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Abstract—Extreme learning machines (ELM) has been theo-
retically and experimentally proved to achieve promising per-
formance at a fast learning speed for supervised classification
tasks. However, it does not perform well on imbalanced binary
classification tasks and tends to get biased towards the majority
class. Besides, since a large amount of training data with labels
are not always available in the real world, there is an urgent
demand to develop an efficient semi-supervised version of ELM
for imbalanced binary classification tasks. In this paper, owing to
the distinct insensitivity of Area Under the ROC curve (AUC) to
both class skews and changes of class distributions, we focus the
study on integrating AUC maximization into the ELM framework
to tackle with imbalanced binary classification tasks well. By
demystifying the AUC metric with the ELM framework, we
develop a new AUC based ELM called AUC-ELM for imbalanced
binary classification, which essentially is revealed to be equivalent
to an ELM on another transformed data space. Accordingly,
its semi-supervised version called SAUC-ELM is also developed.
Both AUC-ELM and SAUC-ELM have the distinctive merits:
(1) they share the advantage of ELM in both generalization
capability and training efficiency, and further uniquely tailored
for imbalanced binary classification tasks; (2) In contrast to the
existing imbalanced variants of ELM such as Class-specific Cost
Regulation ELM and Semi-supervised ELM, they have fewer
parameters to tune, thereby reducing the computational cost for
model selection. Experiments on a heap of datasets show that both
AUC-ELM and SAUC-ELM outperform the other comparative
methods in terms of both classification performance and training
speed.

Index Terms—Extreme learning machine, imbalance learning,
semi-supervised learning, AUC optimization

I. INTRODUCTION

IN the last few decades, extensive studies on data classifica-
tion techniques [1], [2], [3], [4], [5], [6], [7], [8] have been

carried out. Among them, single layer feedforward networks
have attracted our attentions due to their approximation capa-
bility. The most popular learning algorithm to train single layer
feedforward networks is back-propagation method [9], which
uses gradient descent update rule to optimize the weights in the
network. However, such a method may encounter stopping cri-
teria, learning rate, learning epochs, and local minima issues.
Other techniques such as generic and evolutionary algorithms
[3], [4] have also been used to provide the global optimal solu-
tion, and yet they are still imperfect due to high computational
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cost. Support vector machine (SVM) [5] is another well-known
training algorithm for single layer feedforward networks using
a maximum margin classifier derived from a framework of
structural risk minimization. SVM essentially is to solve a
quadratic programming problem, which is more convenient to
handle. In contrast to these methods, Huang et al. proposed
a new batch learning algorithm - extreme learning machine
(ELM) [6] for single layer feedforward networks. It only
needs to update the output weights between the hidden and
output layers by solving a regularized least squares (or ridge
regression) problem, while the rest of parameters, such as the
input weights and bias between input and hidden layers can be
randomly assigned. ELM is theoretically and experimentally
proved to have a comparable or better generalization capability
with a fast learning speed compared to other popular learning
algorithms in most cases [7], [10], [11], [12], [13], [14], [15].

However, ELM itself is not explicitly designed to overcome
a common challenge - class imbalance, in which there is
a much larger number of samples belonging to one class
compared to another within a dataset [16]. For example, cancer
diagnosis is a public domain to face skewed datasets. It is
common to have a large number of normal cases and very
few cancer cases. Most traditional machine learning methods
such as ELM are directly trained on the imbalanced datasets
and tend to be overwhelmed by the majority class, i.e., it
may achieve very high accuracy on the majority class by
compromising accuracy on the minority class, thus leading
to poor classification performance. In the literature, two main
approaches are proposed to resolve this problem, i.e., the
re-sampling approach and algorithmic modification approach
[17].

The re-sampling approach is designed to balance the class
distribution by either removing some majority class samples
(undersampling) [18] or adding some minority class samples
(oversampling) [19]. Its main advantage is that it is indepen-
dent of classifier construction and can work readily with most
classifiers. In undersampling, samples can be removed ran-
domly or based on specific criteria, e.g., removing samples far
away from boundaries between two classes. In oversampling,
samples can be randomly duplicated, or samples which are
close to the boundaries are selected to duplicate. However,
the former method may encounter the problem of information
loss while the latter may suffer from the overfitting issue. In
the algorithmic modification approach, cost-sensitive learning
[20] is frequently used to deal with imbalanced datasets,
which assigns higher misclassification cost or higher weight
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to the minority class samples. For example, for specific cancer
detection, the misclassification cost of a cancer case is set to
be higher than the normal case, so that the bias of the majority
class is shifted towards the more significant minority class. By
utilizing this strategy, some variants of ELM such as Weighted
ELM [21], boosting weighted ELM [22], ensemble weighted
ELM [23] and CCR-ELM [24] have been proposed to handle
class imbalance problems. However, for most applications, we
lack the prior information of the cost distribution and thus,
how to determine the cost matrix remains a challenge. On
the other hand, most commonly used classifiers are built by
optimizing an objective function that is related to accuracy
or error rate. These performance metrics could be misleading
for imbalanced classification. To overcome this issue, the
Area Under the ROC curve (AUC) [25] is alternatively used
to evaluate the models due to its robustness against class
skews. An early study [26] pointed out that the large variances
of AUC for imbalanced datasets suggest that there may be
significantly different AUC values for two classifiers sharing
similar accuracy. Such a finding posed an encouraging sign
for comprehensive studies on straight-forward AUC optimiza-
tion. In other words, when AUC maximization is the target,
a classifier that is designed to optimize AUC directly can
have a significant advantage over class imbalance problems
[27], [28]. In the past decades, AUC maximizing versions of
various learning algorithms have been developed which in fact
lead to higher AUC values supported by empirical evidences
[27], [29], [30], [31], [32]. However, these studies focus on
supervised learning, where learning algorithms are trained
using labeled samples only. In practice, it is very challenging
to collect a large number of samples with labels, and the
intensive manual labeling work is often required. Rather, it
is easy and cheap to collect unlabeled samples. To overcome
the shortage of supervised learning, semi-supervised learning
[33] for improving the classification performance that makes
use of both labeled and unlabeled data for training has been
recently developed. The relevant studies on semi-supervised
ELM can be found in [34], [35], [36], [37], [38], [39].

As a result, it is necessary to bridge the advantage of
ELM algorithm and AUC optimization to achieve both su-
pervised and semi-supervised imbalanced learning. In this
study, we propose a supervised ELM based method AUC-ELM
by combining AUC optimization with the ELM framework,
and then further extend it into its semi-supervised version
SAUC-ELM. We expect that the proposed algorithms will be
effective to incorporate labeled and unlabeled samples into the
training process and provide high generalization performance
on imbalanced datasets. The contributions of this work can be
summarized as follows.

1) AUC-ELM is proposed to mainly solve class imbalance
problems by integrating AUC metric optimization into
the ELM framework. Based on the output expression of
ELM, we demystify the AUC metric into its geometrical
interpretation from a new perspective. AUC-ELM is the-
oretically derived to be equivalent to the corresponding
ELM on the transformed input space, and hence inherit
the traditional ELM’s excellent generalization capability

and training efficiency.
2) SAUC-ELM is a semi-supervised version of AUC-ELM.

To best of our knowledge, by demystifying the proposed
semi-supervised AUC metric, this is the first attempt to
solve semi-supervised imbalanced learning problems by
simply incorporating AUC optimization into the semi-
supervised ELM framework.

3) Different from the existing ELM based imbalanced
learning methods such as CCR-ELM and SS-ELM,
AUC-ELM and SAUC-ELM have fewer parameters to
tune, thereby reducing the workload for the model
selection procedure.

4) Experimental results on benchmark imbalanced binary
datasets demonstrate that both AUC-ELM and SAUC-
ELM achieve promising classification performance and
fast training speed, in contrast to the comparative meth-
ods.

This paper is organized as follows. Section II outlines
the related work on ELM for balanced, imbalanced, and
semi-supervised binary classification. The proposed methods
AUC-ELM and its semi-supervised version SAUC-ELM are
presented in Section III and Section IV, respectively. Experi-
mental results are reported and analyzed in Section V. Section
VI ends this paper with a conclusion and future work.

II. RELATED WORK

A vast amount of experimental evidences have revealed that
ELM is effective for both classification and regression tasks.
Here, we only review ELM for binary classification tasks to
keep our study focus. Suppose we have a training set with
N samples for a supervised binary classification problem, i.e.,
X = {xi}Ni=1, Y = {yi}Ni=1, xi ∈ Rd, yi ∈ {+1,−1}. ELM
aims at learning a discriminant rule based on the training data.

Generally speaking, ELM contains the input layer, hidden
layer and output layer. In particular, we can randomly assign
hidden neurons using any nonlinear piecewise continuous
functions, such as the Gaussian function

g(x;α, b) = exp(−||x−α||
2

b2
)

and Sigmoid function

g(x;w, b) =
1

1 + exp(−(wTx+ b))

where (α, b) or (w, b) are the parameters of the corresponding
mapping functions, respectively, and || · || represents the
Euclidean norm.

According to ELM’s theory in [7], all the parameters in
the mapping functions of the hidden layer can be randomly
generated in terms of any continuous probability distribution
e.g., the uniform or Gaussian distribution on (−1, 1). In
other words, different from the classical feedforward neural
networks and SVM, the training of ELM only deals with how
to tune the output weights between the hidden layer and output
layer for binary classification tasks, which actually means that
the training of ELM is equivalent to solving a regularized least
squares regression problem. Therefore, training ELM has been
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theoretically and empirically proved to be more efficient than
training SVM or learning with back-propagation.

Assume there is nk hidden neurons in the hidden layers,
which are randomly assigned to project the data from the
input space onto a nk-dimensional feature space. We denote
by h(xi) ∈ R1×nh the output vector of the hidden layer with
respect to xi, and β ∈ Rnh×1 the output weight vector that
connect the hidden layer with the output layer. As a result,
ELM has its output as follows:

f(xi) = h(xi)β, i = 1, · · · , N. (1)

in which β is obtained by minimizing the sum of the training
errors. That is to say, ELM attempts to solve the following
formulation

min
β∈Rnh×1

1

2
||β||2 + C

2

N∑
i=1

ξ2i

s.t. h(xi)β = yi − ξi, i = 1, · · · , N
(2)

where the first term is a regularization term to prevent over-
fitting issues. ξi is the training error regarding the i-th sample
and C is a penalty parameter.

By substituting the constraints into the objective function,
we obtain the following equivalent unconstrained optimization
problem:

min
β∈Rnh×1

LELM =
1

2
||β||2 + C

2
||Y −Hβ||2 (3)

where H = [h(x1)
T , · · · ,h(xN )T ]T ∈ RN×nh and Y =

[y1, y2, · · · , yN ]T .
The above problem is known as the ridge regression or reg-

ularized least squares regression, and its solution is determined
in [6], [7], [10], which can be represented as below:

β∗ =
(
HTH +

Inh

C

)−1HTY , N > nh (4)

or equivalently

β∗ = HT
(
HHT +

IN
C

)−1
Y , N < nh (5)

Ever since ELM was proposed in [6], various studies
have substantially contributed to ELM’s theories, variants and
applications. A survey about ELM can be found in [10]. At
present, the ELM techniques have been developed into deep
ELMs for massive data [40], [41], [42], on-line learning [43],
[44] and so on. Since our study focuses on imbalanced and
semi-supervised learning of ELM, we briefly review them as
follows.

Firstly, class imbalance is a common challenge in practice
such as cancer detection [45], computer vision [46] and fraud
detection [47], where one class has a much larger number of
training samples than the other class. The problem associated
with class imbalance learning is that traditional learning mod-
els tend to be partial to the majority class and the overall per-
formance is deteriorated. To adapt traditional ELM to handle
the class imbalance problem effectively, some variants of ELM
like Weighted ELM (WELM), Boosting weighted ELM [22],
Regularized Weighted Circular Complex valued ELM [48],
Ensemble weighted ELM [23], Class-specific Cost Regulation

ELM (CCR-ELM) [24] and Class-specific ELM [49] were
proposed. When these ELM’s variants run on training samples,
their performances heavily depend on the weights. However,
how to find better weights is still a challenging problem. What
is more, the tuning of too many weights may be time consum-
ing and even impracticable. For example, CCR-ELM [24] uses
class-specific cost regularization to combat imbalanced data,
which has to tune two regularization parameters by grid search
on (2−24, 2−23,· · · ,224,225) to find optimal values. That would
be 2500 different combinations of regularization parameters to
run on the training dataset which is computationally intensive.

Secondly, most existing studies on ELM are primarily used
for supervised learning. In reality, however, it is much more
difficult to acquire sufficient labeled samples than the unla-
beled ones. In such a dilemma, the performance of supervised
learning algorithms may sacrifice as useful information hidden
in the unlabeled data are not used. To overcome the disadvan-
tage of supervised ELMs, ELM is introduced to the framework
of semi-supervised learning to expand its applicability further.
The manifold regularization (MR) [50] is widely used in the
area of semi-supervised learning, which attempts to extract
the geometric information from both labeled and unlabeled
data and make the smoothness of classifiers along the intrinsic
manifold by adding a regularization term. Following MR
framework or deep learning, SS-ELM [35] and other variants
[34], [36], [37], [38], [39], [51], [52] about semi-supervised
learning of ELM were well developed. However, none of
these methods targeted imbalanced data. Moreover, how to
determine the graph Laplacian matrix for MR gained from
both labeled and unlabeled data in advance is not a trival work
in practice.

III. SUPERVISED AUC-ELM FOR IMBALANCED BINARY
CLASSIFICATION

In this section, a supervised AUC-ELM is proposed for
imbalanced binary classification. AUC is a better evaluation
metric than accuracy for class imbalance learning due to its
invariance to the class ratios and therefore it is frequent to use.
Intuitively, AUC(s) reflects the probability in the sense of
the mathematical expectation that the scoring of the majority
sample x+ is greater than that of the minority sample x−,
if x+ and x− both are randomly sampled from the majority
and minority classes. According to [25], [53], AUC(s) can be
expressed as

AUC(s) = Ex+∼D+Ex−∼D−1(s(x+) ≥ s(x−)) (6)

where D+ and D− denote the distributions of the majority
and minority classes, respectively. s is a scoring function, for
example, s(x) = h(x)β. E is the corresponding mathematical
expectation. 1(·) is the indicator function which returns value
1 if the condition is satisfied; 0 otherwise.

In practice, because 1(·) is not continuous, we can approx-
imately maximize Eq. (6) by replacing the indicator function
1(·) using a convex and continuous surrogate function. In this

study, we prefer
(
1 −

(
s(x+) − s(x−)

))2
as the surrogate

function. In particular, when s(x) = h(x)β in ELM, we
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may view
(
1 −

(
h(x+) − h(x−)

)
β
)

as a random vari-
able z. According to the well-known mathematical formula:
Ex∼D(z2) =

(
Ex∼D(z)

)2
+Ez∼D

((
z−Ez∼D(z)

)2)
, we have

Ex−∼D−
[(

1−
(
h(x+)− h(x−)

)
β
)2]

=
(
1−

(
h(x+)− c−

)
β
)2

+Ex−∼D−
[(

1−
(
h(x+)− h(x−)

)
β
)
−
(
1−

(
h(x+)− c−

)
β
)2]

=
(
1−

(
h(x+)− c−

)
β
)2

+ Ex−∼D−
[((

h(x+)− c−
)
β
)2] (7)

Similarly, we have

Ex+∼D+

[(
1−

(
h(x+)− h(x−)

)
β
)2]

=
(
1− (c+ − h(x−))β

)2
+ Ex+∼D+

[((
c+ − h(x−)

)
β
)2] (8)

where c+ = Ex+∼D+

(
h(x+)

)
, c− = Ex−∼D−

(
h(x−)

)
.

Therefore we have

AUC(s) = Ex+∼D+Ex−∼D−
[(

1−
(
s(x+)− s(x−

))2]
= Ex+∼D+Ex−∼D−

[(
1−

(
h(x+)− h(x−)

)
β
)2]

=
1

2
Ex+∼D+

{
Ex−∼D−

[(
1−

(
h(x+)− h(x−)

)
β
)2]}

+
1

2
Ex−∼D−

{
Ex+∼D+

[(
1−

(
h(x+)− h(x−)

)
β
)2]}

=
1

2
Ex+∼D+

[(
1−

(
h(x+)− c−

)
β
)2

+ Ex−∼D−
[(
h(x−)− c−

)
β
)2]]

+
1

2
Ex−∼D−

[(
1−

(
c+ − h(x−)

)
β
)2

+ Ex+∼D+

[((
c+ − h(x+)

)
β
)2]]

(9)

where c+ and c− remain the same expressions in Eq. (8). As
Ex+∼D+Ex−∼D−

[(
(h(x−)− c−)β

)2]
= Ex−∼D−

[(
(h(x−)− c−)β

)2] ,
Ex−∼D−Ex+∼D+

[(
(c+ − h(x+)

)
β
)2]

= Ex+∼D+

[(
(c+ − h(x+))β

)2],
we have

AUC(s) =
1

2
Ex+∼D+

[((
c+ − h(x+)

)
β
)2]

+
1

2
Ex−∼D−

[((
h(x−)− c−

)
β
)2]

+
1

2
Ex+∼D+

[((
1− (h(x+)− c−

)
β
)2]

+
1

2
Ex−∼D−

[(
1−

(
c+ − h(x−)

)
β
)2]

(10)
According to Eq. (6), AUC(s) involves pair-wise samples
from two classes, so it is quadratic in the number of training
samples. However, according to Eq. (10), after c+ and c− are
computed in advance, AUC(s) becomes linearly dependent
on the number of training samples, which will greatly reduce
the computational burden of the AUC(s) optimization.

What is more, AUC(s) in Eq. (10) has clear geometrical
interpretation. Its first two terms represent the variances of
the outputs of ELM for two classes, respectively. Its third and
fourth terms represent the surrogate losses of the outputs of
ELM for each class with respect to the mean output of ELM
for the other class. Therefore, after demystifying AUC(s) in
this way, the rationale of AUC(s) becomes very intuitive and
interpretable.

Based on Eq. (10), we may take the following empirical
formulation to train the classification model s(x) = h(x)β

from the :

AUC(s) =
1

N+

N+∑
i=1

((
c+ − h(x+

i )
)
β
)2

+
1

N−

N−∑
j=1

((
h(x−j )− c

−)β)2
+
1

2

N+∑
i=1

((
1− (h(x+

i )− c
−)β)2 + 1

2

N−∑
j=1

((
1− (c+ − h(x−j )

)
β
)2

(11)
We can readily verify that E

(
AUC(s)

)
= AUC(s).

Likewise in [27], [28], [29], [30], [31], [32] where AUC(s)
is directly adopted in their objective functions, we apply the
above AUC(s) to formulate the following objective function
to design a ELM based classifier for imbalanced learning

min
β∈Rnh×1

1

2
β2 + γAUC(s) (12)

where γ is the given trade-off parameter between the first and
second terms in Eq. (12). After substituting Eq. (11) into Eq.
(12), we have

min
β∈Rnh×1

JAUC−ELM = βT
(1
2

I +
γ

2N+

N+∑
i=1

(
c+ − h(x+

i )
)T (

c+ − h(x+)
)

+
γ

2N−

N−∑
j=1

(
h(x−j )− c

−)T (h(x−j )− c−))β
+

γ

2N+

N+∑
i=1

(
(1−

(
h(x+

i )− c
−))β)2

+
γ

2N−

N−∑
j=1

(
1−

(
c+ − h(x−j )

)
β
)2

(13)
Obviously, the first term implies more generalization capability
than the classical ELM, while the second and third terms
represent two loss functions which are only dependent on
N+ and N−, respectively. From this perspective, Eq. (12) or
equivalently Eq. (13) is a special ELM. We call it AUC-ELM.

After denoting A = I+ γ
N−

∑N−

j=1

(
h(x−j )−c−

)T
(h(x−j )−

c−) + γ
N+

∑N+

i=1

(
c+− h(x+

i )
)T (

c+− h(x+
i )
)

and using the
following mathematical transformation

(h
′
(xi), y

′

i) =


(√

1
2p

(
h(xi)− c−),

√
1
2p

)
, yi = +1(√

1
2(1−p)

(
h(xi)− c+

)
,−
√

1
2(1−p)

)
, yi = −1

(14)
where p = N+

N++N− = N+

N , Eq. (12) becomes

min
β∈Rnh×1

JAUC−ELM =
1

2
βTAβ +

γ

2N

N∑
i=1

(y
′

i − h
′
(xi)β)

2 (15)

Referring to the classical ELM in Eq. (3), we readily have
its solution

β =

{
(Nγ A + H

′TH
′
)−1H

′TY
′
, if N > nh

H
′T (H

′TH
′
+ N

γ A)−1Y
′
, if nh < N

(16)

where H
′
= [h

′
(x1)

T , h
′
(x2)

T , · · · , h′(xN )T ]T ∈ RN×nh ,
Y
′
= [y

′

1, y
′

2, · · · , y
′

N ]T , N = N+ +N−. Please note, H
′
, A

can be computed in advance.
Remark 1. AUC-ELM is a special ELM on the data

space transformed by using Eq. (14). Compared to two trade-
off parameters in CCR-ELM, Obviously, the regularization
parameter γ has an important impact on the performance of
AUC-ELM. In order to optimize γ, we can use cross-validation
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with grid search, or leave-one-out cross valuation with the
predicted residual sum of squares (PRESS) static [15]. Also,
WELM [21] or CCR-ELM [24] is primarily motivated by
the accuracy metric, while AUC-ELM is motivated by the
AUC metric, which is more stable and robust for imbalanced
binary classification tasks. Therefore, as the first attempt,
AUC-ELM exhibits the great potential to handle imbalanced
binary classification tasks.

Based on the above discussions, the implementation of
AUC-ELM is summarized in Algorithm 1.

Algorithm 1 AUC-ELM
Input Given N labeled samples {xi, yi}, i = 1, 2, · · · , N (N =
N+ +N−)
Output the mapping function of AUC-ELM, i.e., h(x)β
Step 1 Initialize an ELM network of nh hidden neurons by randomly
assigning input weights and biases, and calculate the output matrix
H
′

of the hidden neurons.
Step 2 Compute the matrics A and the vector Y ′ according to their
above definitions.
Step 3 Choose the trade-off parameter γ
Step 4
If nh < N
Then compute the output weight vector β using the first formula in
Eq. (16)
Else Compute β using the second formula in Eq. (16)
Step 5 Return the mapping function h(x)β

Remark 2. Comparing Eq. (15) with Eq. (3), we can easily
find that once the matrices A, H

′
, and the vector Y

′
are

fixed in advance, the computational complexity of solving Eq.
(15) keeps the same as that of solving Eq. (3). According to
their respective definitions given as above, the calculation of
the matrix A requires O(N+N+ + N−N−) ≈ O((N+)2)
computational burdens (since N− is generally much less than
N+). The calculation of both H

′
and Y

′
obviously requires

O(N++N−) computational burdens (see Eq. (14)). Therefore,
in contrast to the classical ELM, AUC-ELM has an extra
computational complexity, i.e., O((N+)2 + N+ + N−) ≈
O((N+)2).

IV. SEMI-SUPERVISED AUC-ELM: SAUC-ELM
A. On SAUC and SAUC

When on-hand training data contain unlabeled samples, we
can not directly apply the AUC or SAUC metric to guide the
semi-supervised learning for imbalanced binary classification.
In order to sufficiently leverage all the useful information
from the available training data with and without labels,
here we view all the available training data as a whole, and
then define a new AUC metric specific for semi-supervised
learning to express the sum of two AUC values between the
labeled samples and the whole dataset. The merit of such a
new definition exists in that while AUC for semi-supervised
training data can not be directly estimated, this new AUC
metric can help us do it by using the following Theorem 1
to reveal the relationship between them.

Definition 1: AUC metric SAUC for both labeled and
unlabeled binary data is defined as

SAUC(s) =Ex+∼D+Ex∼D1
(
s(x+) ≥ s(x)

)
+Ex∼DEx−∼D−1

(
s(x) ≥ s(x−)

) (17)

where D denotes the distribution of all the labeled and
unlabeled samples in the training data.

Theorem 1: For a binary classification problem, given
an arbitrary scoring function s, there exists only a constant
difference between its AUC(s) value and SAUC(s) value,
i.e.,

SAUC(s) = AUC(s) +
1

2
(18)

Proof : According to the formulation in Eq. (2), we observe

Ex+∼D+Ex∼D1
(
s(x+) ≥ s(x)

)
=Ex+∼D+E

x∼D−∪D+1
(
s(x+) ≥ s(x)

)
=(1− λ)Ex+∼D+Ex−∼D−1

(
s(x+) ≥ s(x−)

)
+λEx+∼D+E

x′∼D+1
(
s(x+) ≥ (x

′
)
) (19)

where λ is the fixed yet unknown percentage of the majority
samples to the minority samples. Please note, D+ and D+

actually represent the sample distribution of majority samples.
Because the probability that a randomly selected majority sam-
ple is ranked higher than another randomly selected majority
sample from the same distribution always keeps a constant,
i.e., 1

2 . Therefore, we have

Ex+∼D+Ex∼D1(s(x+) ≥ s(x))

=(1− λ)Ex+∼D+Ex−∼D−1
(
s(x+) ≥ s(x−)

)
+
γ

2

(20)

Similarly, we easily have

Ex∼DEx−∼D−1
(
s(x) ≥ s(x−)

)
=E

x∼D−∪D+Ex−∼D−1
(
s(x) ≥ s(x−)

)
=λE

x∼D+Ex−∼D−1
(
s(x) ≥ s(x−)

)
+(1− λ)E

x∼D−Ex−∼D−1
(
s(x) ≥ s(x−)

)
=λEx∼D+Ex−∼D−1

(
s(x) ≥ s(x−)

)
+

1− λ
2

(21)

With Eq. (20) and Eq. (21), we immediately have

Ex+∼D+Ex∼D1
(
s(x+) ≥ s(x)

)
+ Ex∼DEx−∼D−1

(
s(x) ≥ s(x−)

)
=Ex+∼D+Ex−∼D−1

(
s(x+) ≥ s(x−)

)
+

1

2
(22)

i.e., SAUC(s) = AUC(s)+ 1
2 , which means Theorem 1 holds

true.
Theorem 1 is very important, since it reveals that when

SAUC(s) achieves the maximum, AUC will also achieve its
maximum. This theoretical result provides the solid foundation
for this work here. That is to say, when using the surrogate

function
(
1−
(
s(x+)−s(x−)

))2
, we can maximize SAUC(s)

approximately by minimizing the following formulation:

SAUC(s) =Ex+∼D+Ex∼D
[(

1−
(
s(x+)− s(x)

))2]
+Ex∼DEx−∼D−

[(
1−

(
s(x)− s(x−)

))2] (23)

When s(x) = h(x)β in ELM, similar to the mathematical
derivations in the last section, we have

Ex+∼D+Ex∼D
[(

1−
(
h(x+)− h(x)

)
β
)2]

=Ex+∼D+

[(
1−

(
h(x+)− c

)
β
)2]

+ Ex∼D
[((

h(x)− c
)
β
)2] (24)
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Ex∼D−Ex−∼D
[(

1−
(
h(x)− h(x−)

)
β
)2]

=Ex−∼D−
[(

1−
(
c− h(x−)

)
β
)2]

+ Ex∼D
[(
h(x)− c

)
β
)2] (25)

where c = Ex∼D(h(x)).
Therefore
SAUC(s) =2Ex∼D

[(
h(x)− c)β

)2]
+ Ex+∼D+

[(
1− (h(x+)− c)β

)2]
+Ex−∼D−

[(
1− (c− h(x−)

)
β
)2]

(26)
In essence, optimizing SAUC(s) asks all the outputs of ELM
for labeled and unlabeled samples fall around the mean output
of ELM as close as possible (see the first term in Eq. (26)),
while the second and third terms in Eq. (26) represent the
surrogate losses of the outputs of ELM for each class with
respect to the mean output of ELM along different direc-
tions. Therefore, SUAC(s) has clear geometrical interpretation.
Referring to AUC for AUC, we can develop the empirical
formulations SAUC for SAUC, i.e.,

SAUC(s) =
2

N

N∑
i=1

βT (h(xi)− c)(h(xi)− c)Tβ

+
1

N+

N+∑
i=1

(
1− (h(x+

i )− c)β
)2

+
1

N−

N−∑
i=1

(
1− (c− h(x−i ))β

)2
(27)

where N = N++N−+Nu, Nu denotes the total number of all
the unlabeled samples. We can easily verify that E(SAUC) =
SAUC.

Based on Eq. (27), we may take the following empirical
formulation as the objective function of the semi-supervised
AUC-ELM.

min
β∈Rnh×1

JSAUC−ELM

=
1

2
β2 +

γ

2
SAUC

=
1

2
β2 +

γ

N

N∑
i=1

βT
(
h(xi)− c

)T (
h(xi)− c

)
β

+
γ

2N+

N+∑
i=1

(
1−

(
h(x+))− c

)
β
)2

+
γ

2N−

N−∑
i=1

(
1−

(
c− h(x−)

)
β
)2
(28)

After denoting B = I + 2γ
N

∑N
i=1(h(xi)− c)T (h(xi)− c) and us-

ing the following mathematical transformation:

(h
′
(xi), y

′

i) =


(√

1
2p

(
h(xi)− c),

√
1
2p

)
, yi = +1(√

1
2(1−p)

(
h(xi)− c

)
,−
√

1
2(1−p)

)
, yi = −1

(29)

where p = N+

(N++N−) =
N+

N , we can equivalently express Eq.
(28) as

min
β∈Rnh×1

JSAUC−ELM =
1

2
βTBβ +

γ

2N

N∑
i=1

(
y
′

i − h
′
(xi)β

)2 (30)

Referring to the classical ELM in Eq. (1), we can readily has
its solution

β =

{
(Nγ B + H

′TH
′
)−1H

′TY
′
, if N > nk

H
′T (H

′TH
′
+ N

γ B)−1Y
′
, if nk < N

(31)

where H
′
, Y

′
are the same as in AUC-ELM. Based on

the above discussions, the implementation of SAUC-ELM is
summarized in Algorithm 2.

Remark 3. According to the definition of the matrix B
in Eq. (30), its determination requires O(N2) = O((N+ +

Algorithm 2 SAUC-ELM
Input Given N labeled samples {xi, yi}, i = 1, 2, · · · , N (N =
N+ +N−), and unlabeled samples {xi}, i = 1, 2, · · · , Nu

Output the mapping function of SAUC-ELM, i.e., h(x)β
Step 1 Initialize an ELM network of nh hidden neurons by randomly
assigning input weights and bias, and calculate the output matrix H

′

of the hidden neurons.
Step 2 Compute the matrix B and the vector Y

′
according to their

above definitions.
Step 3 Determine the trade-off parameter γ
Step 4
If nk < N
Then compute the output weight vector β using the first formula in
Eq. (31)
Else Compute β using the second formula in Eq. (31)
Step 5 Return the mapping function h(x)β

N− + Nu)
2) ≈ O((N+ + Nu)

2) computational burdens.
After comparing Eq. (30) with Eq. (15), according to Re-
mark 2, we readily know that in contrast to the classical
ELM, SAUC-ELM has an extra computational complexity, i.e.,
O((N+ +Nu)

2).
Remark 4. Compared to two trade-off parameters in SS-

ELM [35], SAUC-ELM only has one trade-off parameter γ
to tune, which greatly reduces the computational cost for
model selection. Besides, SS-ELM is motivated to improve
the accuracy metric, while SAUC-ELM is motivated to directly
optimize the AUC metric, which is more stable and robust for
imbalanced learning. Therefore, as the first attempt, SAUC-
ELM exhibits the great potential to deal with semi-supervised
imbalanced learning tasks specifically.

Remark 5. In fact, let D only represent the distribution of
all the labeled samples, theorem 1 still holds true. Thus, we
can easily obtain a variant of AUC-ELM, i.e., changing B
in Eq. (31) into I + 2γ

N

∑N++N−

i=1

(
h(xi) − c

)(
h(xi) − c

)T
,

where c is the mean vector of all the labeled samples.
However, AUC-ELM introduced in the last section has its
potential application value, especially for incremental or on-
line learning. That is, as the sample size increases, we can
determine the value of c+ and c− based on the new sample
labels, and perform the formula transformation using Eq. (14).
Whereas, for the variant mentioned above, we must do the
formula transformation using Eq. (29) on all the samples.
Thus, apparently, the proposed AUC-ELM is more suitable for
handling on-line or incremental learning. In the near future,
we will report more experimental results about on-line AUC-
ELM.

V. RESULTS

We evaluated our proposed algorithms on various supervised
and semi-supervised imbalance classification tasks. For su-
pervised learning, comparisons were made with conventional
and state-of-art learning algorithms, e.g., ELM, WELM, CCR-
ELM and CS-ELM. In addition, owing to the theoretical and
extensively experimental evidences of SVM in strong general-
ization capability, we also took SVM as the baseline method.
For semi-supervised learning, we experimentally compared
SAUC-ELM with ELM, SVM, and AUC-ELM. SAUC-ELM
was not directly compared with the existing method SS-ELM
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[35], considering that the applicability of SS-ELM is limited
by too many parameters, i.e., both two trade-off parameters
and Laplacian graph matrix for the adopted datasets. In
addition, we evaluated on how SAUC-ELM leverages the
useful information in a progressive way from unlabeled data
by giving different percentages of labeled training data.

The proposed algorithms were implemented using MAT-
LAB R2014a on a 2.40GHz machine with 8GB of memory.

A. Supervised learning results

1) Datasets and parameter settings: The proposed algo-
rithm is evaluated on 38 public datasets from KEEL dataset
repository [54]. The class imbalance ratios of these datasets
vary. To quantify the imbalance degree of a dataset, the
imbalance ration (IR) is used:

IR =
No. minority instances
No. majority instances

(32)

The details of the adopted datasets are given in Table. I. In
the data-preprocessing stage, features scaling is applied to
normalize the attributes of the datasets to the range [−1, 1].

For the parameter setting of AUC-ELM, owing to the use
of random weights between the input and hidden layers,
we followed [49] to use 5-fold cross-validation with grid
search to find the optimal values of both the trade-off pa-
rameter γ and the number nh of hidden nodes from the sets
{2−18, 2−16, · · · , 250} and {10, 20, · · · , 990, 1000}. Sigmoid
nodes are taken for all the adopted ELM based algorithms. The
experimental setup for ELM, WELM, CCR-ELM, and CS-
ELM is same as that in [49]. For SVM, Gaussian kernel was
taken due to the best performance in the experimental trial on
each dataset. The kernel width δ and regularization parameter
C were selected from {2e− 12, 2e− 11, · · · , 2e11, 2e12} and
{1, 10, 50, 100, 150, 200, 250, 500}. Considering the weights
between the input and hidden layers are randomly selected,
which may fluctuate the performance, we reported the average
results for ten individual runnings for each algorithm.

G-mean and AUC are used as evaluation metrics to measure
the class imbalance learning performance. G-mean is defined
as follows.

G-mean =

√
TP

TP + FN
× TN

TN + FP
(33)

where TP and TN are the correctly classified instances belong-
ing to positive and negative class respectively, and FP and FN
are the incorrectly classified instances belonging to negative
and positive class, respectively. G-mean is like AUC which is
comparatively robust to class imbalance. In addition, the other
common evaluation metrics, such as accuracy, precision and
recall [55] are recorded. Here, due to space limit, we listed
these metrics results for semi-supervised learning experiments
only.

TABLE I: Details of Imbalanced datasets

Datasets No. instances No. features IR

abalone19 4174 8 0.0078
yeast6 1484 8 0.0255
ecoli0137vs26 281 7 0.0255
yeast5 1484 8 0.0305
yeast2vs8 482 8 0.0433
glass5 214 9 0.0438
shuttleC2vsC4 129 9 0.0488
glass016vs5 184 9 0.0514
abalone9vs18 731 8 0.0590
page-blocks13vs4 472 10 0.0631
glass4 214 9 0.0646
yeast1vs7 459 7 0.0724
shuttleC0vsC4 1829 9 0.0721
ecoli4 336 7 0.0735
cleveland0vs4 173 13 0.0813
glass2 214 9 0.0962
glass016vs2 192 9 0.0972
vowel0 988 13 0.0990
yeast05679vs4 528 8 0.1069
yeast2vs4 514 8 0.1101
ecoli034vs5 200 7 0.1111
page-blocks0 5472 10 0.1140
ecoli3 336 7 0.1200
yeast3 1484 8 0.1233
glass6 214 9 0.1567
segment0 2308 19 0.1662
ecoli2 336 7 0.1831
new-thyroid1 215 5 0.1946
ecoli1 336 7 0.2973
haberman 306 3 0.3731
vehicle1 846 18 0.3960
vehicle2 846 18 0.3960
yeast1 1484 8 0.4066
glass0 214 9 0.4854
pima 768 8 0.5356
wisconsin 683 9 0.5380
ecoli0vs1 220 7 0.5384
glass1 214 9 0.5495

2) Experimental results: Following the same organization
of the experimental results as in [49], the performances of
AUC-ELM and the comparative algorithms on the adopted
datasets with IR ≤ 0.1111 and IR ≥ 0.1111 in terms of AUC
and G-mean are reported in Tables II-V. The experimental
results for ELM, WELM, CCR-ELM, and CS-ELM are taken
from [49]. It can be seen that AUC-ELM has a superior
advantage over other algorithms no matter with high or low
imbalance ratios. We also carried out the Friedman ranking
test followed by Holm post-hoc test [56] for the statistical
comparison of all the algorithms over these 38 public datasets.
The Friedman ranking test is to evaluate whether there are
statistically significant differences among the algorithms con-
sidered over given sets of data. The null hypothesis is that all
the algorithms perform equally well for a given level. If the
p-value for this test is smaller than 0.05, the null hypothesis
is rejected. From Tables VI and VIII, the null hypothesis is
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rejected in terms of AUC (p = 8.8730E − 11) and G-mean
(p = 1.0059E−10). The Holm post-hoc test is to further verify
whether there is a statistical performance difference between
the best Friedman ranking algorithm and every other algo-
rithm. In our case, we used the Holm post-hoc test to compare
AUC-ELM with every other algorithm. We set α = 0.05 as
the level of confidence in all cases. According to the results
from Tables VII and IX, AUC-ELM significantly outperformed
the other ELM-based methods and the conventional SVM
in terms of AUC and G-mean. The mean training time of
AUC-ELM and other algorithms are given in Table X. It is
observed that AUC-ELM took comparable or a little more
training time than ELM, CCR-ELM, and CS-ELM in most
cases, whereas WELM took far more time to train. In addition,
we can experimentally observe how the trade-off parameter γ
affects the performance of AUC-ELM on the adopted datasets.
Due to the paper’s space limitation, we reported the impact of
the trade-off parameter γ on the testing performance of AUC-
ELM with different numbers of hidden nodes nh only for the
Pima dataset in Fig. 1. Obviously, γ can significantly influence
the testing performance of AUC-ELM on this dataset. How to
determine an appropriate value of both γ and the number of
hidden nodes for a dataset is still worthy to be studied in the
future.

TABLE II: AUC(%)±std. for datasets with high imbalance
ratio (IR≤0.1111)

Datasets AUC-ELM ELM WELM CCR-ELM CS-ELM SVM

abalone9vs18 99.31±0.10 75.93±1.58 94.91±0.66 78.22±0.95 94.26±0.66 80.77±4.18

glass5 98.95±1.59 93.60±2.01 99.17±0.17 93.17±2.24 99.71±0.13 98.39±1.09

glass2 84.49±1.11 64.18±1.94 83.51±0.18 83.72±2.26 83.86±0.85 81.34±6.63

cleveland0vs4 97.71±3.72 77.41±5.80 97.41±4.90 83.72±2.26 97.69±0.84 90.64±4.89

yeast6 96.64±0.11 72.53±1.69 91.37±1.21 72.42±0.64 91.02±0.37 93.59±5.91

ecoli0137vs26 93.89±11.33 75.00±6.31 80.90±7.14 75.00±4.35 83.51±9.43 90.26±6.79

yeast5 99.12±0.12 82.81±1.47 98.55±0.49 83.87±1.06 98.80±0.27 98.51±0.89

abalone19 77.59±7.55 53.50±1.23 78.08±0.16 56.21±1.78 79.02±0.07 60.39±3.02

glass016vs5 99.61±0.81 94.36±3.33 98.36±1.21 94.73±2.52 99.14±1.12 94.61±7.63

ecoli4 100.00±0.00 91.37±1.34 99.12±3.78 95.59±2.11 99.26±0.75 98.11±3.15

glass4 98.76±0.10 93.74±3.91 92.97±4.79 88.93±4.30 94.69±3.03 94.72±1.81

shuttleC0vsC4 100±0.00 99.23±1.08 100±0.13 99.47±1.76 100±0.34 100±0.00

shuttleC2vsC4 100±0.00 99.23±2.71 100±0.00 96.15±3.10 99.00±2.58 100±0.00

page-blocks13vs4 99.42±0.61 97.63±1.37 99.54±0.87 92.67±1.39 99.54±0.23 94.71±2.60

glass016vs2 96.34±0.91 81.16±3.01 81.16±1.23 80.80±2.79 83.11±0.66 80.55±3.05

vowel0 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 99.99±0.01

yeast1vs7 82.57±0.29 65.58±1.23 79.43±0.83 75.27±0.56 79.59±0.50 79.00±6.37

yeast2vs8 84.72±0.29 70.92±1.92 80.22±2.58 72.02±1.12 81.61±2.36 81.62±8.12

yeast2vs4 96.81±0.440 89.31±1.31 93.76±0.32 90.02±1.47 93.48±0.65 94.60±2.86

yeast05679vs4 88.11±0.41 81.37±1.93 84.74±2.16 80.02±1.68 84.26±0.79 85.37±6.27

B. Semi-supervised learning results

1) Datasets and parameter settings: We evaluated the
SAUC-ELM on 6 public datasets from UCI respiratory [57].
All the adopted datasets are imbalanced and their specifica-
tions are given in Table. XI. In data pre-processing stage,
feature scaling is applied to normalize the attributes to the
range [-1,1]. The parameter setting for SSAUC-ELM and ELM
is the same as AUC-ELM in section V-A. Each dataset was
split into five folds, one of which was used as the testing
dataset, and the other four folds were used as the training
dataset. In order to observe how SAUC-ELM leverages the

TABLE III: AUC(%)±std. for datasets with low imbalance
ratio (IR≥0.1111)

Datasets AUC-ELM ELM WELM CCR-ELM CS-ELM SVM

pima 93.90±1.16 73.60±0.21 78.72±0.29 73.87±0.26 79.02±0.20 81.12±2.57

wisconsin 99.29±1.26 97.81±0.81 98.44±0.14 97.88±0.13 98.92±0.17 97.67±0.08

haberman 75.61±3.83 58.51±0.11 67.63±0.16 58.83±1.34 67.63±0.26 62.93±2.10

yeast3 99.15±0.17 81.79±0.16 92.99±0.35 85.41±0.13 94.71±0.08 98.16±0.59

segment0 93.74±1.69 99.78±0.61 99.83±0.43 99.69±0.28 99.80±0.04 71.49±3.18

page-blocks0 87.64±1.26 92.86±0.31 94.47±0.20 93.89±0.17 94.71±0.42 54.67 ±3.37

new-thyoid1 100±0.00 98.47±0.21 100±0.09 98.51±0.28 100±0.03 99.69±0.44

ecoli0vs1 100±0.00 98.67±1.77 98.67±1.32 98.67±1.35 98.67±1.46 98.47±2.22

yeast1 88.05±3.01 67.63±1.21 76.14±0.17 65.68±0.16 76.62±0.14 79.79±1.79

ecoli1 98.14±2.58 88.67±1.27 93.69±0.53 89.29±1.50 93.80±0.44 92.71±3.68

ecoli2 99.16±1.38 92.23±0.37 94.94±0.78 89.71±0.34 95.11±0.44 94.35±2.83

glass0 90.23±7.18 75.78±1.56 79.45±1.83 76.88±2.42 82.35±0.76 84.49±4.80

glass1 85.69±6.51 75.07±1.36 78.99±1.05 78.79±1.59 80.64±0.73 82.23±6.23

glass6 96.49±3.47 92.58±2.05 92.49±0.90 92.38±1.87 92.75±1.99 93.19±2.14

ecoli3 94.79±4.02 91.15±1.37 92.79±0.38 91.18±0.83 92.85±0.08 94.05±3.18

ecoli034vs5 98.17±3.17 89.58±6.64 93.22±1.57 88.89±1.06 93.72±1.40 97.06±3.73

vehicle1 94.02±1.41 86.76±1.40 89.42±0.87 85.78±1.69 89.51±0.44 85.68±2.09

vehicle2 99.92±0.17 99.41±1.67 99.54±0.37 99.29±1.35 99.54±0.19 99.51±0.36

Fig. 1: Performance of AUC-ELM vs. γ and nh for the Pima
dataset, in which nh denotes the number of hidden nodes

unlabeled data in a progressive way, the percentage of the
labeled set in the training set is set to be 10%, 15%, 20%,
25%, 30% and 40% in the experimental setting.

2) Experimental results: Tables XII and XIII present the
mean training time and the average values of G-mean, AUC,
accuracy, precision and recall, respectively obtained by the
SAUC-ELM and comparative algorithms given 25% labeled
set in the training set. ELM based algorithms have a much
faster learning speed than SVM. From the results, we can
conclude that SAUC-ELM obtained the best classification
performance in terms of every evaluation metric on almost all
the datasets using both labeled and unlabeled data, whereas
ELM and SVM yielded less satisfactory results on most of
the datasets using labeled data only. Fig. 2 shows the AUC
performances of SAUC-ELM, AUC-ELM, ELM, and SVM on
the UCI datasets with different percentages of labeled training
data. In this experiment, all the settings keep the same as
above, except that we varied the ratio of labeled and unlabeled
data in the training set. We can observe that in most cases
SAUC-ELM outperformed the other algorithms considerably
when there is a low percentage of labeled data (≤ 25%). Also,
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TABLE IV: G-mean for datasets with high imbalance ratio (IR≤0.1111)

Datasets
G-mean

AUC-ELM ELM WELM CCR-ELM CS-ELM SVM
(γ, nh) Testing result (%) (C, nh) Testing result (%) (C, nh) Testing result (%) (C, nh) Testing result (%) (C, nh) Testing result (%) (γ, C) Testing result (%)

abalone9vs18 (2ˆ10, 300) 99.31 (2ˆ40, 150) 75.29 (2ˆ32, 20) 88.72 (2ˆ24, 2ˆ36, 180) 76.22 (2ˆ6, 600) 91.99 (2e-1, 200) 64.98

glass5 (2ˆ10, 30) 98.94 (2ˆ20, 90) 90.81 (2ˆ10, 110) 95.99 (2ˆ-6, 2ˆ-4, 200) 94.78 (2ˆ4, 820) 97.36 (1, 200) 98.17

glass2 (2ˆ14, 160) 82.34 (2ˆ28, 110) 79.49 (2ˆ22, 140) 80.33 (2ˆ-4, 2ˆ-12, 10) 79.40 (2ˆ10, 80) 80.89 (2e-1, 100) 48.29

cleveland0vs4 (2ˆ10, 50) 97.63 (2ˆ22, 80) 71.45 (2ˆ-8, 760) 93.35 (2ˆ-4, 2ˆ-12, 10) 74.40 (2ˆ-18, 900) 93.69 (2e-1, 50) 78.93

yeast6 (2ˆ5, 230) 96.64 (2ˆ44, 335) 70.77 (2ˆ14, 900) 88.29 (2ˆ8, 2ˆ-14, 40) 84.45 (2ˆ8, 270) 88.55 (2e-1,50) 79.14

ecoli0137vs26 (2ˆ2, 60) 93.00 (2ˆ2, 600) 74.14 (2ˆ4, 400) 75.29 (2ˆ6, 2ˆ4, 450) 74.41 (2ˆ18, 120) 78.08 (1, 50) 76.18

yeast5 (2ˆ32, 200) 99.00 (2ˆ36, 900) 81.04 (2ˆ30, 100) 95.39 (2ˆ28, 2ˆ32, 880) 83.08 (2ˆ6, 380) 96.67 (2e-1, 100) 88.49

abalone19 (2ˆ8, 140) 79.53 (2ˆ42, 990) 47.52 (2ˆ6, 150) 77.19 (2ˆ-10, 2ˆ4, 400) 64.21 (2ˆ2, 100) 78.68 (1, 100) 0.00

glass016vs5 (2ˆ24, 320) 99.77 (2ˆ18, 660) 92.41 (2ˆ6, 960) 98.70 (2ˆ8, 2ˆ24, 200) 97.70 (2ˆ4, 920) 98.84 (1, 100) 77.58

ecoli4 (2ˆ5, 10) 100.00 (2ˆ22, 60) 91.96 (2ˆ6, 180) 97.83 (2ˆ-8, 2ˆ-12, 10) 98.43 (2ˆ40, 30) 98.56 (2e-1, 100) 89.43

glass4 (2ˆ10, 120) 99.25 (2ˆ34, 30) 85.72 (2ˆ12, 120) 91.34 (2ˆ-8, 2ˆ-2, 40) 96.18 (2ˆ38, 900) 96.21 (100, 1) 98.04

shuttleC0vsC4 (2ˆ12, 80) 100 (2ˆ14, 10) 100 (2ˆ38, 10) 100 (2ˆ6, 2ˆ6, 20) 100 (2ˆ6, 20) 100 (1, 100) 100

shuttleC2vsC4 (2ˆ4, 40) 100 (2ˆ40, 20) 93.54 (2ˆ28, 10) 100 (2ˆ-12, 2ˆ-12, 10) 100 (2ˆ12, 20) 100 (1, 10) 85.18

page-blocks13vs4 (2ˆ10, 10) 99.42 (2ˆ8, 660) 97.60 (2ˆ14, 420) 98.16 (2ˆ12, 2ˆ12, 300) 97.33 (2ˆ2, 900) 98.10 (1, 100) 96.98

glass016vs2 (2ˆ30, 150) 94.18 (2ˆ34, 150) 67.78 (2ˆ14, 380) 83.77 (2ˆ34, 2ˆ30, 240) 76.44 (2ˆ10, 280) 85.13 (2e-1, 100) 52.04

vowel0 (2ˆ18, 220) 100 (2ˆ28, 110) 100 (2ˆ50, 120) 100 (2ˆ-8, 2ˆ-2, 400) 100 (2ˆ8, 600) 100 (2e-1, 10) 99.44

yeast1vs7 (2ˆ38, 820) 80.14 (2ˆ40, 960) 65.58 (2ˆ16, 550) 77.26 (2ˆ18, 2ˆ-2, 40) 75.27 (2ˆ8, 260) 78.56 (2e-1, 10) 68.56

yeast2vs8 (2ˆ4, 480) 80.23 (2ˆ0, 290) 72.83 (2ˆ8, 60) 76.01 (2ˆ8, 2ˆ-2, 200) 73.02 (2ˆ8, 20) 78.11 (2e-1, 10) 75.75

yeast2vs4 (2ˆ10, 90) 96.67 (2ˆ36, 280) 86.25 (2ˆ26, 940) 91.56 (2ˆ-8, 2ˆ24, 400) 90.02 (2ˆ12, 920) 92.42 (10, 1) 87.70

yeast05679vs4 (2ˆ6, 610) 89.29 (2ˆ32, 390) 64.49 (2ˆ-2, 150) 81.05 (2ˆ-8, 2ˆ-2, 200) 80.02 (2ˆ-10, 460) 81.24 (10, 1) 82.80

TABLE V: G-mean for datasets with low imbalance ratio (IR≥0.1111)

Dataset
G-mean

AUC-ELM ELM WELM CCR-ELM CS-ELM SVM
(γ, nh) Testing result (%) (C, nh) Testing result (%) (C, nh) Testing result (%) (C+, C−, nh) Testing result (%) (C, nh) Testing result (%) (γ, C) Testing result (%)

Pima (2ˆ6, 270) 93.88 (2ˆ32, 30) 70.10 (2ˆ14, 20) 74.74 (2ˆ2, 2ˆ48, 280) 70.99 (2ˆ8, 530) 75.73 (2e-1, 100) 70.09

wisconsin (2ˆ2, 120) 99.30 (2ˆ34, 50) 96.32 (2ˆ34, 60) 97.07 (2ˆ2,2ˆ2, 420) 96.94 (2ˆ2, 450) 97.36 (2e1, 100) 98.23

haberman (2ˆ10, 290) 75.52 (2ˆ44, 910) 49.16 (2ˆ34, 10) 65.11 (2ˆ36,2ˆ34, 20) 49.81 (2ˆ-18, 400) 65.71 (2e-2, 100) 53.45

yeast3 (2ˆ4, 100) 99.14 (2ˆ40, 100) 80.75 (2ˆ16,700) 93.25 (2ˆ-8, 2ˆ6, 100) 91.11 (2ˆ16, 60) 93.57 (1, 100) 87.94

segment0 (2ˆ32, 90) 92.36 (2ˆ8, 720) 99.24 (2ˆ18, 30) 99.75 (2ˆ8, 2ˆ8, 800) 99.18 (2ˆ6, 620) 99.87 (2e-2, 150) 55.60

page-blocks0 (2ˆ6, 250) 87.63 (2ˆ34, 830) 89.92 (2ˆ24, 820) 93.40 (2ˆ16, 2ˆ24, 800) 90.89 (2ˆ12, 500) 93.38 (2e-2, 100) 21.88

new-thyroid1 (2ˆ10, 190) 100 (2ˆ18, 180) 98.24 (2ˆ18, 30) 99.44 (2ˆ-14, 2ˆ-18, 10) 99.24 (2ˆ6,260) 99.44 (2e-1, 100) 96.62

ecoli0vs1 (2ˆ28, 900) 100 (2ˆ0, 80) 98.64 (2ˆ14, 20) 98.51 (2ˆ2, 2ˆ2, 240) 98.64 (2ˆ2,260) 98.47 (2e-1, 50) 97.33

yeast1 (2ˆ50, 530) 87.95 (2ˆ44, 300) 63.26 (2ˆ26, 120) 72.57 (2ˆ-8, 2ˆ2, 400) 71.70 (2ˆ12,110) 72.98 (2e,1, 50) 68.77

ecoli1 (2ˆ0, 10) 98.09 (2ˆ16, 140) 87.77 (2ˆ4, 320) 90.69 (2ˆ4, 2ˆ2, 20) 89.06 (2ˆ8,350) 91.73 (2e-1, 50) 85.48

ecoli2 (2ˆ4, 90) 99.15 (2ˆ36, 60) 91.17 (2ˆ28, 40) 93.91 (2ˆ-4, 2ˆ-4, 20) 92.80 (2ˆ10,50) 94.26 (2e-1, 50) 89.76

glass0 (2ˆ16, 80) 89.48 (2ˆ14, 950) 79.61 (2ˆ22, 800) 81.17 (2ˆ8, 2ˆ-2, 880) 88.56 (2ˆ14,500) 80.70 (2e-1, 100) 79.25

glass1 (2ˆ38, 700) 84.75 (2ˆ16, 440) 78.36 (2ˆ22, 900) 78.31 (2ˆ-10, 2ˆ12, 70) 76.07 (2ˆ-8,370) 79.64 (2e-2, 100) 74.26

glass6 (2ˆ8, 160) 96.42 (2ˆ46, 450) 94.96 (2ˆ44, 30) 95.72 (2ˆ-12, 2ˆ-4, 20) 91.29 (2ˆ16,300) 95.78 (1, 150) 90.59

ecoli3 (2ˆ2, 280) 94.71 (2ˆ44, 70) 77.38 (2ˆ46, 10) 90.17 (2ˆ-12, 2ˆ-18, 10) 91.45 (2ˆ44,60) 89.86 (1, 150) 74.22

ecoli034vs5 (2ˆ2, 200) 98.12 (2ˆ8, 480) 88.67 (2ˆ44, 30) 95.72 (2ˆ12, 2ˆ4, 80) 89.29 (2ˆ16,300) 95.78 (1, 100) 89.96

vehicle1 (2ˆ10, 250) 93.92 (2ˆ8, 570) 79.29 (2ˆ14, 450) 85.30 (2ˆ8, 2ˆ16, 500) 79.60 (2ˆ6, 640) 86.12 (2e-1, 100) 72.91

vehicle2 (2ˆ10, 90) 99.92 (2ˆ12, 600) 98.43 (216, 800) 99.12 (2ˆ8, 2ˆ-2, 900) 98.63 (2ˆ8, 380) 99.37 (2e-1, 150) 97.75

TABLE VI: Friedman mean-rankings of the algorithms in
terms of AUC (p-value = 8.8730E-11)

Algorithm Ranking

AUC-ELM 1.6447
ELM 5.1447

WELM 3.1053
CCR-ELM 5
CS-ELM 2.5658

SVM 3.5395

TABLE VII: Holm post-hoc comparison results in terms of
AUC with α = 0.05

i algorithms z = (R0 − Ri)/SE p Holm

15 AUC-ELM vs. ELM 8.154753 0 0.003333
14 AUC-ELM vs. CCR-ELM 7.817527 0 0.003571
9 AUC-ELM vs. SVM 4.414603 0.00001 0.005556
6 AUC-ELM vs. WELM 3.402923 0.000667 0.008333
4 AUC-ELM vs. CS-ELM 2.145988 0.031874 0.0125

TABLE VIII: Friedman mean-rankings of the algorithms in
terms of G-means (p-value = 1.0059E-10)

Algorithm Ranking

AUC-ELM 5.9737
ELM 4.1053

WELM 2.2105
CCR-ELM 3.1579
CS-ELM 1.4737

SVM 4.0789

when dealing with small datasets (N < 1000), SAUC-ELM
and ELM has a comparable training time. Once the size of the
training set increases (N > 1000), SAUC-ELM falls behind
ELM on the aspect of training time. Though SAUC-ELM is
not as fast as ELM, its training is still efficient which took
only seconds at the most on these datasets.
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TABLE IX: Holm post-hoc comparison results in terms of G-
means with α = 0.05

i algorithms z = (R0 − Ri)/SE p Holm

5 AUC-ELM vs. CS-ELM 10.484683 0 0.003333
4 AUC-ELM vs. WELM 8.767893 0 0.003571
3 AUC-ELM vs. CCR-ELM 6.560591 0 0.003846
2 AUC-ELM vs. SVM 4.414603 0.00001 0.005556
1 AUC-ELM vs. ELM 4.353289 0.000013 0.007143

TABLE X: Training time (in seconds) for imbalanced prob-
lems

Datasets AUC-ELM ELM WELM CCR-ELM CS-ELM SVM

page-blocks0 0.9693 0.7870 8.5239 0.8750 0.7656 9.7801

abalone19 0.6963 0.5612 4.7047 0.7658 0.5962 5.7418

segment0 0.4503 0.3543 1.8391 0.3602 0.3510 1.8747

shuttleC0vsC4 0.3435 0.2898 1.3208 0.2898 0.2709 0.6436

yeast1 0.2695 0.2466 1.0257 0.2810 0.2416 0.3813

yeast3 0.2558 0.2438 0.9970 0.2821 0.2461 0.4622

yeast6 0.2782 0.2665 0.9681 0.3229 0.2455 0.4472

yeast5 0.2615 0.2580 0.9309 0.2566 0.2409 0.4025

vowel0 0.1853 0.1802 0.6361 0.1905 0.1910 0.2431

vehicle1 0.1846 0.1666 0.5298 0.1745 0.1862 0.2240

vehicle2 0.1811 0.1698 0.5344 0.1812 0.1946 0.2390

pima 0.1762 0.1590 0.4283 0.1766 0.1523 0.2344

wisconsin 0.1363 0.1373 0.3847 0.1449 0.1417 0.3125

abalone9vs18 0.2703 0.1419 0.3850 0.1568 0.1666 0.1135

yeast2vs4 0.0987 0.1178 0.3508 0.1205 0.1313 0.1250

yeast05679vs4 0.1123 0.1186 0.2889 0.1305 0.1343 0.1875

yeast2vs8 0.0928 0.1139 0.2654 0.1221 0.1376 0.1875

yeast1vs7 0.1036 0.1134 0.2734 0.1211 0.1205 0.2031

page-blocks13vs4 0.1172 0.1318 0.2346 0.1451 0.1462 0.1250

TABLE XI: Details of semisupervised imbalanced datasets

Datasets No. instances No. features IR

breast 683 9 0.5262

ilpd 579 10 0.3986

winequality 6497 12 0.3266

wilt 4839 10 0.4212

seismicbumps 2584 15 0.0704

magic 19020 10 0.5422

TABLE XII: Training time (in seconds) for semi-supervised
imbalance problems

Datasets SAUC-ELM ELM SVM

breast 0.0625 0.0781 0.5625

ILPD 0.0463 0.0625 3.5781

winequality 5.0313 0.1875 49.640

WILT 4.4531 0.1563 54.734

seismicbumps 2.4531 0.1250 13.140

magic 14.096 1.1250 958.984

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed two algorithms, i.e., AUC-ELM
and SAUC-ELM, to adapt the traditional ELM for super-
vised and semi-supervised imbalanced learning respectively
by directly integrating AUC metric optimization. AUC-ELM
is theoretically derived to be equivalent to the corresponding
ELM on the transformed input space. Therefore, it is expected
to inherit the traditional ELM’s outperforming generalization
capability and training efficiency. With respect to the semi-
supervised version SAUC-ELM, to best of our knowledge, it
is the first extension of ELM to solve semi-supervised imbal-
anced learning task by direct AUC maximization. Compared to
existing ELM variants for imbalance learning, such as CCR-
ELM and SS-ELM, the proposed algorithms only have one
trade-off parameter to tune, which reduces the computational
cost for model selection. The experimental results show that
AUC-ELM consistently outperformed the other ELM-based
methods and SVM with various imbalance ratios. SAUC-ELM
also exhibited superior classification performances compared
with pure supervised learning algorithms such as ELM and
SVM.

In future, there are several issues that need to be further
studied. First, it is valuable to develop the extensions of
AUC-ELM and SAUC-ELM to fit massive datasets and online
learning situations. Second, in this study we only focus on
binary classification, it is also necessary to further explore
the algorithms to solve imbalanced multiclass classification
tasks. To achieve such goal, we will refer to the definition
of the total AUC for multiclass classification in [58] and
modify the relevant objective functions accordingly. Third,
it is worthwhile to extend the direct AUC optimization to
different algorithms in the family of kernel ridge regression
to further improve the classification performances. Fourth,
except for AUC, other metrics such as recall and precision
may also be used for imbalanced learning. As such, how to
select a metric from the theoretical and practical perspectives
and how to integrate these metrics into the ELM framework
for imbalanced classification tasks will be an interesting topic
in near future.
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TABLE XIII: G-mean(±STD.) & AUC(±STD.) performances for UCI datasets given 25% labeled training data

Dataset Metric (γ, nh) SAUC-ELM (γ, nh) AUC-ELM (C, nh) ELM (δ, C) SVM

breast

G-mean

(2ˆ2, 10)

99.68±0.47

(2ˆ0, 10)

97.75±0.21

(2ˆ0, 230)

95.55±1.38

(1, 50)

96.57±1.86
AUC 99.9±0.25 98.49±0.30 93.69±1.34 98.52±1.23

Accuracy 99.75±0.39 99.57±0.81 95.39±1.85 96.29±3.03
Precision 99.52±0.76 98.88±0.35 94.81±3.90 97.25±3.15

Recall 100.0±0.00 99.27±1.63 95.95±2.71 96.85±2.90

ILPD

G-mean

(2ˆ0, 100)

73.25±6.54

(2ˆ4, 140)

72.49±5.13

(2ˆ8, 270)

55.02±4.16

(2e-1, 10)

58.51±0.41
AUC 74.29±5.34 71.5±7.42 56.86±2.86 65.54±3.45

Accuracy 74.84±9.35 71.59±7.43 46.39±7.57 65.52±8.29
Precision 84.02±11.34 81.09±9.45 84.36±5.44 44.63±16.45

Recall 58.79±13.00 53.15±12.2 38.04±8.49 50.38±13.83

winequality

G-mean

(2ˆ5, 260)

99.87±0.20

(2ˆ8, 50)

99.82±0.06

(2ˆ10, 300)

99.17±0.08

(2e-2, 50)

97.76±0.47
AUC 99.71±0.20 99.70±0.35 99.07±0.08 99.33±0.09

Accuracy 99.84±0.10 99.74±0.14 99.10±0.47 98.43±0.45
Precision 99.98±0.04 99.96±0.04 98.37±0.94 99.11±0.44

Recall 99.71±0.20 99.50±0.26 99.84±0.15 98.83±0.36

WILT

G-mean

(2ˆ10, 260)

98.29±0.58

(2ˆ10, 40)

98.03±0.77

(2ˆ10, 300)

55.07±4.37

(2e-2, 100)

86.37±2.02
AUC 98.71±0.57 97.78±1.00 65.91±2.70 96.43±1.08

Accuracy 99.10±0.31 93.06±4.23 51.73±6.46 96.49±1.64
Precision 98.42±0.50 91.42±4.37 34.81±5.72 98.16±1.16

Recall 100.0±0.00 99.04±1.03 99.84±0.14 98.12±1.31

seismicbumps

G-mean

(2ˆ0, 250)

66.35±7.25

(2ˆ0, 180)

59.78±4.09

(2ˆ10, 300)

54.87±3.31

(2e-2, 10)

42.97±8.24
AUC 75.31±8.22 69.55±5.05 57.69±3.31 57.95±6.21

Accuracy 85.38±5.51 76.24±7.27 36.34±7.15 79.15±1.68
Precision 84.49±5.31 76.82±7.57 10.74±5.84 83.76±1.44

Recall 96.93±1.30 93.78±1.81 87.34±12.64 92.73±2.11

magic

G-mean

(2ˆ10, 290)

95.26±0.50

(2ˆ10, 300)

95.51±0.45

(210, 300)

81.72±0.37

(2e-1, 50)

81.43±0.15
AUC 95.62±0.49 95.27±0.62 82.18±0.31 88.08±0.24

Accuracy 95.6±0.50 95.25±0.54 80.86±1.09 85.19±1.34
Precision 97.52±0.29 96.66±0.46 70.87±1.52 89.35±1.45

Recall 93.15±1.01 93.00±0.79 94.54±0.76 88.13±0.82
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Fig. 2: AUC performances with respect to different percentages of labeled training data
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