
Efficient parallel inversion using the Neighbourhood
Algorithm

P. Rickwood and M. Sambridge
Centre for Advanced Data Inference, Research School of Earth Sciences, Australian National University, Canberra, ACT
0200, Australia (peter.rickwood@gmail.com; malcolm.sambridge@anu.edu.au)

[1] Issues controlling efficient parallel implementations of a popular direct search inversion algorithm are
analyzed and discussed. A naive parallelization of a particular method, the Neighbourhood parameter
search algorithm, leads to inefficient use of parallel architecture through lack of scalability and intolerance
to hardware faults. These factors are quantified, and their origins are explained. A reformulation of the
algorithm leads to dramatically improved performance when the cost of the forward problem is low and
the number of unknowns is high. Numerical examples are used to illustrate the main results. Factors in
the original Neighbourhood Algorithm which lead to poor parallel performance are likely to be present
in other ensemble-based inversion or global optimization algorithms. Hence the algorithmic solutions
proposed may have widespread application.

Components: 7572 words, 11 figures.

Keywords: inversion; parallel; Neighbourhood Algorithm; distributed.

Index Terms: 0500 Computational Geophysics (3200, 3252, 7833); 3260 Mathematical Geophysics: Inverse theory.

Received 16 January 2006; Revised 9 June 2006; Accepted 10 July 2006; Published 1 November 2006.

Rickwood, P., and M. Sambridge (2006), Efficient parallel inversion using the Neighbourhood Algorithm, Geochem.

Geophys. Geosyst., 7, Q11001, doi:10.1029/2006GC001246.

1. Introduction

[2] Inverse problems arise when some quantity of
interest (in geophysics, usually a property of the
Earth at depth), is only indirectly constrained by
observables. In geophysics, inverse problems have
been studied for many years (for a review, see
Sambridge and Mosegaard [2002]). For every
inverse problem there is a corresponding forward
problem, where predictions are made using a
particular set of values for the unknowns and these
are compared to the data. If the mathematical
relationship between observables and unknowns
is nonlinear, then the inverse problem can become
difficult to solve. In the 1970s and 1980s nonlinear

inverse problems (like seismic waveform inver-
sion) often required use of restrictive linearizing
approximations to make them tractable. More
recently, with increased availability of high perfor-
mance computing, fully nonlinear treatments have
become popular. In particular, global optimization
and related direct search Monte Carlo techniques
have found many applications [Sambridge and
Mosegaard, 2002; Mosegaard and Sambridge,
2002]. Most of these methods are ‘‘ensemble’’-
based, which means that they involve the solution
of the forward problem for many candidate solu-
tions simultaneously. Such approaches naturally
lend themselves to parallel computation. However,
robust and efficient use of parallel computation is a
far from trivial task.

G3G3Geochemistry
Geophysics

Geosystems

Published by AGU and the Geochemical Society

AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES

Geochemistry
Geophysics

Geosystems

Article

Volume 7, Number 11

1 November 2006

Q11001, doi:10.1029/2006GC001246

ISSN: 1525-2027

Click
Here

for

Full
Article

Copyright 2006 by the American Geophysical Union 1 of 16

http://dx.doi.org/10.1029/2006GC001246


[3] There are two trends in computer technology
that bring us inevitably to the conclusion that the
future of scientific computation is in parallel
computing. These are the availability of low-cost,
high-performance commodity processors and the
increasing availability of high-bandwidth, low-
latency networking components. While there will
always be a need for traditional supercomputers
(such as multi-vector-processor machines), such
computers now constitute a small (and falling)
percentage of the world’s most powerful computers
(see, for example, http://www.top500.org). The
scope for exponential single processor performance
increases is limited, as trends in computer architec-
ture such as limited memory bandwidth [McKee,
1995] and heat dissipation are already seeing an end
of computer engineers’ ability to translate Moore’s
[1965] prediction of exponentially increasing tran-
sistor density into single-chip processing speed. On
the other hand, for tasks capable of being distrib-
uted over a cluster computer consisting of net-
worked commodity processors, the computing
resources available to carry out such tasks will
continue to grow exponentially for some time.
On current trends, the world will have a super-
computer capable of a petaFLOP within the next
few years. Already, the top entry (IBM’s Blue
Gene) is at 1/4 of a petaFLOP, about 8 times
more processing throughput than NEC’s Earth
Simulator.

[4] The mere availability of computational resour-
ces is, however, not enough. In order to harness
these resources, care needs to be directed to devis-
ing efficient and scalable parallel implementations
of the algorithms we wish to execute on these
parallel computers. We believe that, generally
speaking, the software produced and used by the
scientific community still lags in its ability take
advantage of such processing power. We consider a
program scalable only if it satisfies three conditions:
it can be efficiently subdivided to run on a cluster; it
can survive hardware failure; it performs efficiently
despite processor performance variation. Imple-
mentations of the MPI standard [Message Passing
Interface Forum, 1994; Snir et al., 1998], upon
which much distributed scientific software is based,
are fault-intolerant (the failure of a single process or
node in a distributed program relying on MPI
results in the failure of the entire program). This
is an indication of how little attention has been
devoted to scalable scientific software.

[5] Let us consider the two aspects of scalability
separately:

[6] 1. Fault-tolerance: Consider that IBM’s Blue
Gene, the top entry on the current top500 list (see
http://www.top500.org), has over 100,000 process-
ors, and, assuming a mean time to failure of
approximately 3 years per processor, the expected
time to failure of the complete system is measured
in minutes. One way of dealing with such failure
rates is to design software that explicitly deals with
hardware and software failure. Relatively little
effort has been devoted to developing scientific
software that does this, and indeed, as already
mentioned, the underlying message passing librar-
ies used by many scientists (such as MPI) are
themselves fault-intolerant.

[7] 2. Coping with heterogeneity: In a heteroge-
neous computing environment, software needs to
accommodate variation. On computational grids,
for example, the machines taking part in the
computation will typically have varying latency,
bandwidth, load, and processor speeds. Even on a
cluster of identical commodity processors, multi-
level caches, address translation hardware, and
network topology all introduce natural variation
in performance. In either case, algorithms that
assume homogeneity and do not attempt to accom-
modate variation will perform poorly on at least
some classes of problems.

[8] In this paper we focus on a particular ensem-
ble-based nonlinear (inversion) search algorithm in
use in the geoscience community: the Neighbour-
hood Algorithm [Sambridge, 1999a]. We show that
its current parallel implementation scales poorly
and is fault-intolerant. We then go on to show that
a reformulation allows for a fault-tolerant imple-
mentation that scales so much better that, even on a
moderately sized cluster of 120 nodes, speedups of
more than an order of magnitude can be achieved
on published computations.

[9] With our reformulation of the Neighbourhood
Algorithm, we are not concerned with marginal
improvements in the speed of the algorithm. Our
focus has been on creating an implementation that
not only is more efficient today, but is also more
scalable, and hence will become increasingly
more efficient (relative to the ‘‘old’’ implementa-
tion of the Neighbourhood Algorithm) as current
computing trends continue. This, combined with
the fact that our new implementation can already
result in an order of magnitude reduction in
running time on a moderately sized cluster today
means that the range of problems that will be
computationally feasible in the future will be
significantly expanded.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

2 of 16



[10] Although we focus here specifically on
the Neighbourhood Algorithm, it is worthwhile
noting that our criticisms of its present parallel
implementation (detailed below) are likely to be
valid for other ensemble-based inversion algo-
rithms. Genetic Algorithms and ensemble-based
Simulated Annealing, for example, are commonly
used in the geoscience community [e.g., Sen and
Stoffa, 1991, 1992, 1995] and naive parallel imple-
mentations of these algorithms will suffer from
many of the same deficiencies as the Neighbour-
hood Algorithm. Hence the mechanisms described
here for efficient parallelization and fault tolerance
may also be applicable to implementations of other
parameter search algorithms.

2. Neighbourhood Algorithm

[11] The Neighbourhood Algorithm [Sambridge,
1999a, 1999b] is a derivate-free, ensemble-based
search algorithm, typically used for nonlinear geo-
physical inverse problems and global optimization
[see, e.g., Sambridge, 1998; Kennett et al., 2000;
Mosegaard and Sambridge, 2002; Pritchard and
Simons, 2002; Lohman et al., 2002; Sherrington et
al., 2004; Agostinetti et al., 2004; Subbey et al.,
2004a]. A parallel version of the Neighbourhood
Algorithm has been available since 2003, but, as
we shall explain, can perform inefficiently on
certain classes of problems. Here, we describe a
reformulation of the Neighbourhood Algorithm
that is equivalent (in a probabilistic sense) to the
existing formulation, but is fault-tolerant, and lends
itself to an implementation that is markedly more
efficient.

[12] The Neighbourhood Algorithm consists of two
parts: a search stage [Sambridge, 1999a] and an
appraisal stage [Sambridge, 1999b]. These parts
can be used independently, and we deal here only
with the search stage of the algorithm. This stage
consists of a direct search method in a multidimen-
sional parameter space. The objective is to find
points (models) with acceptable (high or low)
values of a user supplied objective function. In
this respect it is the same as other global optimi-
zation/inversion methods such as genetic algo-
rithms [Holland, 1992a, 1992b; Goldberg, 1989]
and simulated annealing [Kirkpatrick et al., 1983].
The Neighbourhood Algorithm, however, differs
from these methods in that it makes use of geo-
metrical constructs known as Voronoi cells to guide
its search (for details on computational geometry
and Voronoi cells, see Okabe et al. [1992]). Start-
ing with an initial set S of points, the Neighbour-

hood Algorithm samples the neighborhoods of the
best of the points in S, where the neighborhood of a
point is defined as the Voronoi cell that contains it.
The objective data misfit function is then evaluated
for each of these points, and each point becomes a
member of S, forming the center of a new Voronoi
cell. Figure 1 illustrates the progression of the
Algorithm in a 2-D search space.

[13] The current formulation of the Neighbourhood
Algorithm [Sambridge, 1999a] is iteration based
and requires two user-defined parameters, nr and ns,
to guide the search. In each iteration, ns samples are
randomly generated from within the best nr Voronoi
cells by performing a uniform random walk which
relaxes to a spatially uniform distribution within
each cell. For example, if ns = 80 and nr = 8, then in
each iteration, 10 models (ns/nr) are randomly
generated within each of the best 8 (nr) cells by
performing a random walk within that cell.

[14] As it is an ensemble inference method (like
Genetic Algorithms), the Neighbourhood Algo-
rithm is straightforward to parallelize (as we show
in section 4). A parallel implementation has been
available and in use for some time [Subbey et al.,
2004a, 2004b].

[15] The current parallel implementation of the
Neighbourhood Algorithm is exactly equivalent
to running the serial version on a faster computer.
That is, the exact semantics of the computation are
preserved. By relaxing this requirement slightly
and requiring only that the essential semantics are
preserved, we will eliminate two sources of ineffi-
ciency: limited parallelism and barrier synchroni-
zation overhead. In this paper, we first explain
some key concepts of parallel computation, and
define the metrics we will use to compare different
parallel implementations. We then describe the
essential characteristics of the ‘‘standard’’ parallel
implementation of the Neighbourhood Algorithm
(what we will call the canonical version), and then
proceed to describe the problems with such a
straightforward implementation and the steps need-
ed to circumvent these problems. We then present
timing results for both our new version and the
canonical version on real (i.e., nonsynthetic) pub-
lished problems [Braun and Robert, 2005; Braun
and van der Beek, 2004; Yoshizawa and Kennett,
2002], showing decreases in execution times of
between 10% and 96% on a moderately sized
cluster of 120 nodes. We also show that the size
of the speedup increases with the size of the
cluster; in other words, the newer version, as well
as being more efficient than the canonical version,

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

3 of 16



becomes relatively more efficient as the size of the
cluster increases. Given current trends, this final
point is critical.

3. Quantifying the Efficiency of
Parallel Algorithms

[16] Before commencing our analysis of the exist-
ing Neighbourhood Algorithm implementation and
our subsequent development of an efficient alter-
nate implementation, we need to be clear on how
we measure efficiency.

3.1. Runtime Function rrrrr

[17] Suppose we have an algorithm A with imple-
mentations Ai. We define the runtime function
r(Aq, D)N as the time required on a cluster of N
computers to execute a particular implementation
Aq with input data D. Thus a serial implementation
As executed on a single machine requires runtime
r(As, D)1. In simple terms, the runtime is just how

long a program (called here an implementation)
needs to run before finishing.

3.2. Efficiency Measure ���

[18] We define the efficiency �(Ap, D)N of a parallel
implementation Ap on an N-node cluster with input
data D as

� Ap;D
� �

N
¼ r As;Dð Þ1

r Ap;D
� �

N
�N

: ð1Þ

[19] We thus measure the efficiency of a parallel
implementation in terms of a serial implementation
of the same algorithm. In practice, a program that
runs in time t in serial can rarely be made to run in
less than time t/N on an N-node cluster. Expressed
in terms of the runtime function r, we expect the
following to be true:

r Ap;D
� �

N
� r As;Dð Þ1

N
: ð2Þ

Figure 1. The Neighbourhood Algorithm in 2-D. Starting from some initial set of uniformly distributed models
(Figure 1a), the Neighbourhood Algorithm selects models within the better Voronoi cells, and so refines the search
space of Voronoi cells (Figures 1b and 1c). Figure 1d shows the contours of the objective function for this 2-D
problem.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

4 of 16



[20] It is well established that inequality (2) is only
false in rare cases, so with little loss of generality,
we only consider the common case.

[21] We can see that if (2) is true, then there is an
upper bound on � for any parallel implementation
Ap:

� Ap;D
� �

N
� r As;Dð Þ1

r Ap;D
� �

N
� N

� N � r As;Dð Þ1
r As;Dð Þ1 � N

� 1: ð3Þ

[22] The lower bound on � is clearly zero as r(Ap,
D)N ! 1, so we have

0 < � Ap;D
� �

N
� 1: ð4Þ

[23] Thus, in all practical settings, we have lower
and upper bounds on � for the Neighbourhood
Algorithm.

[24] To summarize in plain English, we assume that
a program can, at best, be made to run N times faster
on a cluster of N computers. The efficiency function

� is a measure of how close we get to this ‘‘optimal’’
increase in speed, with our upper bound (� = 1)

indicating we have achieved this optimal increase in
speed. Now that we have our defined efficiency
metric, we proceed to analyze the existing imple-
mentation of the Neighbourhood Algorithm.

4. Naive Approach

[25] A commonly used approach to parallelizing
any iteration-based ensemble search algorithm is
by the method shown in the flowchart in Figure 2.
The currently available implementation of the
Neighbourhood Algorithm follows just such an
approach, as do many other direct search inversion
techniques. The analysis that follows applies to all
such algorithms.

[26] From Figure 2 we see that the task of gener-
ating and evaluating models has been divided into
four subtasks:

[27] 1. Generate on a ‘‘master’’ node a new en-
semble of models. We denote the time taken by this
subtask in iteration k as T1(k).

[28] 2. Distribute to cluster nodes for evaluation
(taking time T2(k) in iteration k).

[29] 3. Cluster nodes evaluate received model(s)
(taking time T3(k) in iteration k). Note that it is in

Figure 2. A simple method for parallelizing iteration-based ensemble search/optimization algorithms. The forward
problem (objective function) is solved independently for each model in the ensemble on a separate node in the cluster.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

5 of 16



stage that the forward problem is solved (i.e., the
objective function is evaluated).

[30] 4. Collate results from cluster nodes on
‘‘master’’ node (taking time T4(k) in iteration k).

[31] So T(k) is the total time taken to execute
iteration k, and can be expressed as the simple
sum of these components:

T kð Þ ¼ T1 kð Þ þ T2 kð Þ þ T3 kð Þ þ T4 kð Þ: ð5Þ

[32] Many ensemble-based inversion and optimi-
zation techniques can be parallelized through the
technique illustrated in Figure 2. However, we
contend that such an approach results in parallel
algorithms that suffer from two important sources
of inefficiency: limited parallelism and barrier
synchronization overhead. We address each of
these separately.

4.1. Limited Parallelism

[33] In the canonical parallel implementation of the
Neighbourhood Algorithm, which follows the de-
sign illustrated in Figure 2, it is only the evaluation
of the user-supplied objective function (performed
in stage 3) that is performed in parallel. The
generation of new models, the dissemination of
those models, and the collation of results, are all
carried out in serial, by the main (master) node.

[34] Amdahl’s law [Amdahl, 1967] states that the
performance improvement to be gained from using
some faster mode of execution is limited by the
fraction of the time the faster mode can be used.
Recast in terms of the speedup achievable through
parallelization, the implication of Amdahl’s law is
that, for an implementation Ai with serial compo-
nent s and parallel component p, the absolute lower
bound (i.e., given an infinite number of processors)
on the runtime of Ai is s. In other words, Amdahl’s
law states that the serial component of a program is
the limiting factor in determining how much faster
it can be made to run on a cluster. While this may
seem somewhat obvious, it is important to remem-
ber that when one considers the rapidly increasing
size of cluster computers, this lower bound can be
the dominant limiting factor in a program’s scal-
ability. Figure 3 shows the diminishing returns
dictated by Amdahl’s law for programs that require
varying proportions of nonparallel execution.

[35] Since the lower bound on the execution time
of a program, given perfect parallelism, is deter-
mined by that part of the program that is performed
in serial, we can see that the strict lower bound on
the runtime r of a program implemented in the
manner depicted in Figure 2 is

r >
XK

k¼1

T1 kð Þ þ T2 kð Þ þ T4 kð Þ; ð6Þ

Figure 3. The limiting effect of Amdahl’s law. As the size of the cluster computer increases, the speedup of a
program is limited by the proportion of code that is not parallelized. The lines are plots of r = 100s +100(1 
 s)/N for
differing values of s, the percentage of the program that must be performed in serial (i.e., cannot be parallelized).

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

6 of 16



where K is the number of iterations. This is just
equation (5) with the T3 term dropped, since step 3
is the only step performed in parallel.

[36] This bound also holds for many ensemble-
based search algorithms, (such as the Genetic
Algorithm, Simulated Annealing, and uniform
sampling), if that algorithm is implemented accord-
ing to Figure 2. With these other algorithms,
however, T1(k) typically scales linearly with k,
whereas in the Neighbourhood Algorithm, T1
scales quadratically with k (see Sambridge
[1999a] for the exact analysis), so the limiting
behavior of Amdahl’s law can come into play even
on small clusters for the Neighbourhood Algo-
rithm. Figure 4 illustrates the effect of quadratic
growth in the serial component of a program.

4.2. Barrier Synchronization Overhead

[37] We refer to the second type of inefficiency as
barrier synchronization overhead. It is a less obvi-
ous form of inefficiency than the limited parallel-
ism discussed in section 4.1, and, on small clusters
at least, is only noticeable for certain classes of
problem, but its effect can be substantial, as we
now demonstrate. Barrier synchronization over-

head is a result of the need to collate all results
on the ‘‘master’’ node in step 4. This collation
results in wasted compute time on all nodes except
the last to finish, since the main node (and all the
other nodes) sit idle until results are collected from
all nodes. This time-wasting synchronization
occurs in every iteration of the canonical imple-
mentation. There are three situations, especially,
where we expect a lot of time will be wasted in this
manner:

[38] 1. In heterogeneous cluster environments,
where processing power varies from node to node.
The slowest node in this environment would likely
be significantly slower than the average node.

[39] 2. In problems where the computational cost
of the forward problem is parameter dependent.
That is, the computational cost of evaluating the
objective function f(x) at point x depends on the
value of x.

[40] 3. In problems where external sources of
variability, such as operating system and network-
ing overhead, are significant compared with the
cost of evaluating the objective function. Since any
source of variability will result is wasted compu-
tation time, external sources of variability are just

Figure 4. Shows proportion of overall runtime spent executing serial code for a program with a serial component
that grows quadratically in the number of iterations. The program is assumed to have a serial component that grows
quadratically in the number of iterations (s = i2 + 10i + 89) and a fixed (constant) nonserial component of 4900. At i =
1, 2% of time is spent in serial code, but we see from the figure that such algorithms can quickly spend a great deal of
their time executing in serial mode, thus failing to take advantage of the available parallel computing resources. The
choices of constants defining the quadratic function (10,89,4900) are relatively unimportant here. The key point is
that due to the quadratic dependence of runtime on i, the serial component eventually dominates over the parallel
component.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

7 of 16



as harmful as intrinsic ones (as in case 2, above).
External sources of variability typically become
significant where the objective function is easy
(i.e., quick) to evaluate.

[41] Now let us engage in a more thorough anal-
ysis. Remembering from equation (5) that T(k)
denotes the time taken to perform iteration k, let
us denote the amount of actual computation (i.e.,
excluding idle time) performed on node n in that
iteration k as tk(n).

[42] Referring back to equation (5), and noting that
in practice, T2 and T4 are typically small compared
to T1 and/or T3, we also make the following
simplifying assumptions:

[43] T2(k) = C ln N. Network topology and mes-
sage passing software limitations usually mean that
distribution time is logarithmic or linear in the size
of the cluster (N). We assume logarithmic with
some multiplicative constant C.

[44] T4(k) = 0. We assume that it takes no time to
collate results back on the ‘‘master’’ node. Since T4
is typically small, and since transmission delay can

be modelled as part of stage 3 (T3) anyway, we find
it convenient to ignore this term.

[45] With these assumptions, for an N-node cluster
equation (5) becomes

T kð Þ ¼ T1 kð Þ þ T2 kð Þ þ T3 kð Þ þ T4 kð Þ;
¼ T1 kð Þ þ C lnN þ tk n̂ð Þ; ð7Þ

where n̂ = argmax
n

tk(n).

[46] As mentioned in section 4.1, T1(k) grows
quadratically in the number of iterations (k). We
now see that in each iteration, it is the slowest
node that determines T(k). Even an evenly divided
computation on a homogenous cluster will, in
practice, experience some variability. If it is
always the slowest computer that determines
T(k), then compute time is wasted on all other
nodes, while they wait for the slowest node to
complete. Figure 5 shows that the proportion of
time wasted during stage 3 (evaluation of the
objective function) can be substantial, even when
the variation in objective function evaluation time
is small. The data for the figure came from a
synthetic numerical simulation; in each synthetic
iteration we select N numbers n1 . . . nN (one for
each node in the synthetic cluster) from a Normal
distribution. This gives the required execution

time for each node. Calculating
XN

i¼1
max(n1

. . . nN) 
 ni gives the total time ‘‘wasted’’ by

nodes waiting for the slowest one to finish.

4.3. The Two Effects in Combination

[47] When we consider limited parallelism and
barrier synchronization overhead in combination,
we see that many factors limit scalability in the
current implementation of the Neighbourhood Al-
gorithm. First, the quadratic growth (in k) of T1,
together with the fact that T1 is entirely serial,
means that Amdahl’s law quickly comes into effect
as the number of iterations increases, as Figure 3
shows. Second, the distribution, computation, and
synchronized collation of results means that the
amount of time spent idling by each node increases
as the size of the cluster increases (see Figure 5). So,
in concrete terms, we can expect that the following
types of tasks will perform poorly: (1) tasks with a
large number of iterations, (2) tasks performed on
large clusters, and (3) tasks where there is a signif-
icant degree of variation in the time each node takes
to perform its part of the computation, whether this
be due to factors related to the computation, or
external factors related to the computing environ-
ment. The first and second of these points are

Figure 5. Proportion of time spent idle as a function of
cluster size and size of the forward problem. We assume
that the time taken to evaluate the objective function is
described by a Gaussian distribution. Z(x, q) indicates a
Gaussian with mean x and standard deviation q. We also
include a communication overhead of 0.2 milliseconds
per node per iteration. The important point is that a
significant proportion of time can be wasted idling in
naively implemented parallel computations.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

8 of 16



worrying, given the trend toward larger clusters and
correspondingly more intense computations. The
third point is relevant in a large range of tasks.
Flipping things around, we can say that it is only
tasks performed on small homogenous clusters,
requiring a small number of iterations, and exhibit-
ing little variability in objective function evaluation
time that will scale efficiently.

[48] In Figure 6, we plot the performance of the
current implementation of the Neighbourhood
Algorithm against the assumed maximum (� = 1).
As we see, there is a stark difference between the
current implementation of the Neighbourhood
Algorithm and a maximally efficient parallel
implementation.

5. New Approach

[49] We will show that, with a reformulation of the
algorithm, it is possible to dramatically reduce the
amount of wasted computation time, and to create a
more efficient, scalable implementation. We have
seen that the principal sources of inefficiency in the
canonical implementation are as follows:

[50] 1. Generation of new models for evaluation is
performed in serial, not parallel.

[51] 2. Collection of results involves a barrier
synchronization.

[52] In order to remove these inefficiencies, we
will do away with the concept of a ‘‘master’’ node
that generates models, distributes them to nodes,
and collects results. We will also do away with the
whole concept of an ‘‘iteration’’ in order to avoid
the need to synchronize at the end of each such
iteration.

5.1. Removing the Need for a Master Node

[53] The concept of a ‘‘master’’ node is the cause
of inefficiency in the current parallel implementa-
tion of the Neighbourhood Algorithm. In order to
create an efficient and fault-tolerant implementa-
tion, we wish to make each node ‘‘independent,’’ in
some sense, of other nodes. This will ensure that
the computation can continue if any other node(s)
fail, and will also ensure that fast nodes are not
‘‘held up’’ by slower nodes. In order to make each
node independent, we need each node to generate,
for itself, the models whose objective function it
will evaluate. We also need to change the way that
nodes communicate results so that synchronization
is not required. This approach, though, brings with

it several difficulties. The first of these is that the
concept of a Voronoi-cell composition of the pa-
rameter space that defines the Neighbourhood
Algorithm requires knowledge of all previously
evaluated models in order to generate new models
for evaluation. (This is also the source of the
quadratic growth in computational cost as the
number of models increases.) Thus nodes cannot
generate new models completely independently;
they must continually communicate with other
nodes to obtain an up-to-date list of models that
have had their objective function evaluated. In
addition, we need to make sure that there is no
duplication, that two or more nodes do not evaluate
the objective function of the same point. Our
approach to overcome these problems is depicted
in Figure 7. The important points about the new
approach are as follows:

[54] 1. In step 1, each node independently gener-
ates/chooses the next model by performing a ran-
dom walk within a Voronoi cell randomly selected
from the best nr Voronoi cells. (That is, the nr
Voronoi cells that contain the models with the
objective function value.) This random selection
of Voronoi cell means that while the expected
number of samples drawn from within each of
the best nr Voronoi cells is the same, the actual
number will be subject to variation. This is not the
case in the canonical version, where the number of
samples within each cell is fixed. One benefit of
this approach is that nodes no longer need any
arbitration or communication to determine in
which Voronoi cell to perform a random walk.

[55] 2. In step 2, each node evaluates the objective
function for the model generated in step 1.

[56] 3. In step 3, each node ‘‘posts’’ a message to
all other nodes informing them of the newly
generated model, and the value of the objective
function for that model.

[57] 4. In step 4, each node checks its own post-box
for postal messages from other nodes. It is impor-
tant to note that such a ‘‘postal’’ system is asyn-
chronous, meaning that each node does not wait for
acknowledgment from other nodes. Moving to an
asynchronous communication model brings us two
important benefits over the synchronous communi-
cation model used in the canonical implementation
of the Neighbourhood Algorithm: first, a software
or hardware error on a single machine can no longer
lock up the entire computation; second, slow nodes
no longer hold up fast ones. The disadvantage of
such an asynchronous scheme is that there is

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

9 of 16



overhead in performing the necessary message
processing and buffering, but our results demon-
strate that the benefits outweigh this cost.

[58] Notice that with the new formulation of the
Neighbourhood Algorithm, the whole concept of
an ‘‘iteration’’ has disappeared. This is a necessary

precondition for the Neighbourhood Algorithm to
be fault tolerant, because the definition of an
iteration implies a barrier synchronization, which
is both inefficient and fault-intolerant. In addition,
this lack of a barrier synchronization eliminates the
overhead we describe in section 4.2. The fact that
each node now generates its own models (rather

Figure 6. Performance of the canonical implementation on a 120-node cluster. The top (dashed) line shows the
assumed upper bound (i.e., � = 1). The colored lines show how close the current implementation of the
Neighbourhood Algorithm gets to this maximum for inversions involving different forward problems. The top graph
shows results from an inversion with a forward problem that takes �0.5 s and in the bottom a forward problem
(adapted from Yoshizawa and Kennett [2002]) that takes �0.08 s.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

10 of 16



than receiving them from the master node) means
that the limited parallelism described in section 4.1
is also eliminated, because in the canonical imple-
mentation, the generation of models was performed
in serial on a ‘‘master’’ node, but now model
generation is performed in parallel.

[59] The removal of barrier synchronization also
means that each node ‘‘sees’’ a slightly different set
of Voronoi cells at the time of model generation.
Overall, however, the asynchronous postal system
of communication ensures that each node eventu-
ally receives all models for which the forward
problem has been solved, and hence (on average)
the same set of Voronoi cells.

[60] Given that there is no concept of an iteration in
the new formulation of the Neighbourhood Algo-
rithm, an analytic comparison of the two schemes is
difficult. Instead we rely principally on results
obtained by timing the old (canonical) implementa-
tion and new implementation on published inver-
sion problems. Since the ‘‘new’’ algorithm does not
have any concept of an iteration, we run both old
and new algorithms for an equal number of objec-
tive function evaluations. This allows direct com-
parison of timing results. We also use a 2-D test
function to compare the actual sampling differences.

6. Experimental Results

[61] Our preceding analysis dealt with the sources
of inefficiency in the original formulation of the

Neighbourhood Algorithm and what effect they
have for different types of forward modelling. We
then presented a new method that eliminates the
principal sources of inefficiency. We now make the
discussion more complete, by comparing perfor-
mance of the new algorithm to inverse problems
previously tackled with the canonical form of the
Neighbourhood Algorithm.

[62] First, however, we illustrate that the new
formulation of the Neighbourhood Algorithm
retains the essential characteristics of the original,
by performing some numerical experiments on
sampling densities. Figure 8 shows samples gener-
ated by three separate runs of the Neighbourhood
algorithm applied to minimization of the Rose-
nbrock function (see Figure 9), a standard test
function for optimization algorithms [see Gill et
al., 1981]. The first two rows of Figure 8 are
samples from the original NA formulation using
different random seeds, while the third uses the
new implementation. We see that the differences in
sampling density between the new and the original
implementation of the NA are rather slight, and
certainly no greater than that produced by different
random seeds. Hence, in this case, the sampling
densities are comparable.

[63] For a comparison on geophysical inverse
problems we have selected two ‘‘test’’ problems,
one in the inversion of seismic receiver functions
[Yoshizawa and Kennett, 2002] and one in inver-
sion of thermochronological data [Braun and
Robert, 2005; Braun and van der Beek, 2004].

Figure 7. Outline of control logic for each independent node in the new implementation of the Neighbourhood
Algorithm.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

11 of 16



For completeness, we briefly describe each inver-
sion problem before presenting the experimental
results.

6.1. Receiver Function Inversion

[64] The first example is the inversion of seismic
receiver functions for the shear velocity structure of
the crust. This is a well-known nonlinear problem
in seismology [Ammon et al., 1990] and was the
example originally used to illustrate the Neighbour-
hood Algorithm [Sambridge, 1999a]. Many authors
have subsequently applied the canonical form of the
Neighbourhood Algorithm to this problem [e.g.,
[Yoshizawa and Kennett, 2002; Reading et al.,
2003]. The observations are multi-component seis-
mic waveforms of distant earthquakes, from which
receiver functions are produced with sensitivity
only to Earth structure beneath the recording sta-

tion. Here the shear wave velocity structure as a
function of depth is represented by 24 unknowns
and the Neighbourhood Algorithm is used to
explore this space. In this case the relationship
between observations and unknowns is nonlinear
the numerical solution of the forward problem is
relatively efficient [see Shibutani et al., 1996;
Thomson, 1950; Haskell, 1953].

6.2. Thermochronology

[65] The second example comes from a nonlinear
inverse problem in low-temperature thermochro-
nology [Braun and Robert, 2005; Braun and van
der Beek, 2004]. Here the data are age distributions
of rocks obtained from thermochronology and
these are compared with predictions from a numer-
ical calculation. Specifically each age prediction
involves the solution of the heat transport equation

Figure 8. A comparison of the canonical and new implementations applied to the well-known 2-D Rosenbrock
function (see Figure 9). Rows A and B were produced from two separate runs of the canonical NA using different
random seeds. Row C shows a run of the new algorithm. In all cases, samples are generated with nr = 50, ns = 100.
Samples are colored by the values of the Rosenbrock function, which has a global minimum at (1,1). Here all axes
have range (
2,2). Column 1 shows the initial uniform random set of samples in each case. Columns 2 and 3 show
the sampling density after generation of 1100 and 2100 samples, respectively. The differences in the sampling density
between the new and canonical versions of the NA are comparable to that between different random seeds.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

12 of 16



in the Earth’s crust including the effects of finite
amplitude topography and flexural isostasy. In this
case the forward calculation involves the solution
of a differential equation using a finite element
method. The Neighbourhood Algorithm is used to
search through a parameter space of three variables
defining various tectonic-morphic scenario’s (see
Braun and Robert [2005] and Braun and van der
Beek [2004] for details). This problem provides a
contrast to the receiver function (RF) inversion,
having a forward problem with many fewer
unknowns that is much more computationally
expensive (approximately by a factor of 5000).

6.3. Methodology

[66] The cluster used is a commodity Linux cluster
of 120 Pentium 4 nodes (2.4 GHz) with fast
(1066 MHz) memory and Gigabit Ethernet. Both
codes (i.e., the canonical version and the new
version) use Argonne National Labs implementa-
tion of MPI (MPICH 1.5.9). As already noted, MPI
is inherently brittle to failure, so these results mea-
sure performance increases only. We simply make
the point that the new algorithm, in addition
to having better performance than the canonical
version (as we will soon show), also has the advan-
tage that it can execute in a messaging environment
that continues in the event of node failure. The
structure of the canonical implementation, in con-

trast, means that the computation will stall forever
even if such a messaging substrate is available.

[67] The running time of both old and new versions
of the Neighbourhood Algorithm were chosen so
that, for both problems, the number of objective
function evaluations was the same. Wall time and
CPU time for each computation is measured
through the use of standard library calls.

6.4. Results

[68] The left chart in Figure 10 compares the
efficiency (as defined in section 3.2) of the new
and old implementations on a cluster of 120 nodes
for the receiver function of Yoshizawa and Kennett
[2002]. We see that, beyond a small number of
iterations, the new implementation is much more
efficient than the old one. The discrepancy at 1920
function evaluations, where the old implementation
is more efficient than the new one is due to the fact
that the execution time is fast enough (<3 seconds)
that some additional initial overhead in the new
implementation is significant.

[69] From our analysis, we would expect the new
algorithm to perform better on the RF problem for
two reasons. First, this computation has a large
number of iterations. Second, the objective func-
tion is fast to evaluate (�0.05 seconds), so that
transient factors introduce significant variation in
the time taken to evaluate this function. This is
exactly the case where we expect the largest
performance gains, and we see in the right hand
chart of Figure 10 that beyond 100000 function
evaluations, the new implementation executes in
less than one twentieth of the time, with efficiency
around 0.4–0.5, whereas the canonical algorithm’s
efficiency quickly drops to less than 0.02.

[70] The thermochronology inversion has an objec-
tive function that takes much more computational
effort to evaluate, of the order of 5 minutes for a
single evaluation, but with significant variation,
depending on the point in the domain where the
function is evaluated. So, in some sections of the
domain, computation time may be of the order of a
minute faster or slower. This fact, and the conse-
quence that a smaller number of iterations can be
performed due to the computational requirements of
object function evaluation, mean that we expect
only minor improvements to performance for the
new implementation of the Neighbourhood Algo-
rithm. Specifically, it is only the variation in objec-
tive function evaluation time that allows the newer
version to perform better. For this case Figure 5

Figure 9. The 2-D Rosenbrock function used to
illustrate sampling density of the original and new
implementations of the NA (see Figure 8).

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

13 of 16



suggests that we would get only a small improve-
ment in performance with the new implementation.
Figure 11 confirms that this is indeed the case, with
a clear, but small, increase in efficiency and
corresponding decrease in execution time.

7. Conclusion

[71] The computational power available to the
scientific community has grown dramatically in
the last decade, but the software available to
efficiently use this computational power can still

fail to make efficient use of these resources. Paying
insufficient attention to algorithmic design issues is
often a mistake, even if hardware improvements
continue to make computing power faster and
cheaper. Indeed, our specific analysis of a popular
geophysical inversion method shows that, in
many cases, parallel performance asymptotes very
quickly for realistic problems.

[72] We believe that, in many cases, an analysis of
an algorithm’s distributed performance can allow
for a redesign that is significantly more efficient.
We have performed just such analysis for the

Figure 10. Comparison in efficiency of new and old implementations for the fast forward problem (i.e., short
runtime) used in the work of Yoshizawa and Kennett [2002]. In Figure 10a we compare the efficiency of the new and
old implementations. In Figure 10b we compare execution time as the number of function evaluations is increased.
Here the time for the canonical implementation varies between 2.78 s (at 1920 evaluations) and 10611.49 s (at
120000 evaluations), while the new implementation varies between 3.62 s and 406.74 s.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

14 of 16



Neighbourhood Algorithm, shown how a reformu-
lation is possible, and, more constructively, imple-
mented the reformulated scheme. The result is a
fault-resistant algorithm, that does not suffer from
the deficiencies outlined in sections 4.2 and 4.1.
For a large class of problems, it is substantially
more efficient than the canonical version, and
becomes increasingly more efficient as the size of
the cluster increases. We have achieved this effi-
ciency increase by relaxing some nonessential
properties of the canonical implementation of the
Neighbourhood Algorithm.

[73] Given trends in computer performance and
price, distributed computing offers great potential
to scientists who are able to harness it, but much
current software scales poorly over a cluster, and
little software is designed to survive frequent node
failure on large clusters. Simply stated, we believe
that a passive approach, where we wait for hard-
ware improvements to translate into faster compu-
tation times, is often a mistake, and a more active
approach to algorithm design is needed to allow us
to run efficiently on large cluster computers. We
have illustrated such an approach in the redesign of
a common inversion algorithm, and showed not
only significant increases in performance, but that
the efficiency of the new implementation will
increase as the size of the cluster increases, com-
pared with the original implementation.

[74] One issue that arises in designing algorithms
to be hardware fault intolerant is that at present
many message passing libraries (such as MPI) are
themselves not fault tolerant. Hence this aspect of

the new algorithm is lost if an implementation
makes use of currently available MPI libraries. It
is possible, however, to implement the new algo-
rithm using standard sockets programming, or a
failure-resistant message passing library, and hence
obtain a fault-tolerant program. This is not the case
for the old implementation. As cluster sizes in-
crease, failure-tolerant message-passing libraries
will become the norm.

Acknowledgments

[75] We thank Jean Braun for providing software for the

thermochronology example used in section 6.2. Jeannot Tram-

pert and an anonymous reviewer provided constructive com-

ments on an earlier draft of this manuscript. An

implementation of the Neighbourhood Algorithm based on

the ideas described in this paper (including fault tolerance) is

available from the authors.

References

Agostinetti, N. P., G. Spada, and S. Cianetti (2004),
Mantle viscosity inference: A comparison between simu-
lated annealing and neighbourhood algorithm inversion
methods, Geophys. J. Int., 157(2), 890 – 900,
doi:10.1111/j.1365-246X.2004.02237.x.

Amdahl, G. M. (1967), Validity of the single-processor
appoach to achieving large scale computing capabilities,
in AFIPS Conference Proceedings, vol. 30, pp. 483–485,
AFIPS Press, Reston, Va.

Ammon, C. J., G. E. Randall, and G. Zandt (1990), On the
nonuniqueness of receiver function inversions, J. Geophys.
Res., 95(B10), 15,303–15,318.

Braun, J., and X. Robert (2005), Constraints on the rate of
post-orogenic erosional decay from low-temperature thermo-
chronological data: Application to the Dabie Shan, China,
Earth Surf. Processes Landforms, 30(9), 1203–1225.

Figure 11. Comparison of efficiency of new and old implementations on a computationally expensive forward
problem, taken from Braun and van der Beek [2004]. Figure 11a shows efficiency of the new and old
implementations. Figure 11b shows time taken against number of function evaluations.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

15 of 16



Braun, J., and P. van der Beek (2004), Evolution of
passive margin escarpments: What can we learn from
low-temperature thermochronology?, J. Geophys. Res.,
109, F04009, doi:10.1029/2004JF000147.

Gill, P. E., W. Murray, and M. H. Wright (1981), Practical
Optimization, Elsevier, New York.

Goldberg, D. E. (1989), Genetic Algorithms in Search, Opti-
mization, and Machine Learning, Addison-Wesley, Boston,
Mass.

Haskell, N. A. (1953), The dispersion of surface waves in
multilayered media, Bull. Seismol. Soc. Am., 43, 17–34.

Holland, J. H. (1992a), Adaptation in Natural and Artificial
Systems: An Introductory Analysis With Applications to
Biology, Control, and Artificial Intelligence, MIT Press,
Cambridge, Mass.

Holland, J. H. (1992b), Genetic algorithms, Sci. Am., 267,
66–72.

Kennett, B. L. N., K. Marson-Pidgeon, and M. Sambridge
(2000), Seismic source characterisation using a Neighbour-
hood Algorithm, Geophys. Res. Lett., 27(20), 3401–3404.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983),
Optimization by simulated annealing, Science, 220(4598),
671–680.

Lohman, R. B., M. Simons, and B. Savage (2002), Location
and mechanism of the Little Skull Mountain earthquake as
constrained by satellite radar interferometry and seismic
waveform modeling, J. Geophys. Res., 107(B6), 2118,
doi:10.1029/2001JB000627.

McKee, S. (1995), Hitting the memory wall: Implications of
the obvious, Comput. Archit. News, 23(1), 20–24.

Message Passing Interface Forum (1994), MPI: A message-
passing interface standard, Int. J. Supercomput. Appl., 8,
165–414.

Moore, G. E. (1965), Cramming more components onto inte-
grated circuits, Electronics, 38(8), 114–117.

Mosegaard, K., and M. Sambridge (2002), Monte Carlo
analysis of inverse problems, Inverse Problems, 18,
r29–r54.

Okabe, A., B. Boots, and K. Sugihara (1992), Spatial tessella-
tions: Concepts and applications of Voronoi diagrams, John
Wiley, Hoboken, N. J.

Pritchard, M. E., and M. Simons (2002), A satellite geodetic
survey of deformation of volcanic centres in the central An-
des, Nature, 418, 167–171.

Reading, A., B. Kennett, and M. Sambridge (2003), Improved
inversion for seismic structure using transformed, S-wave-

vector receiver functions: Removing the effect of the free
surface, Geophys. Res. Lett., 30(19), 1981, doi:10.1029/
2003GL018090.

Sambridge, M. (1998), Searching multi-dimensional land-
scapes without a map, Inverse Problems, 14, 427–440.

Sambridge, M. (1999a), Geophysical inversion with a neigh-
bourhood algorithm—i. Searching a parameter space, Geo-
phys. J. Int., 138, 479–494.

Sambridge, M. (1999b), Geophysical inversion with a neigh-
bourhood algorithm—ii. Appraising the ensemble, Geophys.
J. Int., 138, 727–746.

Sambridge, M., and K. Mosegaard (2002), Monte Carlo meth-
ods in geophysical inverse problems, Rev. Geophys., 40(3),
1009, doi:10.1029/2000RG000089.

Sen, M. K., and P. L. Stoffa (1991), Nonlinear one-
dimensional seismic waveform inversion using simulated
annealing, Geophysics, 56, 1624–1638.

Sen, M. K., and P. L. Stoffa (1992), Rapid sampling of model
space using genetic algorithms, Geophys. J. Int., 108, 281–
292.

Sen, M. K., and P. L. Stoffa (1995), Global Optimization
Methods in Geophysical Inversion, Adv. Explor. Geophys.,
vol. 4, Elsevier, New York.

Sherrington, H. F., G. Zandt, and A. Frederiksen (2004), Crus-
tal fabric in the Tibetan Plateau based on waveform inver-
sions for seismic anisotropy parameters, J. Geophys. Res.,
109, B02312, doi:10.1029/2002JB002345.

Shibutani, T., M. Sambridge, and B. Kennett (1996), Genetic
algorithm inversion for receiver functions with application to
crust and uppermost mantle structure beneath eastern Aus-
tralia, Geophys. Res. Lett., 23(14), 1829–1832.

Snir, M., S. W. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra (1998), MPI—The Complete Reference: Volume
1, The MPI Core, 2nd ed., MIT Press, Cambridge, Mass.

Subbey, S., M. Christie, and M. Sambridge (2004a), Prediction
under uncertainty in reservoir modelling, J. Pet. Sci. Eng.,
44, 143–153.

Subbey, S., M. Christie, and M. Sambridge (2004b), The im-
pact of uncertain centrifuge capillary pressure on reservoir
simulation, SIAM J. Sci. Comput., 26(2), 537–557.

Thomson, W. T. (1950), Transmission of elastic waves through
a stratified solid, J. Appl. Phys., 21, 89–93.

Yoshizawa, K., and B. Kennett (2002), Non-linear waveform
inversion for surface waves with a neighbourhood algo-
rithm—Application to multimode dispersion measurements,
Geophys. J. Int., 149, 118–133.

Geochemistry
Geophysics
Geosystems G3G3

rickwood and sambridge: efficient parallel inversion 10.1029/2006GC001246

16 of 16


