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Abstract: Municipal treated wastewater could be considered as a water source for food crop irriga-
tion purposes. Enhancing the quality of treated wastewater to meet irrigation standards has become 
a necessary practice. Nanofiltration (NF) was used in the first stage to produce permeate at relatively 
low energy consumption. In the second stage, two membrane combinations were tested for addi-
tional water extraction from the brine generated by the NF process. The simulation results showed 
that using a hybrid forward osmosis (FO)–reverse osmosis (RO) system is more efficient than using 
the RO process alone for the further extraction of water from the brine generated by the NF process. 
The total specific energy consumption can be reduced by 27% after using FO as an intermediate 
process between NF and RO. In addition, the final permeate water quality produced using the hy-
brid FO-RO system was within the allowable standards for food crops irrigation. 
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1. Introduction 
Treated sewage effluent (TSE) could be considered as a valuable source of water that 

might be used for the irrigation of food crops, especially in arid and semi-arid regions. 
However, the direct use of TSE could damage the soil because of the excessive salts, path-
ogens, colloids, phosphor, and nitrate content [1,2]. Enhancing the quality of TSE to meet 
irrigation standards has become a common practice. This must be done with minimal cap-
ital and operational costs. Membrane technologies have attracted a lot of attention in de-
salination and wastewater treatment due to their low energy requirement [3], small foot-
print [4], low operational cost [5], and high removal efficiency of various pollutants [6–8]. 
The most widely used membrane technologies are microfiltration (MF), ultrafiltration 
(UF), nanofiltration (NF), and reverse osmosis (RO). These processes have been used at 
an industrial scale for desalination and wastewater treatment. Forward osmosis (FO) is a 
promising membrane technology that depends on the osmotic pressure gradient between 
the low concentrated feed solution and the highly concentrated draw solution [6]. FO has 
low energy consumption and membrane fouling when compared to other membrane pro-
cesses [9]. Forward osmosis has been used for various wastewater treatment applications, 
including fertigation [10–13], industrial water and wastewater treatment [14–16], and a 
pretreatment process for desalination using reverse osmosis [17–19]. 

The water recovery rate is used to measure the water production rate in any mem-
brane process. The recovery rate is defined as the percentage of permeate separated from 
the feed water [20]. The recovery rate depends on the feed water quality and the perfor-
mance of the membrane process [21]. It is always desirable to achieve a high recovery rate, 
but exceeding 75% in NF and RO could be difficult, especially when treating municipal 
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wastewater due to membrane fouling and high energy consumption [22]. Therefore, the 
hybridization of membrane processes could increase the recovery rate, enhance the per-
meate water quality and reduce membrane fouling. Shanmuganathan et al. compared the 
performance of NF and RO for enhancing the quality of microfiltered treated sewage ef-
fluent [23]. The results showed that using RO or NF alone could not produce permeate 
which meets the irrigation water standards. However, irrigation suitable permeate was 
produced using an NF-RO hybrid system. It was found that blending NF permeate and 
RO permeate after NF pretreatment is a cost-effective option as the RO process is more 
expensive than NF, and only 50% of the NF permeate was treated by RO. Touati et al. 
designed a UF-NF-RO hybrid process to produce isotonic solutions and drinking water 
from coastal well water [24]. The brine produced by NF was treated using RO to be used 
as drinking water. The maximum recovery rate of the hybrid process was 75%, with a 
specific energy consumption of 8.5 kWh/m3. Oron et al. evaluated the performance of a 
pilot-scale hybrid UF–RO process to produce water suitable for irrigation from secondary 
treated municipal wastewater [25]. The maximum recovery rate of the hybrid process was 
almost 55%, and the operating cost was between 0.16 and 0.24 US$/m3 water. In our pre-
vious study, a hybrid FO–RO process was used to produce irrigation water from TSE [26]. 
The feed solution and draw solution for the FO was TSE and an engineered fertilizing 
solution, respectively. The diluted draw solution produced by the FO process was regen-
erated using the RO process. The recovery rate of the FO process was between 3% and 4%, 
and the specific power consumption was between 2.18 and 2.58 kWh/m3. Al-Amoudi et 
al. evaluated the performance of the dual stage NF process for seawater desalination [27]. 
The maximum recovery rate was 22%, with an energy consumption of 4.2 kWh/m3. Chon 
et al. used a hybrid technology of membrane bioreactor and nanofiltration to produce ir-
rigation water from municipal wastewater [28]. It was found that the physicochemical 
properties and membrane molecular weight cut-off were the most critical aspects in the 
removal of nutrients from the water. 

In this paper, a hybrid NF-FO-RO process was simulated to produce irrigation water 
from tertiary treated municipal wastewater. The proposed hybrid system is designed to 
achieve a recovery rate of 90%. The hybrid process includes two stages. In the first stage, 
TSE was used as the feed solution to the NF process. In the second stage, more freshwater 
was reclaimed from the concentrated brine generated by NF using two alternatives. In the 
first alternative, the concentrated brine was pumped to a RO process, and the permeate 
water was mixed with the permeate generated in the first stage to produce the final prod-
uct water for irrigation purposes. In the second alternative, the concentrated brine was 
pumped to a FO process as the feed solution, and the draw solution was a synthetic saline 
solution with salinity ranging between 0.25 and 0.5 M. The diluted draw solution was 
pumped to a RO process for regeneration, the RO permeate was mixed with NF permeate 
generated in the first stage which is the final product water to be used for irrigation pur-
poses. The simulated product water quality was compared to the irrigation water stand-
ards provided by the Food and Agriculture Organization (FAO) [29]. The water applica-
tion value engine (WAVE) was used to predict the performance of NF and RO processes. 
A predeveloped software was used to predict the performance of the FO process [30]. 

2. Materials and Methods 
2.1. Methodology 

The hybrid NF-FO-RO is a multistage membrane process suggested to produce irri-
gation water using TSE. In stage 1, TSE was used as a feed solution in the NF process. 
Nanofiltration membrane (Filmtec NF 90–400) produced by Dupont (Wilmington, Dela-
ware, USA) was used in the first stage. NF90 has high productivity performance while 
removing a high percentage of divalent ions, nitrate, iron, and organic compounds, such 
as pesticides and herbicides [31,32]. The feed water flow rate was 200,000 m3/d. The low 
net driving pressure of the NF90 membrane allows the removal of these compounds at 
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low operating pressures. Therefore, the NF permeate was expected to have low or mod-
erate salinity. The number of NF vessels was 490, with 8 elements per vessel. In stage 2, 
the brine collected from NF was treated further to increase the overall recovery rate of the 
process and reduce the volume of the discharged brine. In this stage, the performance of 
two membrane combinations was compared, alternative 1: RO and alternative 2: FO-RO 
hybrid process. In alternative 1, the concentrated brine collected from NF was pumped to 
an RO process for additional water recovery using brackish water reverse osmosis mem-
brane (BW30HRLE-440) manufactured by Dupont (Wilmington, Delaware, USA). Then 
the permeate water from the RO process was mixed with NF permeate obtained in the 
previous stage to form the final product. The brine water produced by the RO process was 
recycled back to the sewage treatment plant. The number of BWRO vessels was 313, with 
8 elements per vessel. In alternative 2, the concentrated brine collected from NF was 
pumped to the FO process as a feed solution for additional water recovery. TFC FO mem-
brane, FTSH2O (San Leandro, CA, USA), was used in this study. The number of FO ves-
sels was 403 vessels, with 8 elements per vessel. The draw solution was a synthetic saline 
solution with salinity ranging between 0.25 and 0.5M. The FO process depends on the 
osmotic pressure gradient between the feed solution and draw solution. Using FO as an 
intermediate process has several advantages, such as low power consumption, low mem-
brane fouling propensity, and high-water recovery. The recovery rate of the FO process 
was adjusted using the draw solution concentration. The diluted draw solution was 
pumped to the RO process for regeneration of the draw solution using seawater RO mem-
brane (SW30HR–380) manufactured by Dupont (Wilmington, Delaware, USA). Permeate 
collected from the RO was mixed with NF permeate obtained in the previous stage to form 
the final product. The number of SWRO vessels was 167, with 8 elements per vessel. Fig-
ure 1 summarizes the two studied alternatives. 

 
Figure 1. A schematic sketch showing the hybrid process used in this study. 

The water application value engine (WAVE) (Version 1.81) developed by Dupont 
(Wilmington, Delaware, USA) was used to predict the performance of NF and RO pro-
cesses. A pre-developed software was used to predict the performance of the FO process 
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[30]. The results obtained from WAVE were manually entered into the predeveloped FO 
simulation software. In the FO software, the following equations were used: 

The osmotic pressure of the solution was calculated using Van’t Hoff equation (Equa-
tion (1)): 

𝜋𝜋 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (1) 
where 𝜋𝜋 is the osmotic pressure (bar), i is the Van’t Hoff factor, C is the molar concentra-
tion of the solution (M), R is the ideal gas constant (0.08206 L atm mol−1 K−1), T is the tem-
perature (303 K). 

The water flux in the FO process was calculated using Equation (2): 
𝐽𝐽𝑤𝑤,𝐹𝐹𝐹𝐹 = 𝐴𝐴𝑊𝑊 (𝜋𝜋𝐷𝐷𝐷𝐷 − 𝜋𝜋𝐹𝐹𝐹𝐹) (2) 

where, 𝐽𝐽𝑤𝑤,𝐹𝐹𝐹𝐹 is the water flux (LMH), πDS is the osmotic pressure of the draw solution 
(bar), πFS is the osmotic pressure of the feed solution (bar), and Aw is the membrane per-
meability (0.792 L m−2 h−1 bar−1) [33,34]. The permeate flow rate was calculated using Equa-
tion (3). 

𝑄𝑄𝑃𝑃 = 𝐽𝐽𝑤𝑤𝐴𝐴𝑚𝑚 (3) 
where, 𝑄𝑄𝑝𝑝 is the permeate flow rate (m3/h), and Am is the area of the membrane (m2). The 
recovery rate (Re%) is the ratio of permeate flow rate to the feed flow rate as shown in 
Equation (4): 

𝑅𝑅𝑅𝑅% =  
𝑄𝑄𝑝𝑝
𝑄𝑄𝑓𝑓

× 100 (4) 

The salt permeability coefficient (B) was calculated using Equation (5): 

𝐵𝐵 =  
�1− 𝑅𝑅𝑗𝑗�

𝑅𝑅𝑗𝑗
 𝐽𝐽𝑤𝑤 

(5) 

where Rj is the membrane rejection rate, the rejection rate for the monovalent ions was 
98%, and the rejection rate for divalent ions was 99.5%. The concentration of permeate (CP) 
is the ratio of salt flux to water flux in the membrane as shown in Equation (6): 

𝐶𝐶𝑃𝑃 =
𝐽𝐽𝑠𝑠
𝐽𝐽𝑤𝑤

 
 
(6) 

According to Altaee et al. [35], the membrane salt permeability (Js) was calculated 
using Equation (7): 

𝐽𝐽𝑠𝑠 = 𝐵𝐵 (𝐶𝐶 𝐹𝐹𝐹𝐹 − 𝐶𝐶𝑝𝑝) 
 
(7) 

Substituting Equation (7) into Equation (8) and rearrange to calculate the concentra-
tion of permeate as following: 

𝐶𝐶𝑝𝑝 =
𝐵𝐵 𝐶𝐶𝐹𝐹𝐹𝐹
𝐽𝐽𝑤𝑤 +  𝐵𝐵

 
 
(8) 

where CFS is the concentration of the feed solution in the FO process, it should be noted 
here that salt diffusion from the feed to the draw solution side of the membrane will affect 
the concentration of the draw solution. Therefore, the final concentration of the draw so-
lution (CDS,in) is estimated using Equation (9): 

𝐶𝐶𝐷𝐷𝐷𝐷,𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐷𝐷𝐷𝐷 + 𝐶𝐶𝑃𝑃  
𝑄𝑄𝑃𝑃

𝑄𝑄𝐷𝐷𝐷𝐷,𝑖𝑖𝑖𝑖
 

 
(9) 

where QDS,in is the draw solution flow rate (m3/h), and CDS is the initial draw solution con-
centration without the effect of salt diffusion. The concentration of the draw solution after 
the dilution using the FO process (CDS,out) was calculated using Equation (10): 

𝐶𝐶𝐷𝐷𝐷𝐷,𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐶𝐶𝐷𝐷𝐷𝐷,𝑖𝑖𝑖𝑖

1 + 𝑄𝑄𝑃𝑃
𝑄𝑄𝐷𝐷𝐷𝐷,𝑖𝑖𝑖𝑖

 
 
(10) 
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Equations (1)–(10) can be used to calculate the flow and concentration of draw solu-
tion and feed solution in the FO process. The diffusion of salts from the draw solution to 
the feed solution is known as reverse solute flux. According to Philip et al. [36], reverse 
solute flux (RSF) was calculated using Equation (11). 

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐽𝐽𝑤𝑤 𝐶𝐶𝐷𝐷𝐷𝐷

1 − �1 + 𝐽𝐽𝑤𝑤
𝐵𝐵 � exp( 𝐽𝐽𝑤𝑤 𝑆𝑆

𝐷𝐷  )
 

 
(11) 

where S is the membrane structural parameter (215 µm) and D is the draw solute diffusion 
coefficient (1.5 x105 m2/s) [33,37]. The energy consumption of the FO process (Es,FO) 
(kWh/m3) was calculated using Equation (12): 
 

𝐸𝐸𝑠𝑠 ,𝐹𝐹𝐹𝐹 = �
(𝑃𝑃𝐷𝐷𝐷𝐷)(𝑄𝑄𝐷𝐷𝐷𝐷) + (𝑃𝑃𝐹𝐹𝐹𝐹)(𝑄𝑄𝐹𝐹𝐹𝐹)

36 ×  𝑛𝑛 × 𝑄𝑄𝑝𝑝
� (12) 

where 𝑃𝑃𝐷𝐷𝐷𝐷 and 𝑃𝑃𝐹𝐹𝐹𝐹 are the draw solution and feed solution pressure (bar), respectively. 
𝑄𝑄𝐷𝐷𝐷𝐷 and 𝑄𝑄𝐹𝐹𝐹𝐹 are the draw solution and feed solution flow rates (m3/h), respectively. n is 
the pump efficiency and assumed as 0.8. 

2.2. Materials and Setup 
In this study, ultra-filtered tertiary treated sewage effluent (TSE) was used as a feed 

solution to the hybrid process. A sample was collected from a wastewater treatment plant 
located in Doha, Qatar, to measure the water quality. The wastewater treatment plant 
consists of preliminary, secondary, and tertiary treatment processes. The tertiary treat-
ment process consists of a multimedia filter followed by ultrafiltration and UV disinfec-
tion. The characteristics of the collected treated sewage effluent are summarized in Table 
1. The use of TSE as irrigation water for food crops was unsuitable due to the excessive 
Total dissolved solids (TDS) and electrical conductivity (EC). The conductivity of the col-
lected samples was measured using an OAKTON PCD650 multi-meter. The turbidity was 
measured using a turbidity meter (Hach 2100p). 

Table 1. Characteristics of tertiary treated sewage effluent (Feed Water) 

Parameter Value 
Max Limit  

[38–40] 
Standard Method 

TDS (ppm) 1461 ± 5 175 
APHA 2540 C. Total Dissolved 

Solids Dried at 180 °C 

Turbidity (NTU) 0.2 ± 0.1 2 
APHA 2130 B. Nephelometric 

Method 
EC (mS/cm) 2.56 ± 0.2 0.7 APHA 2510 B. Conductivity 

Fluoride (ppm) 0.27 ± 0.2 1.5 

APHA 4110 Determination 
of anions by ion chromatography 

Chloride (ppm) 897.5 ± 0.2 102 
Bromide (ppm) 0.96 ± 0.2 1 
Nitrate (ppm) 25.84 ± 0.2 20 
Sulfate (ppm) 320.3 ± 0.2 20 
Sodium (ppm) 200.3 ± 0.2 65 

APHA 3120 Determination 
of metals by plasma emission 

spectroscopy 

Potassium (ppm) 12.4 ± 0.2 10 
Calcium (ppm) 87.7 ± 0.2 40 

Magnesium (ppm) 21.4 ± 0.2 24 

3. Results and Discussion 
3.1. Nanofiltration (NF) Process (Stage1) 

Nanofiltration was used in the first stage of the hybrid process. Treated wastewater 
was treated using NF. It can be seen from Figure 2a, the concentration of permeate (Cp) 
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was almost constant for a recovery rate between 50% and 75% and increased rapidly as 
the recovery rate increased above 80%. At a recovery rate between 50% and 70%, Cp was 
almost 184 ppm, which is slightly higher than the TDS limit recommended by Food and 
Agriculture Organization. As the recovery rate increased to 75% and 80%, Cp increased to 
197 and 213 ppm, respectively. The maximum Cp was 301 ppm obtained at a recovery rate 
of 90%; this is almost double the limit recommended by FAO. Overall, the concentration 
of permeate solution exceeded the TDS allowable limit, especially at high recovery rates. 
This is due to the fact that NF90 membranes have a loose structure with low rejection 
abilities for monovalent ions and a molecular weight cut-off (200–400) Da [41–44]. Figure 
2b shows the relationship between the recovery rate and the applied pressure. The re-
quired applied pressure increased as the recovery rate increased. The minimum applied 
pressure was 8.3 bar, obtained at a recovery rate of 50%. The maximum applied pressure 
was 16 bar obtained at a recovery rate of 90%. NF feed pressure increased while increasing 
the recovery rate due to the accumulation of salts on the membrane surface, which in-
creased the effect of concentration polarization [43]. It can be seen from Figure 2b, the 
specific power consumption (Es) decreased as the recovery rate increased between 50% 
and 80%. However, Es increased again at high recovery rates. The energy consumption 
was 0.58 kWh/m3 at a recovery rate of 50% and slightly decreased to 0.5 kWh/m3 at a re-
covery rate of 60%. The maximum energy consumption was 0.62 kWh/m3 obtained at a 
recovery rate of 90%. According to Equation (6), the specific power consumption should 
decrease as the recovery rate increase. In the current simulation experiments, the energy 
consumption increased as the recovery rate exceeded 80%. This can be attributed to the 
concentration polarization phenomena stated earlier that resulted in higher demand for 
applied pressure. The concentrated brine generated by NF shall be treated further to ex-
tract more fresh water. Two alternatives are proposed for the further treatment of the con-
centrated brine. 
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Figure 2. Performance of the nanofiltration (NF) process at different operating pressure. a) 
concentration of permeate solution; b) applied pressure and specific power consumption. 

 

3.2. Treatment of Concentrated Brine Generated by the NF Process (Stage2) 
3.2.1. Reverse Osmosis (RO) Process (Stage 2: Alternative 1) 

Reverse osmosis is proposed for the extraction of extra pure water from the concen-
trated brine reject generated by NF. As observed in Figure 3, the RO permeate concentra-
tion increased as the NF recovery rate increased. When using the concentrated brine ob-
tained from NF at a recovery rate of 50% as a feed solution into the RO process, the con-
centration of RO permeate was 156 ppm. As the NF recovery rate increased to 60%, the 
concentration of RO permeate increased to 249.7 ppm. The concentration of RO permeate 
increased to 482 ppm as the NF recovery rate increased to 70%. At a recovery rate of 90%, 
the concentration of RO permeate increased significantly to 9057 ppm. The concentration 
of RO permeate depends on the membrane properties and salinity of the feed solution. 
Therefore, the concentration of the RO permeate was high when the highly concentrated 
brine solution was used as the feed solution. The recovery rate of RO was almost constant 
when using a feed solution with low salinity and decreased significantly when using 
highly concentrated brine as the feed solution. The recovery rate of RO was almost 37.8% 
when using the brine of NF obtained at a recovery rate between 50% and 65%. When using 
the concentrated brine obtained from the NF process at a recovery rate of 80%, the recov-
ery rate of RO dropped to 24.7%. The minimum recovery rate of RO was 4% obtained 
using an NF recovery rate of 90%. This can be attributed to the excessive concentration 
polarization due to the high salinity of the used feed solution [45]. Figure 4 shows the 
relationship between the recovery rate from NF and the energy consumption of the RO 
process. The energy consumption was constant at 0.85 kWh/m3 when using an NF recov-
ery rate between 50% and 70%. As the recovery rate of the NF process increased to 80%, 
the energy consumption of RO increased to 1.3 kWh/m3. At a recovery rate of 90%, the 
energy consumption of RO increased significantly by 7 times to a value of 7.33 kWh/m3. 
The energy consumption increased as the recovery rate of the NF process increased due 
to the higher applied pressure requirements [29]. 
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Figure 3. Permeate concentration and the recovery rate of reverse osmosis (RO) process at differ-
ent concentrations of feed solution. 

 
Figure 4. Energy consumption of the RO process using different concentrations of feed solution. 

Figure 5 shows the combined recovery rate of the hybrid NF-RO process using vari-
ous recovery rates from the NF process. As the recovery rate of the NF process increased, 
the recovery rate of the hybrid process increased. At an NF recovery rate of 50%, the total 
recovery rate was 68.5%. As the NF recovery rate increased to 90%, the total recovery rate 
was 90%. This is due to the low recovery rate obtained using the RO process. The concen-
tration of the mixed permeate was 178 ppm at an NF recovery rate of 50%. As the NF 
recovery rate increased to 60%, the concentration of the mixed permeate increased to 195 
ppm. As the recovery rate of NF increased to 70%, the total concentration of permeate 
increased by 13.7%. The total concentration of permeate increased by 19% after increasing 
the NF recovery rate to 80%. At an NF recovery rate of 90%, the total concentration of 
permeate was 342 ppm, which is almost double the allowable limit recommended by 
FAO. It can be seen from Table 2 that the concentration of most ions was higher than the 
allowable limit, especially at a high recovery rate. As shown in Figure 6a, the total energy 
consumption of the hybrid process was between 1.42 kWh/m3 and 1.84 kWh/m3 for NF 
recovery rate between 50 and 80%. As the recovery rate of the NF process increased to 
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90%, the total energy consumption increased to 7.95 kWh/m3. Figure 6b shows the per-
centage of energy consumption for each process. Overall, the energy consumption per-
centage of RO was higher than NF. The percentage of energy consumption for RO was 
almost 61% between the NF recovery rate of 50% to 65%. The percentage of energy con-
sumption for RO increased to 65% as the recovery rate of NF increased to 75%. Then the 
percentage of RO energy consumption increased significantly as the recovery rate in-
creased beyond 80%. The percentage of RO energy consumption was 75% and 90% at a 
recovery rate of 80% and 90%, respectively. The total energy consumption increased at a 
higher recovery rate due to the high salinity of the brine used as a feed solution in the RO 
process. The energy consumption depends on the applied pressure that must overcome 
the natural osmotic pressure of the feed solution [46]. The osmotic pressure of the solution 
increases as the salinity of the solution increases. It can be concluded from the findings 
above that using RO for further extraction of permeate from the brine generated by the 
NF process is not a suitable solution. This is due to the high salinity of the final mixed 
permeate at the targeted recovery rate (i.e., 90%). The salinity of the mixed permeate was 
almost double the allowable limit that is recommended by FAO. In addition, the total en-
ergy consumption of the hybrid process was extremely high at the desired recovery rate. 

 
Figure 5. Total recovery rate and concentration of the mixed permeate solution obtained us-
ing hybrid Nanofiltration-Reverse osmosis (NF-RO) process at different feed solution con-
centrations. 

Table 2. Concentration of various ions and cations in the final mixed permeate obtained using hybrid nanofiltration–reverse os-
mosis (NF-RO) Process at Different Recovery %. 

Recovery% 
(NF) 

Recovery% 
(RO) 

Overall  
Recovery% 
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RO is the last stage of the hybrid NF-FO-RO process designed for the regeneration of 
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Figure 8. Total recovery rate and concentration of the mixed permeate solution obtained using 
hybrid NF-FO-RO process at different draw solution concentrations. 
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NF-RO hybrid process was high, with a value of 7.95 kWh/m3 at the targeted 90% recovery 
rate. Using the NF-FO-RO hybrid system reduced the specific energy consumption by 
27%, with a value of 5.36 kWh/m3 at the same 90% recovery rate. In addition, the quality 
of the final permeate using the NF-FO-RO hybrid system was within the FAO standards. 
The findings mentioned earlier were obtained using 0.5 M NaCl as a draw solution con-
centration. This was used as a draw solution due to the low energy consumption and wa-
ter quality suitable for irrigation purposes. In future studies, it is recommended to test 
another type of RO membrane for the regeneration of the draw solution. The utilization 
of a brackish water RO membrane could decrease the energy consumption of the RO pro-
cess; however, the final permeate water quality must be evaluated due to the lower rejec-
tion rate of salts. In addition, the energy consumption of the RO process can be reduced 
by using an energy recovery device. The performance of the proposed hybrid process 
must be evaluated using benchtop then pilot-scale setups to further evaluate the effect of 
membrane fouling, rejection rate for different ions, and concentration polarization phe-
nomena. 
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