word, w, in a given topic, t, while the second
factor, the topic-document matrix, is interpreted as
the probability of a topic, t, in a given document, d.
Both probabilities are modeled as multinomial dis-
tributions. The computation of the factorization is
similar to that of LSI, but the elements of the factor
matrices must all belong to interval [0, 1], and the
relevant columns and rows must abide by a sum-to-
one constraint (the simplex domain). The multino-
mial distributions of the term-topic matrix, p(w|t),
are concisely called the “topics”, as they express how
probable it is that any of the words in the given vo-
cabulary will appear in text from a given topic. The
multinomial distributions in the topic-document ma-
trix, p(t|d), are called the “topic vectors” and express
the mixture of topics covered by a given document.
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A highly popular generalization of pLSA called latent
Dirichlet allocation (LDA) adds prior probabilities to
both the topics and the topic vectors in the form of
Dirichlet distributions [3]. Since the Dirichlet distri-
bution is conjugate to the multinomial, the posterior
probabilities can be computed analytically, allowing
for efficient inference algorithms. We review LDA in
detail in Section 3.1. LDA has also spawned a large
number of extensions and variants, including hierar-
chical versions [11,17], sequential versions [26], class-
supervised versions [26], sparse versions [22, 30, 34],
and many others.

In recent years, neural topic models have come
into the spotlight by combining the advantages of
deep neural networks and LDA. Deep models based
on variational autoencoders (VAEs) such as [13, 19,
28, 31] have proved effective at automatic discovery
of the latent topics in the corpus, and deep models
based on CNNs have been used for topic-based doc-
ument classification and non-negative matrix factor-
ization [16, 33]. Recently, Srivastava and Sutton [28]
have proposed a topic model that joins the proper-
ties of LDA with the strong representational power
of a deep variational autoencoder. This approach
has proved to clearly outperform LDA both quan-
titatively and qualitatively, and can be regarded as
one of the current state-of the-art approaches. In ad-
dition, various deep topic models have been proposed
based on generative adversarial networks (GANs).
Among them, [6] uses a denoising autoencoder to im-
plement the discriminator network, under the expec-
tation that the discriminator should achieve a small
reconstruction error on the documents in the corpus,
while a large reconstruction error on the synthetic
documents generated by the generator network. The
main aim of this GAN-based topic model is to provide
effective topic vectors for document classification [6].
However, it can also be used for extracting the top
words of the topics, and vector representations for
the words.

3 Autoencoding variational in-
ference for topic models

In this section, we present the proposed methodology,
preceded by an overview of latent Dirichlet allocation
and variational autoencoders for topic modeling.

3.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA), proposed by Blei,
Ng and Jordan in 2003 [3], is probably the reference
model for the field of topic modeling. To briefly de-
scribe it hereafter, let us introduce the following no-
tations:

• wd,n is the n-th word in the d-th document in
the corpus. By “word” we mean a categorical
value in the corpus’ vocabulary (essentially, an
index). The size of the vocabulary is noted as V .
Wherever unambiguous, we omit the document
index for brevity.

• wd is the set of all the words in document d
(again, where possible, we omit the document
index).

• Each word, wd,n, is assigned to a correspond-
ing topic, zd,n. A topic, too, is a categorical
variable taking values in a set of 1 . . .K possible
values (NB: the topics are “nameless”, but can
be later assigned meaningful names with a post-
analysis). This correspondence means that, for
example, a word such as “bat” can be assigned to
topic “mammals” in one instance and “cricket”
in another.

The model makes the following distributional as-
sumptions:

• The topic variables for a given document are in-
dependently and identically distributed accord-
ing to a multinomial distribution, Mult(zd,n|θd),
parametrized by a K-dimensional probability
vector, θd.
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• At its turn, vector θd is distributed according to
a Dirichlet distribution, Dir(θd|α), parametrized
by a K-dimensional integer vector, α, shared by
the whole corpus. (The conjugacy between the
multinomial and Dirichlet eases the computation
of the required posteriors.)

• The words in the corpus are distributed ac-
cording to a set of K multinomial distribu-
tions, parametrized by K corresponding V -
dimensional probability vectors, β = β1, . . . βK .
Each word in a given document is indepen-
dently distributed according to one of these dis-
tributions, indexed by its topic variable, as in
Mult(wd,n|βzd,n).

All these assumptions can be concisely noted in a
“generative” model, that is a model that allows sam-
pling an entire synthetic corpus from these distribu-
tions:

∀d = 1 . . . D :

θd ∼ Dir(θ|α)

∀n = 1 . . . N :

zn ∼ Mult(zn|θd)
wn ∼ Mult(wn|βzn)

(2)

which also corresponds to the following factorization:

p(wn, zn, θd|α, β)

= Mult(wn|βzn)Mult(zn|θd)Dir(θd|α)
(3)

Since both wn and zn are multinomially dis-
tributed, it is also possible to dispose of zn altogether
by marginalizing it analytically. In this case, the gen-
erative model simplifies to:

∀d = 1 . . . D :

θd ∼ Dir(θ|α)

∀n = 1 . . . N :

wn ∼ Mult(wn|βθd)

(4)

where with βθd we have noted the product between
V × K matrix β and K × 1 vector θd. The corre-
sponding factorized probability is:

p(wn, θd|α, β) = Mult(wn|βθd)Dir(θd|α) (5)

and the probability for all the words in a document
can be simply expressed as:

p(w, θd|α, β) =

N∏
n=1

p(wn, θd|α, β) (6)

The inference problem for this model consists of
maximizing (6) by estimating θd, β and α over a given
training corpus of documents. In essence, answering
these questions: what is the distribution of words in
each of these topics? (β = β1, . . . βK); what are the
proportions of the topics in each of these documents?
(θ = θ1, . . . θD); and what are the proportions of the
topics across the whole corpus? (α). For new/test
documents given after training is complete, β and α
are kept unchanged and only their topic vectors are
inferred.

3.2 Variational Autoencoders for
Topic modeling

Since the ascendance of deep learning, a fresh wave
of models best known as deep generative models
(DGM) have come into existence, fundamentally a
blend of deep neural nets, generative models and
Bayesian inference. Among them, variational autoen-
coders (VAEs) have proved very effective for models
that contain latent variables (in our case, the top-
ics) [12]. VAEs are able to efficiently maximize the
log-likelihood of the observed data even when this
function is not directly optimizable, making them
widely applicable in all fields of big data including,
among others, signal processing, computer vision,
natural language processing and transactional data
analytics.

A VAE is essentially a generalization of a tradi-
tional autoencoder, which is a neural network consist-
ing of two sub-networks: an encoder and a decoder.
The encoder receives a multidimensional measure-
ment in input, and outputs a latent representation
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Figure 1: The graphical model of LDA. The mean-
ing of the notations is as follows: α denotes the pa-
rameter vector for the Dirichlet prior over the topic
vectors (i.e. the topic proportions per document),
unique for the corpus. θd is the topic vector of the
d-th document, sampled from Dir(θd|α). For each
document, N topics, zd,n, are then sampled from
Mult(zd,n|θd). Finally, the corresponding N words,
wd,n are sampled from a multinomial distribution
over the vocabulary, Mult(wd,n|βzd,n); its parameter
vector, βzd,n , is chosen from a set of K parameter
vectors, β = {β1, . . . βk . . . βK}, based on the value of
topic zd,n.

for it; the decoder receives the latent representation
in input, and outputs a “reconstruction” of the orig-
inal measurement. Through this process, the model
is able to generate latent representations and recon-
structed measurements which are often more useful
than the original measurements in downstream tasks
of pattern recognition (e.g. [23]).

A variational autoencoder is a probabilistic exten-
sion of an autoencoder where both the measurement
and the latent representation are treated as random
variables, and therefore the encoder and the decoder
are treated as probability distributions. The “recon-
struction” of the original measurement is meant in a
probabilistic manner in terms of log-likelihood max-
imization. In the case of our topic model, the aim
of the VAE is to maximize the log-likelihood of the
words of each document:

p(w|α, β) =

∫
θ

p(w, θ|α, β)dθ (7)

However, the above objective is too complex to
be maximized directly, and therefore the VAE es-
tablishes an approachable lower bound for the log-
likelihood known as the Evidence Lower Bound, or
ELBO, and sets to maximize it [12]. In the case of
the topic model, the ELBO has the following form:

L(w|α, β) =Eq(θ|w)

[
log p(w|θ, β)

]
−DKL(q(θ|w)‖p(θ|α))

(8)

The terms in (8) have the following meaning: 1)
q(θ|w) is an estimator for the probability of the topic
proportions for a given document (represented by
its words, w) and is known as the “encoder”; 2)
log p(w|θ, β) is the log-probability of the given docu-
ment given its topic proportions and is known as the
“decoder”; 3) Eq(θ|w)

[
log p(w|θ, β)

]
is the expecta-

tion of this quantity over q(θ|w) and is known as the
“reconstruction term”; 4) p(θ|α) is a learnable prior
probability for the topic proportions that is shared
by the entire corpus. The rationale for (8) is twofold:
first, it is a proven lower bound for (7), that is the
target of the maximization; second, it consists of a
trade-off between two terms that can be interpreted
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intuitively: the model is rewarded for either improv-
ing the reconstruction term, or for keeping the en-
coder close to the prior.

Srivastava and Sutton in [28] have proposed a VAE
for topic modeling (AVITM) that leverages a Laplace
approximation of the usual Dirichlet prior to per-
mit its integration into the autoencoder. In AVITM,
both the prior and the encoder are modeled as lo-
gistic normal distributions: the prior is modeled as
p(θ|α) = LN (θ|µ(α),Σ(α)), and the encoder is mod-
eled as q(θ|w) = LN (θ|fµ(φ,w), fΣ(φ,w)), where φ
are the internal parameters of two neural networks
that predict the mean and covariance of the encoder,
respectively. The expectation in (8) is computed by
sampling q(θ|w), which in turn is performed through
reparametrization. The decoder takes the following
form:

p(w|θ, β) = Mult(w|σ(β)θ) (9)

where σ() is the softmax operator and the word
distributions are parametrized in the softmax basis
rather than the simplex to remove unnecessary con-
straints during backpropagation. The authors have
also proposed a second, heuristic version of the de-
coder, called ProdLDA, that performs the product
before the softmax:

p(w|θ, β) = Mult(w|σ(βθ)) (10)

As shown in [28], both AVITM and ProdLDA have
outperformed a number of compared topic model ap-
proaches by large margins, and can be regarded as
state-of-the-art approaches for this task.

3.3 The Proposed Approach: VAE
Topic Models with the Gumbel-
Softmax

The Gumbel-Softmax distribution, co-credited to [18]
and [9], has channeled much attention from the deep
learning community in recent years. This distribution
models “soft” categorical variables (categorical vari-
ables that are not restricted to have one-hot values)
and has been introduced to circumvent issues related
to backpropagation in models with latent categori-
cal variables. Many deep learning models (promi-

nently, variational autoencoders and generative ad-
versarial networks, or GANs) need to sample from
distributions, and sampling is a non-differentiable
operation that breaks the backpropagation chain.
The Gumbel-Softmax distribution is an alternative
to the multinomial distribution that allows sam-
pling of quasi-categorical variables and is differen-
tiable via reparametrization. Given a multinomial
distribution, Mult(z|θ), with K possible values, sam-
ples from the corresponding Gumbel-Softmax distri-
bution, GS(z̃|θ, τ), can be obtained as:

z̃ = σ
(
[log θ − log(− log u)]/τ

)
u ∼ U(0, 1)K

(11)

where u is a vector of K random variables each sam-
pled from the uniform distribution over (0, 1), and τ
is a hyperparameter (referred to as “temperature”)
that controls the sparsity of z̃ (the lower τ , the more
the samples resembles one-hot values; the larger, the
more the samples become uniform). Note that the
sampled distribution is fixed and does not need gra-
dient updates, and the functions in (11) are all dif-
ferentiable.

To take advantage of its properties, we propose
sampling the topic vector from a Gumbel-Softmax
distribution. The modified decoder (nicknamed
AVITM-GS ) becomes:

p(w|θ, β) = Mult(w|σ(β) z̃), z̃ ∼ GS(θ, τ) (12)

and in the case of ProdLDA (ProdLDA-GS ) it be-
comes:

p(w|θ, β) = Mult(w|σ(βz̃), z̃ ∼ GS(θ, τ) (13)

Please note that the number of trainable param-
eters is the same as in the original decoders, with
the exception of the scalar hyperparameter τ that we
can use to control the sparsity of the inferred topic
vectors.

7



Table 1: Results with 50 topics on 20 Newsgroups.
Measure/Model LDA LSI GANTM ProdLDA AVITM ProdLDA-GS AVITM-GS
Perplexity 2389.6 — — 1159.9 1133.0 1136.6 1110.6
Coher-NPMI -2.346 -0.062 -0.234 0.111 0.117 0.148 0.104
Coher-Cv -0.053 0.294 0.247 0.751 0.704 0.806 0.638

Table 2: Results with 100 topics on 20 Newsgroups.
Measure/Model LDA LSI GANTM ProdLDA AVITM ProdLDA-GS AVITM-GS
Perplexity 4857.1 — — 1147.1 1128.0 1136.1 1111.4
Coher-NPMI -0.063 -0.071 -0.223 0.114 0.085 0.117 0.079
Coher-Cv 0.296 0.267 0.259 0.742 0.650 0.763 0.616

Table 3: Results with 50 topics on COVID-19.
Measure/Model LDA LSI ProdLDA AVITM ProdLDA-GS AVITM-GS
Perplexity 1130.0 — 2178.7 1909.0 1957.7 1850.5
Coher-NPMI 0.086 -0.008 0.076 0.180 0.170 0.175
Coher-Cv 0.589 0.310 0.682 0.760 0.787 0.744

Table 4: Results with 100 topics on COVID-19.
Measure/Model LDA LSI ProdLDA AVITM ProdLDA-GS AVITM-GS
Perplexity 1119.2 — 2251.7 1904.3 1855.2 1855.7
Coher-NPMI 0.090 -0.017 0.049 0.177 0.174 0.158
Coher-Cv 0.581 0.271 0.652 0.736 0.765 0.700

4 Experiments and Results

4.1 Datasets

As datasets for the experiments, we have used the
popular 20 Newsgroups dataset (a de-facto bench-
mark for the field) and a 500K-document subset of
AYLIEN’s recently released COVID-19 news dataset.
20 Newsgroups consists of 18,846 news documents
posted by users, split over 11,314 as training set and
7,532 as test set. The average length of these docu-
ments is 311 words. To be consistent with the exper-
iments carried out in [28], we have used the prepro-
cessed version publicly released by the authors2 which

2Available at: https://github.com/akashgit/autoencoding vi for topic models.

uses a vocabulary of 1,995 words. The COVID-19
news dataset is a dataset aggregated by AYLIEN us-
ing their News Intelligence Platform from November
2019 to July 2020 from approximately 440 different
sources. For our experiments, we have used the first
500K documents (over 7 GB of uncompressed text)
split over 400K as training set and 100K as test set
since this size could still be managed by a PC with
16 GB of RAM. The documents were preprocessed
with tokenization, stopword elimination, stemming
and lemmatization, and encoded with a vocabulary
formed by the most-frequent 5,000 unique words.
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Table 5: Results for ProdLDA-GS (50 topics, 20 Newsgroups) with varying temperature hyperparameter, τ .
Measure/τ 10−5 1.5 1.75 2.0 2.25 2.5 10
Perplexity 1131.7 1180.0 1161.1 1145.4 1136.6 1124.7 1099.7
Coher-NPMI -0.224 0.126 0.131 0.125 0.148 0.148 0.010
Coher-Cv NaN 0.788 0.780 0.785 0.806 0.799 0.638

Table 6: Examples of topics extracted from the COVID-19 dataset (50 topics).
LDA: itali countri franc europ european spain italian germani measur lockdown

new york citi state cuomo san governor mayor francisco andrew
south korea japan africa countri north tokyo korean japanes brazil

ProdLDA: rub sampl mer nasal patient symptom cough lung genet molecular
diamond passeng disembark repatri dock princess liner hubei aboard cruis
trophi leagu europa juventus hudson champion coach footbal munich albert

ProdLDA-GS: symptom cough respiratori patient ill nose hospit infect doctor sneez
democrat biden sander republican trump voter vote senat sen nomin
crude barrel oil opec investor output price brent bpd yield

4.2 Experimental Set-Up

To probe the comparative performance of the pro-
posed approach, we have integrated it in both
AVITM and ProdLDA, and compared these versions
with the original versions. In the following, we refer
to them as AVITM-GS and ProdLDA-GS, respec-
tively. We have also included LDA and LSI from
Gensim [24] in the comparison as baselines, and the
GAN-based topic model from [6] that we refer to as
GANTM in the following. As learning rate for the
variational autoencoders, we have used the rather
standard value of 0.001. Any other hyperparameters
were left to their default values. For the temperature
of the Gumbel-Softmax distribution, τ , we have car-
ried out a preliminary sensitivity analysis and chosen
to run experiments with τ ∈ [1.5−2.5] in steps of 0.25.
This range corresponds to moderately-sparse to dense
topic vectors. As number of topics, we have used both
50 and 100 topics for both datasets. We have also
initially carried out multiple runs per model, and re-
alised that the performance did not vary significantly
(< 0.5% in all cases). Therefore, in Section 4.3 we
report results from single runs of each model.

As an unsupervised technique, the performance
evaluation of a topic model is non-trivial. For our
work, we have used two common measures:

• perplexity over the test set : the perplexity of a
model over a set S is defined as: perplexity(S) =
exp(−L(S)/(number of tokens in S)). In the
general case, L denotes the log-likelihood of the
data, but for the variational methods (all except
LSI and GANTM in our case), it is given by the
ELBO in (8). The perplexity is a measure of the
“poorness of fit” of the model on the data (the
lower, the better) and, as such, it is important
that it is measured over an independent test set
for realistic generalization.

• topic coherence: topic coherence quantifies the
coherence of a topic by measuring how often its
top K words co-occur within a text window that
slides across the documents (the higher the co-
occurrence, the better). Since this measure is
not uniquely defined, we report both the normal-
ized pointwise mutual information (coher-NMPI)
[15] and the CV coherence (coher-Cv) [25] from
their Gensim implementation. The coherence is
typically measured on the training set itself since
this guarantees the presence of all the top words.
For the experiments, K has been set to 10. For
the variational methods, the top words per topic
have been selected as those with highest prob-

9



ability in the term-topic matrix. For LSI, they
have been selected as those with highest weight
in the term-topic matrix (which is not normal-
ized to probability values). For GANTM, they
have been selected as those with highest weight
in the discriminator’s decoder network (equiva-
lent to the term-topic matrix of LSI).

Given their significantly different nature, some dis-
agreement in model ranking between perplexity and
topic coherence is to be expected. Perplexity is, es-
sentially, a measure of fit of the model, while topic
coherence is a measure of quality of the extracted
topics and may better reflect the user’s perception
of performance. For this reason, for comparing the
models we resort to a majority criterion, with em-
phasis on the topic coherence.

4.3 Results

Tables 1 and 2 report the results over the 20 News-
groups dataset for 50 and 100 topics, respectively.
In terms of test-set perplexity, it is evident that the
proposed approach has been able to improve over the
original variational autoencoder, both for ProdLDA
and AVITM. In these and the following tables, we
report the perplexity also for LDA, but the scale of
its ELBO is not directly comparable with that of the
autoencoder techniques; for this reason, its values are
marked in italics and not commented further. For LSI
and GANTM, the perplexity is simply not available
since they are not probabilistic models. In terms of
coherence, ProdLDA-GS has been able to achieve sig-
nificantly higher values than all the other techniques
in both coherence metrics. In addition, the two topic
model baselines, LDA and LSI, and the GANTM
model have scored significantly lower values of topic
coherence than all the variational autoencoder ap-
proaches. Overall, ProdLDA-GS has achieved the
best performance in 4 cases out of 6 (combined num-
ber of topics/metrics) and can be regarded as the
best-performing technique overall.

In turn, Tables 3 and 4 report the results over the
COVID-19 dataset for 50 and 100 topics, respectively.
In terms of test-set perplexity, the proposed approach

has again been able to improve over the original vari-
ational autoencoders. In terms of coherence, the
original AVITM has achieved the highest values for
coher-NPMI, while ProdLDA-GS has achieved the
highest values for coher-Cv. Again, all the vari-
ational autoencoder approaches have scored signifi-
cantly higher coherence values than both the LDA
and LSI baselines. GANTM generated an out-of-
memory error while training over larger training sets,
and is therefore not reported. Overall, ProdLDA-GS
has achieved the best performance in 3 cases out of
6 and may still be regarded as the best-performing
overall.

As expected, the choice of the temperature hyper-
parameter, τ , in the Gumbel-Softmax distribution
has a major impact on the performance as it sub-
stantially changes the shape of the samples (from al-
most one-hot to almost uniform). Since the coherence
measures are to be computed on the training set, it
is legitimate to choose the value of τ that empirically
maximizes them. Conversely, the perplexity is a test-
set measure and the optimal τ should be chosen on
the training set or a separate validation set. In all
cases, the different measures may be maximized by
different values of τ , and a trade-off between them
is required. To illustrate this dependence, Table 5
shows the results with varying τ for ProdLDA-GS
with 50 topics on 20 Newsgroups. With τ = 10−5

(almost one-hot samples), the model has achieved a
very low coherence. At the other end of the spectrum,
with τ = 10 (almost uniform samples), the coherence
has been again very low. The equal-best coher-NPMI
coherence values have been achieved with τ = 2.25
and 2.5, and the best value for coher-Cv has been
achieved with τ = 2.25, so we have used these results
for the comparison in Table 1. To further evaluate
the model’s quality with varying τ , we have also mea-
sured the topic coherence (coher-NPMI) of ProdLDA-
GS over the test set, using ProdLDA as the reference.
Figure 2 shows that τ has played a key role also for
this measure: for τ ∈ [1.5− 2.5], the topic coherence
of ProdLDA-GS has been invariably higher than that
of Prod-LDA, while it has noticeably deteriorated for
more “extreme” values (0.1, 10).

In terms of qualitative analysis of the extracted
topics, all approaches seem to have performed well
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Figure 2: Comparison of coher-NPMI on the test set
for ProdLDA and ProdLDA-GS (50 topics, 20 News-
groups) with varying temperature hyperparameter,
τ .

overall. The extracted topics are presented to the
user as the lists of their K = 10 top words, and such
lists must appear informative and coherent. Exam-
ples for LDA, ProdLDA and ProdLDA-GS from the
COVID-19 topic models are displayed in Table 6. For
LDA, the first example clearly addresses the lock-
down measures taken by various European countries;
the second names New York State Governor Andrew
Cuomo and the mayor of San Francisco, but fails to
include the “reason” for their mention; and the last
is simply a list of countries, again with no explicit
mention of the COVID outbreak. For ProdLDA, the
first example refers to COVID symptoms and test-
ing (word “mer” is the stemmed version of “MERS”);
the second refers to the case of the Diamond Princess
cruise ship; and the last addresses football news from
the observation period. For ProdLDA-GS, the first
example clearly refers to COVID symptoms and the
risk of infection for the doctors; the second to the
recent US presidential primaries, which were held
during the observation period; and the last to eco-
nomic news. Their lists of top words seem very con-
sistent and descriptive. A possible limitation of both
ProdLDA and ProdLDA-GS, and possibly of all au-
toencoding methods which are based on sampling, is
the presence of a number of repeated topics. How-
ever, it should be easy to prune them post-hoc.

5 Conclusion

This paper has presented an approach for topic mod-
eling based on the Gumbel-Softmax distribution and
variational autoencoders. During the step of topic-
document inference, the topic proportions of the cur-
rent document are sampled in the autoencoder from a
Gumbel-Softmax distribution with appropriate tem-
perature. The samples are then used to mix ei-
ther the topic distributions (AVITM-GS) or their
logits (ProdLDA-GS). To validate the proposed ap-
proach, experiments have been carried out on two
challenging datasets, the well-known 20 Newsgroups
and a recently-released, large-scale COVID-19 news
dataset. The experimental results have shown that
the proposed approach has been able to outperform
the original variational autoencoders and two sig-
nificant baselines in terms of topic coherence, and
achieve the best trade-off across two coherence met-
rics and the test-set perplexity. In addition, a quali-
tative analysis of the extracted topics has shown that
they appear informative and consistent. In the near
future, we plan to extend our research to other distri-
butional models and reparametrization approaches.
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