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7.1 Introduction - The coral holobiont as an ecosystem engineer and its reliance on associated 

microbes 

The productivity and biodiversity of coral reefs are unmatched in the marine environment 

(Hatcher 1990). Surrounded by oligotrophic oceans, coral reefs are buzzing oases of life in a 

marine desert (Darwin 1842). Tropical coral reefs cover just 0.1% of the seafloor but provide 

habitat for ~32% of all marine multicellular species (Fisher et al. 2015) and contribute to the 

livelihoods of more than 600 million people (Moberg and Folke 1999; Wilkinson 2008; Spalding 

et al. 2017). This entire ecosystem is supported by its foundation species: reef-building corals 

(Figure 1). The calcareous skeleton of corals forms the structural basis of the reef framework. 

Furthermore, corals are also an important component of the coral reef food web and support 

the immense productivity of these reefs (Wild et al. 2004). 

[Insert Figure 7.1 here] 



As early as in the 19th century, scientists recognized that the productivity of corals and other 

benthic cnidarians derives from a symbiosis with intracellular photosynthetic dinoflagellates in 

the family Symbiodiniaceae (LaJeunesse et al. 2018) (Figure 2). Building on more than a century 

of research, the coral-dinoflagellate symbiosis is one of the best characterized eukaryotic-

eukaryotic endosymbioses and a powerful model to understand the functioning of symbioses in 

general. Corals also harbor a diverse array of other microbes comprised of protists, fungi, 

bacteria, archaea, and viruses (Figure 3). This collective is called the coral holobiont (Rohwer et 

al. 2002). The coral metaorganism, by comparison, is a more restricted definition and typically 

only describes the coral host and associated microbes for which a function has been proposed 

or is known (Jaspers et al. 2019). This suite of organisms forms a complex network of symbiotic 

interactions that extend the metabolic repertoire, immunity, and environmental adaptation of 

the coral host (Muscatine 1990; Rosenberg et al. 2007; Ritchie 2012; Rädecker et al. 2015; 

Ziegler et al. 2017, 2019; Robbins et al. 2019). Microbes can therefore be considered 

fundamental to the ecological success of corals and the reefs they build (Bang et al. 2018). 

 

Reef ecosystems have existed for ~240 million years, but face unprecedented and accelerating 

decline: the 2015-2017 global coral bleaching event affected 74% of reefs worldwide, and up to 

half of the coral cover was lost on the Great Barrier Reef alone, the largest reef system in the 

world (Hughes et al. 2018b). Future predictions for coral reefs are dramatic: even under a 1.5°C 

warming scenario, it is expected that coral reefs will decline by a further 70-90 %, with larger 

losses of up to 99% projected to be highly likely under a 2.0°C warming scenario (IPCC 2018). 

Such trajectories make the understanding of coral holobiont functioning and the contribution of 



its various microbes critical, not only to comprehend how symbiotic interactions have shaped 

the most biodiverse marine ecosystem on Earth, but also to help conserve and protect corals 

and the reefs they build for future generations. In this chapter, we discuss the state of 

knowledge of coral-microbe interactions and how they shape the ecology, resilience, and 

adaptation of the coral holobiont. 

[Insert Figure 7.2 here] 

 

7.2 The coral-Symbiodiniaceae relationship 

 

7.2.1 Symbiodiniaceae - micro-algal engines of the coral holobiont machinery 

The ecological success of the coral-Symbiodiniaceae symbiosis is based on efficient nutrient 

recycling between host and symbiont (Figure 3). The driving force of this bidirectional nutrient 

exchange ultimately lies in the complementary nutrient limitations of the two symbiotic 

partners (Shantz et al. 2016; Bang et al. 2018). While the heterotrophic coral host is limited by 

organic nutrient availability (e.g., glucose), the autotrophic intracellular dinoflagellates are 

limited by inorganic nutrients (e.g., carbon dioxide or ammonium) (Muscatine et al. 1989; 

Falkowski et al. 1993; Rädecker et al. 2015). These reciprocal metabolic exchanges are governed 

by the take-up of limiting nutrients and release of excess nutrients by each symbiotic partner 

(Muscatine 1990; Cunning et al. 2017). Symbiodiniaceae translocate high rates of excess 

photosynthetically fixed carbon to the coral host. The host metabolism, in turn, produces waste 

products such as carbon dioxide through respiration available to the Symbiodiniaceae 

(Falkowski et al. 1993). This nutrient exchange is so efficient that the translocation of 



photosynthates can fully meet or even exceed the respiratory requirements of the coral host 

(Muscatine and Porter 1977; Muscatine 1990; Falkowski et al. 1993), and hence constitute its 

primary energy source (Tremblay et al. 2012). As a consequence, symbiotic coral hosts may 

overcome their carbon limitation and shift instead towards a nitrogen-limited state (Cunning et 

al. 2017; Rädecker et al. 2018).  

 

In a stable symbiosis, host and symbionts are nitrogen-limited and compete for available 

environmental ammonium (Pernice et al. 2012). Increasing evidence suggests that this resource 

competition is critical for maintaining the functioning of the coral-Symbiodiniaceae symbiosis 

(Cui et al. 2019). Coral hosts use the translocated carbon for ammonium assimilation required 

for amino acid synthesis (Cui et al. 2019). Consequently, carbon translocation reduces nitrogen 

availability for the dinoflagellates. The nutrient cycling in the intact symbiosis is thus stabilized 

by a positive feedback loop: because symbionts translocate carbon, they are nitrogen-limited; 

and because they are nitrogen-limited, a substantial fraction of photosynthetically-fixed carbon 

cannot be channeled towards their biomass and growth, and is hence released to the host. 

While this ‘selfish’ interaction between host and symbiont is central to the ecological success of 

the coral-Symbiodiniaceae relationship, it also renders the symbiosis highly susceptible to 

environmental disturbance. 

 

Initially considered to be a single species, Symbiodinium microadriaticum (Freudenthal 1962), 

the recently established family Symbiodiniaceae currently encompasses seven distinct genera 

(Symbiodinium – formerly Clade A, Breviolum (B), Cladocopium (C), Durusdinium (D), Effrenium 



(E), Fugacium (F), Gerakladium (G)) that have originated and diversified alongside reef-building 

corals approximately 160 mya ago (LaJeunesse et al. 2018). Coral reefs of the Indo-Pacific are 

almost exclusively dominated by Cladocopium and Durusdinium (LaJeunesse et al. 2003; 2004), 

with at least 50-100 possible “species” currently identified around Australia alone (LaJeunesse 

et al. 2003; Silverstein et al., 2011). The remarkable diversity of this family influences their 

host’s susceptibility to environmental fluctuations, such as thermal stress and salinity 

(Berkelmans and van Oppen 2006; Sampayo et al. 2008). In the world’s warmest reefs of the 

Persian/Arabian Gulf, corals predominantly harbor Cladocopium thermophilum, an association 

that is central to the thermo-tolerance of these coral communities (Hume et al. 2016). Similarly, 

the stress tolerant D. trenchii has rapidly taken over Caribbean corals following repeated 

anthropogenic disturbances and increasing seawater temperatures (Pettay et al. 2015). 

However, thermal adaptation of reef communities represents a significant physiological 

tradeoff: corals harboring Durusdinium trenchii typically grow slower (Little et al. 2004) and 

incorporate half the amount of photosynthates compared to those associated with 

Cladocopium (Cantin et al. 2009). Recently, multiple Symbiodiniaceae genomes have become 

available (Shoguchi et al. 2013; Lin et al. 2015; Aranda et al. 2016), and comparative analyses 

have revealed that these organisms possess an extensive transporter repertoire for carbon and 

nitrogen metabolites, which is unique among dinoflagellates and likely underpin their symbiotic 

lifestyle (Aranda et al. 2016). 

 

7.2.2 Innate immunity, symbiosis sensing, and cell signaling 



The regulation of the coral-algal partnership is complex and only partially understood. There is 

strong evidence that the host innate immune system plays a big role in mechanisms of 

recognition, maintenance, and dysbiosis of the association (Weis 2008). In the majority of coral 

species, the symbiosis is established anew with each host generation. The algae are acquired 

via phagocytosis by nutritive phagocytes that comprise the host gastrodermal tissue 

(endoderm) (Fadlallah 1983). However instead of being digested, the algae specific to a 

particular host, persist and proliferate within host vacuoles (termed symbiosomes) (Colley and 

Trench 1983; Schwarz et al. 1999). This process is mediated by the host innate immune system 

(Palmer 2018). The process of phagocytosis is a complex part of innate immunity that is highly 

conserved across the Metazoa (Underhill and Ozinsky 2002).  

 

Microbes, including Symbiodiniaceae, are arrayed with a variety of microbe-associated 

molecular patterns (MAMPs), including glycans, that are recognized by host pattern recognition 

receptors (PRRs) on phagocyte cell surfaces (Weis 2008). These MAMP-PRR interactions launch 

a variety of signaling cascades that determine the fate of the phagocytized microbe. The model 

in corals is that tolerogenic pathways allow for the persistence and proliferation of symbionts 

inside symbiosomes, while resistant pathways are launched during dysbiosis and bleaching (see 

next section) that reject and remove the symbiont. There is overwhelming evidence for the 

presence of MAMP-PRR interactions and downstream innate immune signaling in corals. The 

majority of evidence comes from now extensive omics studies that repeatedly point to 

elaboration, enhancement, and over-expression of innate immunity genes in corals and other 

symbiotic cnidarians (Rodriguez-Lanetty et al. 2004; Shinzato et al. 2011; Baumgarten et al. 



2015; Mohamed et al. 2016; Voolstra et al. 2017; Cunning et al. 2018; Shumaker et al. 2019). 

There are also a variety of studies, often in sea anemone model systems, that provide evidence 

of innate immune pathway function including: host lectin-symbiont glycan interactions (Wood-

Charlson et al. 2006; Bay et al. 2011; Parkinson et al. 2018), scavenger receptors (Neubauer et 

al. 2016), thrombospondin type 1 repeat proteins (Wolfowicz et al. 2016; Neubauer et al. 2017), 

complement system (Poole et al. 2016), the master immunity gatekeeper NFκB (Mansfield et al. 

2017), tolerogenic TGFβ pathway (Detournay et al. 2012; Berthelier et al. 2017), sphingolipid 

signaling (Kitchen and Weis 2017; Kitchen et al. 2017), and Rab protein signaling and other 

evidence of endosomal trafficking (Chen et al. 2003, 2004).  

 

Also critical to symbiosis regulation is the maintenance of host and symbiont biomass ratios 

through cell cycle regulation. Host and symbiont biomass ratios reach a dynamic homeostasis 

after symbionts fully colonize a host (Davy et al. 2012). Symbiont populations in hospite grow 

much more slowly than those in culture and are arrested at the G1/S transition (Smith and 

Muscatine 1999). Mechanisms that coordinate the two cell cycles and an understanding of how 

this co-regulation becomes decoupled during dysbiosis have yet to be revealed. 

 

7.2.3 Coral Bleaching - The breakdown of the coral-Symbiodiniaceae relationship 

Stressful environmental conditions such as temperature anomalies, nutrient enrichment, or 

pollution can result in so-called coral bleaching, a (general) stress response characterized by 

whitening of the coral tissue caused primarily by the loss of Symbiodiniaceae endosymbionts 

from the coral tissue via expulsion, host cell apoptosis/detachment, digestion, or exocytosis of 



the symbiont cells (Gates et al. 1992; Douglas 2003; Dunn et al. 2007; Davy et al. 2012). Coral 

bleaching can also occur via the loss of photosynthetic pigment from the symbionts in hospite 

(Jones et al. 1998). Several triggers that induce the coral bleaching cascade have been 

proposed, including oxidative stress (Lesser 1997) and changes in nutrient stoichiometry 

(Wiedenmann et al. 2012; Morris et al. 2019). However, the underlying cellular mechanisms are 

still not fully understood.  

 

Corals may recover from a bleaching event by repopulating their tissues with Symbiodiniaceae 

(Jones et al. 2008; Silverstein et al. 2015). However, as bleaching effectively results in the 

disruption of carbon fixation by Symbiodiniaceae and subsequent loss of photosynthate 

translocation to the coral host (Ezzat et al. 2015), coral host starvation may eventually result in 

mortality as a consequence of prolonged bleaching. The availability of heterotrophic food 

sources and the heterotrophic capacity of the host, thus, determine the resilience of corals 

during heat stress (Grottoli et al. 2006). Mass coral bleaching events at the ecosystem scale 

have resulted in the loss of entire reefs, or reef systems (Hoegh-Guldberg 2011; Hughes et al. 

2018a) and are projected to increase in the future due to climate change driving ocean 

warming (IPCC 2018). 

 

The majority of contemporary observations of ecosystem-scale coral bleaching coincide with 

high-temperature anomalies, such as the El Nino Southern Oscillation (ENSO), or marine 

heatwaves, which can push corals beyond their thermal limits (Hoegh-Guldberg 1999; Hughes 

et al. 2003, 2017, 2018a). The first observations of coral bleaching were made in 1983 in the 



Eastern Pacific near the Panama-Costa Rica border (Glynn 1983). Due to the increasing severity 

and frequency of high-temperature anomalies attributed to global warming, coral bleaching 

events have become more common in the past decades. Since then, three mass bleaching 

events have occurred at the global scale, subsequently named the First, Second, and Third 

Global Bleaching Event, recorded in 1997/1998, 2009/2010, and 2015-2016, respectively 

(Hughes et al. 2017). A recent analysis of bleaching records of 100 reefs from 1980 - 2016 has 

shown that the average turnaround time between bleaching events has halved in the past 

thirty years and is now only 6 years (Hughes et al. 2018a). This concerning trend increases the 

likelihood of annual mass bleaching events in the coming decade, with recovery windows too 

short for full reef recovery in between bleaching events (Hughes et al. 2018a). 

 

7.3 Symbiodiniaceae-bacteria relationships 

Interactions between bacteria and Symbiodiniaceae are challenging to study in hospite because 

of the complex nature of the coral holobiont. The physiology, functional diversity, and stress 

tolerance of Symbiodiniaceae have been studied in cultured strains for decades in order to 

disentangle their contribution to the health and functioning of the holobiont. Symbiodiniaceae 

cultures harbor very diverse bacterial communities with abundances exceeding those of the 

algal cells by almost two orders of magnitude (Ritchie 2012; Lawson et al. 2018). Recurring 

bacterial taxa such as Marinobacter (Gammaproteobacteria), Labrenzia and other Roseobacter 

(Alphaproteobacteria), have been identified in association with a wide diversity of 

Symbiodiniaceae genera (Ritchie 2012; Lawson et al. 2018). Strikingly, the same bacterial taxa 

are also known to positively influence the growth of many phytoplankton species (Seymour et 



al. 2017). Future studies on Symbiodiniaceae-bacteria interactions should use axenic cultures to 

characterize the effect of specific bacteria on the growth and physiology of the dinoflagellates. 

Protocols to set up axenic microalgal cultures exist and have successfully been applied to 

multiple phytoplankton species (Shishlyannikov et al. 2011; Cho et al. 2013). Establishing axenic 

Symbiodiniaceae cultures is an important first step towards identifying the functional roles and 

reciprocal exchanges occurring between Symbiodiniaceae and their bacterial partners. 

 

7.4 Diversity and function of microbes associated with the coral host 

 

7.4.1 The host as a habitat 

Coral holobionts associate with a range of bacteria, archaea, and viruses, among other 

microorganisms (Rohwer et al. 2002; Wegley et al. 2007) (Figure 3). Coral holobionts can be 

separated into three distinct compartments: the surface mucus layer (SML), the coral tissue, 

and the underlying aragonite skeleton. The three compartments are governed by distinct 

physicochemical properties and environmental gradients (Ferrer and Szmant 1988; 

Wangpraseurt et al. 2016; Pernice et al. 2019) as well as distinct associated microbial 

communities (Sweet et al. 2011; Pollock et al. 2018). Most coral-associated prokaryotes have 

not yet been cultivated and the functional contributions of specific taxa are largely unknown. 

Nonetheless, prokaryotic functions are crucial to understanding microbial contribution to coral 

health and adaptation. Molecular tools have allowed for the in-depth characterization of 

bacterial communities associated with corals and revealed specific assemblages of bacteria 

differing between the SML, tissue, and skeleton. SML-associated bacteria are largely dominated 



by Gammaprotebacteria, commonly represented by members of the genus Vibrio (Koren and 

Rosenberg 2006) and by a broad range of taxa presumed to be commensals that can inhibit the 

growth of pathogens (Ritchie 2006). Shifts in SML-associated bacteria communities towards a 

dominance of Alphaproteobacteria, Verrucomicrobia, and Cyanobacteria have been reported in 

mucus sheets of Porites corals, in particular related to aging mucus (Glasl et al. 2016), variation 

in nutrient composition, and heat stress (Lee et al. 2015, 2016), although studies from bleached 

and healthy coral mucus from the Persian/Arabian Gulf showed no difference between 

bacterial communities (Hadaidi et al. 2017). 

 

Bacterial assemblages associated with coral tissues have been widely studied. Tissue-associated 

bacterial identities are strongly driven by coral and Symbiodiniaceae genotypes (Rohwer et al. 

2002). Endozoicomonas, Alteromonadaceae, and Ralstonia are examples of tissue-associated 

taxa ubiquitously found across many coral species from widely separated locations (Bayer et al. 

2013; Ainsworth et al. 2015; Roder et al. 2015; Hernandez-Agreda et al. 2016; Neave et al. 

2016b, 2016a; Certner and Vollmer 2018). Endosymbiotic and episymbiotic tissue-associated 

bacterial communities have been characterized by coupling laser microdissection and next-

generation sequencing. The orders Rhizobiales, Caulobacterales, and Burkholderiales are 

identified in association with Symbiodiniaceae, while members of the family 

Endozoicomonadaceae, and orders Rickettisales and Rhodobacterales are identified in 

association with coral host cells (Ainsworth et al. 2015; Neave et al. 2016b, 2017). To date, 

several genomes of coral-associated Endozoicomonas are available (Neave et al. 2014, 2017; 

Ding et al. 2016), as well as protocols for isolation and culture (Pogoreutz and Voolstra 2018).  



 

The coral skeleton contains a rich microbial community, which is often reported to be 

dominated by a diversity of cyanobacteria (Yamazaki et al. 2008). Some of these cyanobacteria 

have been cultured and characterized, such as Plectonema terebrans, Mastigocoleus testarum, 

and Halomicronema excentricum. Recent studies revealed that while skeleton-associated 

cyanobacteria occur at low relative abundances, they can be highly diverse (Marcelino and 

Verbruggen 2016). Other bacterial functional groups, such as anoxygenic phototrophic bacteria 

and anaerobic green sulphur bacteria, have also been identified in coral skeletons by spectral 

signatures of bacteriochlorophylls and via next-generation sequencing (Magnusson et al. 2007; 

Ralph et al. 2007; Yang et al. 2016).  

 

Besides such broad compartmentalization, localization of microbes within a host can provide 

information on putative functions. Fluorescence in situ hybridization (FISH) approaches have 

shown that in healthy hosts, bacteria tend to form aggregates (Ainsworth et al. 2006; Bayer et 

al. 2013; Wada et al. 2016, 2019; Neave et al. 2017), which can contain one or more cell 

morphologies (Wada et al. 2019). In contrast, diseased and lesioned coral tissues appear 

‘overgrown’ and crowded by bacteria (Ainsworth et al. 2006; Wada et al. 2016). Two bacterial 

genera previously identified in coral tissues are particularly worthwhile mentioning: (1) the 

abundant Endozoicomonas, which aggregate in the gastroderm of Stylophora pistillata (Bayer et 

al. 2013; Neave et al. 2017) and Pocillopora verrucosa (Neave et al. 2017); and (2) the putative 

parasite Candidatus Aquarickettsia rohweri, which is present in the mucocytes of the coral 

ectoderm (Klinges et al. 2019). This genus lacks genes for nitrogen metabolism and the 



synthesis of most sugars but maintains the genetic machinery for sensing and responding to 

extracellular nitrogen, as well as a complete type IV secretion system, collectively suggesting 

that Ca. A. rohweri may be a true coral parasite (Klinges et al. 2019).  

[Insert Figure 7.3 here] 

 

7.4.2 Diversity of coral-associated bacteria and interspecies interactions 

Studies on coral-associated microbes have mostly focused on bacterial diversity associated with 

coral tissues. Coral bacterial communities are typically diverse, uneven, and consist of hundreds 

to thousands of bacterial taxa (Rohwer et al. 2002; Bourne et al. 2008; Ziegler et al. 2016). 

Structure and composition of bacterial communities readily respond to the host’s environment, 

i.e. reflect environmental gradients, fluctuations, and habitat suitability (Thurber et al. 2009; 

Morrow et al. 2015; Roder et al. 2015; Ziegler et al. 2017). In adult corals, bacterial community 

shifts due to environmental changes can occur within a few days (Thurber et al. 2009) and in 

some cases within hours (Ziegler et al. 2017), with older colonies exhibiting delayed 

microbiome shifts, possibly due to differences in microbial composition, bacteria-bacteria 

interactions, or host energetics (Sweet et al. 2017).  

 

The tissue-associated Endozoicomonas commonly display substantial changes in relative 

abundance depending on coral or reef health (Bayer et al. 2013; Roder et al. 2015; Neave et al. 

2016a). The relative abundance of this genus is usually high in healthy corals and on reefs with 

high coral cover, but low on degraded reefs and in stressed, bleached, or diseased corals 

(Bourne et al. 2008; Meyer et al. 2014; Morrow et al. 2015). It was hence suggested that 



Endozoicomonas may be important for coral holobiont health, but its potential roles have yet to 

be identified. Increases in abundance of opportunistic bacteria and putative pathogens, such as 

Vibrionaceae, Rhodobacteraceae, or Flavobacteriaceae, often occur in chronically or severely 

stressed corals (Cárdenas et al. 2012; Roder et al. 2014a; 2014b; Ziegler et al. 2016; Gignoux-

Wolfsohn et al. 2017; Certner and Vollmer 2018). Stress-associated bacterial community shifts 

in corals are also reflected in the functional gene repertoire of the microbiome, showing 

increases in abundance of genes involved in virulence, stress resistance, or sulfur and nitrogen 

metabolism (Thurber et al. 2009).  

 

Interactions between bacteria exert essential selective forces that sculpt coral microbial 

assemblages. For instance, the production of antibacterial molecules is one of the most 

important mechanisms used by native commensal bacteria for shaping the diversity of coral-

associated prokaryotes and controlling the presence of pathogens (Sweet et al. 2011). 

Antibacterial activity has been demonstrated in numerous bacterial taxa (Ritchie 2006; 

Nissimov et al. 2009; Rypien et al. 2010; Kvennefors et al. 2012; Pereira et al. 2017) and coral 

extracts (Kelman et al. 2006; Gochfeld and Aeby 2008), but only a few compounds have been 

identified to date (Raina et al. 2016). Other bacteria-bacteria interactions also occur through 

quorum sensing (QS), which allows cells to communicate and synchronize gene expression in a 

concerted density-dependent manner to coordinate population behaviors. A broad spectrum of 

coral-associated bacteria, including some known coral pathogens, rely on QS to control 

colonization, virulence and extracellular enzyme production (Tait et al. 2010; Alagely et al. 

2011; De O Santos et al. 2011; Golberg et al. 2011). Given the importance of QS in the induction 



of virulence‐related traits in opportunistic and pathogenic bacteria, many coral-associated 

commensal bacteria are capable of disrupting QS circuits as a strategy to prevent and mitigate 

pathogen invasion (Golberg et al. 2013) and some of these taxa might be critical for our 

understanding of QS in the context of coral diseases (Zimmer et al. 2014; Meyer et al. 2016; 

Certner and Vollmer 2018).  

 

7.4.3 Acquisition of bacterial associates and their roles in early coral life-stages 

Coral sexual reproduction occurs either through spawning where gametes are released into the 

water column, or through internally fertilizing gametes and brooding larvae inside the coral 

polyp (Fadlallah 1983). In spawning corals, the establishment of coral-bacteria symbioses is 

widely believed to happen horizontally (i.e., through acquisition of symbionts from the 

environment) during the coral pelagic larval phase or even after settlement and metamorphosis 

(Apprill et al. 2009; Sharp et al. 2010). Conversely, in brooders, bacteria can be vertically 

transmitted (i.e., directly passed from the parent colony to the planula before its release). 

Bacterial communities exhibit dynamic changes between the different ontogenetic stages of 

coral development (Damjanovic et al. 2019; Epstein et al. 2019), likely reflecting a succession of 

microbial functions relevant for the holobiont (Bernasconi et al. 2019) and potentially following 

a winnowing process (Epstein et al. 2019).  

 

A broad phylogenetic range of bacteria can be vertically or horizontally acquired. Most common 

associates of gametes, embryos, and larvae of brooders and spawners include the genera 

Roseobacter, Marinobacter, Alteromonas, Vibrio, Bradyrhizobia and Endozoicomonas. 



Roseobacter- and Alteromonas-affiliated sequences are consistently found in very early 

developmental stages of several coral species (Apprill et al. 2009; Ceh et al. 2012, 2013; Sharp 

et al. 2012). These taxa are metabolically diverse and have been linked with the production of 

antibiotic compounds to counter coral pathogens (Piekarski et al. 2009). Furthermore, 

Alteromonas spp., Vibrio spp., and the diazotroph Bradyrhizobia might provide biologically 

available nitrogen to coral larvae (Ceh et al. 2013; Lema et al. 2014). The transmission of 

potentially beneficial bacteria from parent coral colonies to gametes or early ontogenetic 

stages might be a mechanism to ensure microbial inheritance across generations. In addition, 

bacterial chemotaxis is likely to play a role in microbiome establishment. Indeed, many 

environmentally acquired bacterial symbionts use chemotaxis - the ability to direct movement 

towards or away from specific chemicals - to locate their hosts (Raina et al. 2019). Chemotaxis 

may be a particularly prevalent mechanism employed on reefs because the coral surface is 

characterized by strong gradients of organic compounds that can act as cues for 

microorganisms (Ochsenkühn et al. 2018). Several coral-associated bacterial families, such as 

Endozoicomonadaceae, Rhodobacteraceae, or Oceanospirillaceae, exhibit chemoattraction 

towards constituents of coral mucus (Tout et al. 2015). Chemotaxis and motility however can 

also enable coral pathogens, such as Vibrio shiloi and V. coralliilyticus, to locate and infect their 

hosts (Banin et al. 2001; Meron et al. 2009) using chemical cues such as 

dimethylsulfoniopropionate (DMSP) present in coral mucus (Garren et al. 2014).  

 

Bacteria are also directly involved in the transition between pelagic and benthic life stages in 

the coral life cycle. Indeed, after a pelagic phase (typically ranging from a week to more than 



100 days), coral larvae must attach to a suitable reef structure to metamorphose into colony-

forming juveniles (Connolly and Baird 2010). Habitat-specific environmental cues, mainly 

produced by specific bacteria associated with crustose coralline algae (CCA), are responsible for 

coral larval recruitment and metamorphosis (Harrington et al. 2004; Webster et al. 2004; 

Tebben et al. 2015). Clear shifts in the bacterial community structure of CCA occur following 

thermal stress, resulting in significant reduction of coral larvae recruitment (Webster et al. 

2011). Similarly, antibiotic treatment of larval cultures reduced settlement rates, suggesting 

that the presence of certain bacterial is essential for settlement induction (Vermeij et al. 2009). 

 

7.4.4 Coral probiotics 

Related to studying the setup, maintenance, and inheritance of microbial relationships is 

understanding the dynamic interplay of coral-associated microbes in relation to the prevailing 

environment. The underlying premise is that microbial associates can adapt quickly to the 

surrounding environment and contribute functions that support coral holobiont health and 

resilience (Reshef et al. 2006; Ziegler et al. 2017, 2019; Bang et al. 2018). In recent years, efforts 

have been channeled into coral ‘probiotics’ applications. Their ultimate goal is to fast-track 

ecological adaptation to global climate change by designing physiologically augmented coral 

holobionts (Peixoto et al. 2017). The research field of coral probiotics includes the isolation and 

screening of native bacterial associates for functional genes beneficial to coral health, and 

subsequent physiological assays to determine holobiont performance after inoculation with 

putatively beneficial bacterial isolates (Rosado et al. 2018). Experimental inoculation with 

mixed consortia of native coral bacterial isolates harboring N2 fixation (nifH), denitrification 



(nirK), and DMSP-degrading (dmdA) genes resulted in partial mitigation of coral bleaching 

compared to controls or corals challenged with the temperature-dependent pathogen Vibrio 

coralliilyticus (Rosado et al. 2018). Open questions to this line of research are the temporal 

stability of the observed beneficial effects, the underlying mechanistic nature, and the potential 

for application of coral probiotics at the reef scale.  

 

7.4.5 Contribution of bacteria to holobiont nutrient cycling 

The ubiquitous coral symbionts Endozoicomonas harbor large numbers of genes involved in 

amino acid synthesis and carbohydrate cycling, suggesting its involvement in holobiont nutrient 

cycling (Neave et al. 2017), with different strains potentially exhibiting a different genetic and 

metabolic makeup (Neave et al. 2017; Pogoreutz et al. 2018). Taxonomy-based functional 

inference was used recently and suggested a role of Endozoicomonadaceae in processes 

related to nitrate reduction in giant clams (Rossbach et al. 2019). As such, 

Endozoicomonadaceae may provide otherwise inaccessible nitrogen sources, including 

ammonia, to the coral host.  

 

Nitrogen (N) cycling is a critical component of holobiont health (Cardini et al. 2014; Rädecker et 

al. 2015; Pogoreutz et al. 2017a). Most research on N cycling in the coral holobiont has focused 

on prokaryotic dinitrogen (N2) fixation (Shashar et al. 1994; Lesser et al. 2007; Rädecker et al. 

2014; Bednarz et al. 2017), while the assessment of other major N cycling pathways such as 

nitrification, denitrification, and ANAMMOX has only received marginal attention to date 

(Wafar et al. 1990; Tilstra et al. 2019), and is limited to describing the presence of functional 



genes in sequencing datasets  (Wegley et al. 2007; Siboni et al. 2008; Neave et al. 2017). 

Prokaryotic N2 fixation commonly occurs in reef-building corals, helping supply the holobiont 

with ‘new’ bioavailable N (Lesser et al. 2007; Cardini et al. 2015; Benavides et al. 2017). The 

biologically fixed N is then assimilated by both, coral (Benavides et al. 2016; Bednarz et al. 

2017) and Symbiodiniaceae (Lesser et al. 2007; Cardini et al. 2015; Pogoreutz et al. 2017a). N 

assimilation rates, however, appear to depend on environmental N availability, highlighting the 

importance of integrating environmental context into the study of coral holobiont function. The 

particular role of N2 fixation to coral heat stress (bleaching) remains to be determined. Elevated 

temperatures rapidly cause an increase in the relative abundance and activity of coral-

associated N2 fixers (Santos et al. 2014; Cardini et al. 2016). It was previously concluded that 

excess N supply has the potential to ameliorate the effects of heat stress caused by global 

warming in corals (Santos et al. 2014; Cardini et al. 2016). An increase in holobiont N2 fixation 

however can shift the N:P ratio of dinoflagellate symbionts (Pogoreutz et al. 2017a), thereby 

destabilizing the coral-algae symbiosis, resulting in coral bleaching (Wiedenmann et al. 2012). 

Ultimately, whether increases in N2 fixation during heat stress have beneficial or detrimental 

effects on coral holobiont health may likely be determined by the environmental context (e.g., 

ambient nutrient regime), host nutritional state, or heterotrophic capacity (Bednarz et al. 2017; 

Pogoreutz et al. 2017b), and will require further mechanistic studies considering all major 

nitrogen cycling pathways. 

 

In addition, symbiotic interactions between corals and bacteria might involve the cycling of 

essential compounds, e.g. vitamins. Indeed, the cnidarian host may rely on bacterial symbionts 



for the provision of cobalamin, which is required for methionine synthesis by both corals and 

Symbiodiniaceae (Robbins et al. 2019). Concentrations of cobalamin in the coral gastrovascular 

cavity (coelenteron) are up to 35 times higher than in surrounding reef waters (Agostini et al. 

2009), strongly suggesting that the dense bacterial communities harbored in the gastrovascular 

cavity are producing this essential molecule. In addition, some species from the genus Acropora 

are lacking an essential enzyme to synthesize the amino acid cysteine (Shinzato et al. 2011) and 

likely rely on their associated microbes for its provision.  

 

7.4.6 Archaea associated with the coral holobiont 

Corals associate with a diversity of archaea including representatives from the Crenarchaeota 

and Euryarchaeota. Crenarchaeota of the class Thermoprotei often dominate the archaeal 

community, while most abundant euryarchaeal members are affiliated to the Marine Group II 

and Thermoplasma (Kellogg 2004; Siboni et al. 2008). Interestingly, SML-associated archaeal 

sequences are most similar to obligate and facultative anaerobic and uncultivated archaea from 

anoxic environments, suggesting anaerobic microniches within the SML (Kellogg 2004). In terms 

of absolute abundance, archaeal cells can comprise up to half of the prokaryotic community 

with an average of >107cells/cm2 on the surface of Porites astreoides colonies (Wegley et al. 

2004).  

  

The diversity of ammonia-oxidizing archaea (AOA) has also been evaluated in coral tissues by 

amplifying the amoA gene encoding the alpha-subunit of the ammonia monooxygenase (Beman 

et al. 2007; Siboni et al. 2008). In addition, AOA are suggested to be less host-specific and more 



geographically dependent (Siboni et al. 2012). The presence of amo genes in coral-associated 

archaea was also supported by an integrated genomic approach of Thaumarchaeota genomes 

assembled from Porites lutea metagenomes (Robbins et al. 2019). This study revealed the 

presence of other relevant key metabolic pathways, including the reductive tricarboxylic acid 

cycle, cobalamin synthesis, and taurine dioxygenase in the Thaumarchaeota genomes, 

suggesting these symbionts may contribute to the host's demand for essential vitamins and 

carbon metabolism (Robbins et al. 2019). 

 

7.4.7 Protists and fungi associated with the coral holobiont 

Two photosynthetic alveolates, Chromera velia (Moore et al. 2008) and Vitrella brassicaformis 

(Oborník et al. 2012), which are the closest free-living relatives of the large parasitic phylum 

Apicomplexa, are protists commonly associated with corals worldwide (Janouškovec et al. 

2013). A recent transcriptomic study revealed that the coral host response to C. velia 

inoculation was similar to that of a parasite or pathogen infection in vertebrates (Mohamed et 

al. 2018). This suggests that C. velia, despite its photoautotrophic capabilities, is not involved in 

mutualistic interactions with corals, but rather parasitic or commensal (Mohamed et al. 2018). 

In addition to these two alveolates, the presence of apicomplexans in coral tissues has been 

reported for the past 30 years (Upton and Peters 1986; Toller et al. 2002; Šlapeta and Linares 

2013; Clerissi et al. 2018) and it was recently revealed that a single apicomplexan lineage is 

ubiquitously associated with corals and might be the second most abundant microeukaryote 

group (after Symbiodiniaceae) associated with coral tissues (Janouškovec et al. 2012; Kwong et 

al. 2019). Although the nature of the association between these “corallicolids” and the coral 



host remains unknown, their genomes lack all genes for photosystem proteins, but retained the 

four ancestral genes involved in chlorophyll biosynthesis (Kwong et al. 2019). 

 

Endolithic protist algae can form dense bands visible to the unaided eye in the skeleton of many 

coral species and are often dominated by the filamentous green algae Ostreobium spp. 

(Siphonales, Chlorophyta) (Kornmann and Sahling 1980). Recent molecular studies have 

revealed the astonishing genetic diversity of this group, with up to 80 taxonomic units at the 

near-species level (Marcelino and Verbruggen 2016; Marcelino et al. 2017, 2018; Verbruggen et 

al. 2017). These filamentous algae colonize the skeleton of coral juveniles early in their 

development (Massé et al. 2018) and can interact with the coral tissue through transfers of 

photosynthates (Schlichter et al. 1995; Fine and Loya 2002; Pernice et al. 2019). High-

throughput amplicon sequencing has also revealed the presence of other, less abundant, boring 

green microalgae closely related to Phaeophila, Bryopsis, Chlorodesmis, Cladophora, 

Pseudulvella, and red algae from the Bangiales order in coral skeletons (Marcelino and 

Verbruggen 2016).  

 

Fungi are prevalent in corals and have been well studied in the coral skeleton where they 

penetrate the calcium carbonate microstructures and ultimately interact with Ostreobium cells 

(Le Campion-Alsumard et al. 1995). Along with endolithic algae, fungi are present in the newly 

deposited coral skeleton (Bentis et al. 2000; Golubic et al. 2005), where they exhibit rapid 

growth to match skeletal accretion (Le Campion-Alsumard et al. 1995). Fungi were the most 

abundant microorganisms in the Porites astreoides metagenome, contributing to 38% of the 



microbial sequences (Wegley et al. 2007). These fungi belonged mainly to the phylum 

Ascomycota, but also comprised Basidiomycota and Chytridiomycota. Based on their genomic 

potential, these organisms might play a role in nitrogen recycling through the reduction of 

nitrate and nitrite to ammonia and subsequent ammonia assimilation (Wegley et al. 2007). 

 

7.5 Summary and Outlook 

The coral-dinoflagellate symbiosis is a well-studied system with high potential for 

understanding mechanisms of host-microbe interactions, controls, and co-evolution. The 

functional importance of bacteria, archaea, and other protists in this complex system has only 

recently started to emerge and the resulting picture is that of a holobiont where all partners 

depend on and interact with each other. These complex inter-domain relationships are 

orchestrated and regulated by immune systems. It is therefore important to adopt a two-

pronged approach, elucidating the immune responses of each individual partner (i.e., coral 

host, Symbiodiniaceae, bacteria, and other microbes), but also gaining a greater understanding 

of immunity at the holobiont scale. To elucidate this complex network of interactions, the 

Aiptasia model system may help to functionally interrogate the mechanistic underpinnings 

shaping the ecology, stress resilience, and environmental adaptation of cnidarian holobionts. 

For instance, the ability of genetic and microbiome manipulation of Aiptasia allows for detailed 

studies into the contribution of specific genes or microbes.  

It is understood that productivity, structural complexity, and biodiversity of coral reef 

ecosystems critically depend on healthy coral holobionts, which in turn are linked to the 

diversity and identity of the associated microbes. This implies the need for a radically different 



approach to address the key question of coral health and resilience in the face of climate 

change: one must examine the complexity of the coral holobiont in its entirety, i.e. considering 

the diversity and function of all associated organisms. Gaining a holistic understanding of the 

biology and functioning of coral holobionts is of prime importance, given that coral reefs are at 

the brink of ecological collapse due to climate change and local stressors. New strategies to 

mitigate reef loss are now more important than ever. One such strategy may lie in the 

manipulation of holobiont immunity or associated microbes to enable ecological adaptation at 

a rate and scale that matches the pace of environmental change. 

 

Figure legends 

 

Figure 7.1. Scleractinian corals are the foundation species of coral reef ecosystems. Complex 

symbiotic interactions facilitate nutrient uptake and recycling, thereby enabling corals to thrive 

in highly oligotrophic environments and build the structural framework of coral reefs.  

 

Figure 7.2. Overview and diversity of cnidarian-dinoflagellate symbioses. a) Reef-building or 

stony coral (Anthozoa, Scleractinia: Acropora humilis); b) Fire coral, a calcifying hydrocoral 

(Hydrozoa: Millepora platyphylla); c) Blue coral, a calcifying ‘soft’ coral (Anthozoa, Octocorallia: 

Heliopora coerulea); d) upside-down jellyfish (Scyphozoa: Cassiopea sp.). All of these marine 

cnidarian holobiont systems are intimately associated in a mutualistic relationship with 

dinoflagellates of the family Symbiodiniaceae. 

 



Figure 7.3. The coral holobiont consists of the animal host and a wide diversity of eukaryotic 

and prokaryotic microorganisms, and their potentially numerous metabolic interactions. 

Microbial community composition and structure within the holobiont readily respond to 

environmental fluctuations (e.g., of temperature, nutrients, or light availability). The eukaryotic 

Symbiodiniaceae are intracellular tissue-associated microalgal symbionts that engage in an 

intimate and efficient nutrient-exchange mutualism with their coral host. Through their high 

carbon acquisition, fixation, and translocation rates to the host, Symbiodiniaceae can be 

considered true unicellular engines of the coral holobiont, which are able to provide organic 

carbon at rates that can fully meet or even exceed the respiratory demands of the coral animal 

host. Among the prokaryotic associates of the coral holobiont, bacteria are the best studied 

members. Coral-associated bacterial communities are highly diverse, uneven, and exhibit 

distinct compositions in the coral surface mucus layer, the coral tissues, and the coral skeleton. 

In the coral skeleton, a diversity of endolithic algae (including the abundant and diverse 

Ostreobium spp.) and fungi form dense bands and are hypothesized to metabolically interact 

with the coral host tissue. The metabolic functions of prokaryotes and endolithic algae and 

fungi are potentially highly diverse; whether and how they may contribute to holobiont 

functioning is an area of active exploration. 
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