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Abstract—This paper presents a novel multiobjective 

system level optimization method to achieve the best 
performance of switched reluctance motor (SRM) drive 
systems. First, the multiobjective optimization problem for 
the SRM drive systems is defined. Then, all parameters of 
the drive systems, including the motor level and control 
level are divided into three subspaces according to their 
influences on the objectives. Finally, the optimization of 
each subspace is performed sequentially until a 
convergence criterion is met. Then, the optimal solution 
can be chosen from the Pareto solutions according to a 
selection criterion. Meanwhile, the sensitivity analysis, the 
approximate models, and the genetic algorithm are 
employed to reduce the computation cost. To verify the 
effectiveness of the proposed method, a SRM drive system 
with a segmented-rotor switched reluctance motor (SSRM) 
and the angle position control method is investigated. This 
is a high-dimensional system level optimization problem 
with ten parameters. The finite element model (FEM) 
results are verified by the experiment results. The optimal 
solution has been listed and verified by the FEM. From the 
discussion, it can be found that the proposed optimization 
method is efficient and optimized SSRM drive has high 
efficiency and low torque ripple.  
 

Index Terms—Angle position control, finite element 
method, multiobjective optimization, switched reluctance 
motor, system level design optimization. 
 

 
Manuscript received June 25, 2019; revised October 6, 2019 and 

November 21, 2019; accepted December 19, 2019. This work was 
supported by the National Natural Science Foundation of China under 
Project 51875261, the Natural Science Foundation of Jiangsu Province 
of China under Projects BK20180046 and BK20170071, the “Qinglan 
project” of Jiangsu Province, the Key Project of Natural Science 
Foundation of Jiangsu Higher Education Institutions under Project 
17KJA460005, and the Six Categories Talent Peak of Jiangsu Province 
under Pro-ject 2015-XNYQC-003. (Kaikai Diao and Xiaodong Sun 
equally contributed to this work.) (Corresponding author: Xiaodong 
Sun.) 

K. Diao and X. Sun are with the Automotive Engineering Research 
Institute, Jiangsu University, Zhenjiang 212013, China (email: 
diaokaikai@163.com, xdsun@ujs.edu.cn). 

G. Lei and Y. Guo are with the School of Electrical and Data 
Engineering, University of Technology Sydney, NSW 2007, Australia 
(e-mail: Gang.Lei@uts.edu.au, Youguang.Guo-1@uts.edu.au). 

J. Zhu is with the School of Electrical and Information Engineering, 
University of Sydney, NSW, 2006, Australia (e-mail: 
jianguo.zhu@sydney.edu.au). 

 

I. INTRODUCTION 
UE to the absence of any windings and magnets in the 
rotor, the switched reluctance motors (SRMs) provides the 

best alternatives for the other machines under harsh 
environments of extremely high temperatures and pressures 
[1], [2]. However, the radial vibration influences the trade-off 
to the widespread application of SRMs in some specific fields, 
such as electric vehicles (EVs) and hybrid electric vehicles 
(HEVs) [3], [4]. 

Motor topology development and optimization are two main 
aspects to improve the overall performance of SRMs. In recent 
years, a variety of novel structures of SRMs have been 
presented, such as linear SRM [5], segmented stator SRM [6], 
double-stator SRM [7], and axial-flux SRM [8]. Previous 
researches on SRM system design and optimization mainly 
focus on one objective, such as torque ripple, torque density or 
efficiency. However, this single-objective optimization 
potentially influences the other important performance indices. 
Therefore, the trade-offs to the overall consideration and the 
implementation of multiobjective optimization are necessary to 
meet the requirements for different applications [9], [10]. 
Furthermore, previous works are mostly on the component 
level rather than the system level [11], [12]. Theoretically, 
assembling individually optimized components into a system 
cannot guarantee the optimal system performance as each part 
is coupled to each other. Thus, the perfect cooperation of motor 
and control levels should be optimized simultaneously. 

The first step in the design optimization of an SRM is to 
build the analysis model for the performance parameters. Two 
criterions to evaluate the created model are the accuracy and 
computational speed. Commonly, there are mainly three kinds 
of analysis model, namely, finite element analysis (FEA) [13], 
[14], curve-fitting method [15], and magnetic equivalent circuit 
(MEC) method [16]. FEA is the most popular numerical 
analysis method. The merit of FEA is that it can provide a 
comprehensive and accurate solution for the nonlinear 
problems. However, it may not be appropriate to the 
optimization of motors with complex structures and high 
dimensions, due to the expensive computation cost of FEA. As 
an alternative, several surrogate models, such as Kriging model 
[17], response surface model (RSM) [18], radial basis functions 
model (RBF) [19], and artificial neural network model, have 
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been employed to reduce the FEA computation cost and 
improve the efficiency. As the flux linkage of the SRM is 
nonlinear with respect to both current value and rotor position, 
the curve-fitting method approximates the flux linkage profile 
with mathematical expressions or intelligent models. The main 
drawbacks of curve-fitting method are that they are empirical 
and they still require the data from FEA or experiments. MEC 
method is analogous to an electric circuit where the reluctances 
of each component of the SRM are analyzed and determined. It 
has fast computational speed but lacks the accuracy due to its 
assumptions on the magnetic flux paths [20]. 

The second step is to find the optimal solutions for the 
optimization problems. In the past two decades, various 
intelligent algorithms, such as genetic algorithm [21], particle 
swarm optimizer [22], and differential evolution algorithm 
(DEA) [23], have been implemented in the optimization 
process.  

On the other hand, a variety of control methods have been 
proposed for the SRMs, such as conventional current chopping 
control [24], angle position control (APC) [25], direct torque 
control [26], and model predictive control [27]. However, they 
are only optimized on the control level for the designed SRMs 
due to the largely increased number of optimization parameters 
at the very first stage of the design and optimization of SRM 
drive system. 

 

 
 

Fig. 1.  System level design and optimization framework for electrical 
drive systems. 
 

Coupling the control aspect with the electromagnetic part is 
beneficial to achieve the best performance of the SRM drive 
system. Although the system level optimization method of 
drive system has been proposed in [11], the coupled effects on 
the motor and control levels actually were not considered 
synchronously when this method was applied to a direct drive 
system of permanent-magnet transverse flux machine. Besides, 

it is a single-objective optimization method which has taken 
into several performances. Moreover, aside from the motor 
level, multiobjective optimization method has also been 
applied in the control sides of SRMs. The PI controller gains, 
and turn-on and turn-off angles can be optimized by DEA to 
reduce the torque ripple and improve the output torque [28]. 
However, few examples about multiobjective optimization 
considering drive system applied to the SRMs have been 
reported. 

This paper presents a novel multiobjective system level 
optimization method for SRM drive systems. Both the motor 
and control aspects are optimized by the multiobjective 
optimization method. Besides, the sequential subspace 
optimization method is performed to reduce the computation 
cost and improve the optimization efficiency. The remainder of 
this paper is organized as follows. Section II presents the 
proposed method. Section III investigates an example study for 
the design optimization of a segmented-rotor switched 
reluctance motor (SSRM) and its control approach. Specific 
implementation and results are provided in Section IV, 
followed by the conclusion in Section V. 

II. MULTIOBJECTIVE SYSTEM LEVEL OPTIMIZATION 
METHOD 

A.  Summarization of system level optimization method 
Fig. 1 shows a brief framework for the system level design 

optimization of electrical drive systems. This kind of system 
level design optimization method has taken the motor and its 
control system into consideration simultaneously. It can be 
divided into the following five steps. 

Step 1: Determine the application requirements for the motor 
drive system. 

The specific requirements of the motor system are 
determined by the applications. It contains many factors, such 
as rated power, rated speed, volume, and efficiency. 

Step 2: According to the application requirements, select the 
motor and control type for the drive system. 

In this stage, the coupled influences between multi-physics 
and the control aspects are taken into consideration at the same 
time. For most industrial and domestic applications, there are 
many trade-offs among different motor types. All the 
advantages as well as drawbacks should be thoroughly 
considered based on the operation conditions, cooling 
capabilities, torque density and the total cost. There are many 
applications where SRMs are considered as the best 
alternatives due to their low cost, superior thermal and 
mechanical robustness. Nowadays, the applications of SRMs in 
EV/HEVs, aircraft, and wind generators are the three main 
research aspects. The works presented in [1] proved that SRM 
exhibits better high-speed performance than the Prius motor. 
The SRMs designed for the aerospace and wind power 
generation are presented in [29] and [30], respectively. 

Step 3: Accomplish the initial designs for both the motor and 
control types. 

Most design approaches rely on the existed theories and FEA 
method. The design process of SRMs is inherently empirical 



 

due to its high nonlinear characteristics, and there is no general 
mathematical model that can represent SRM performance 
accurately. Safety margins of critical machine parameters, such 
as current density and cooling capability, and the slot fill 
coefficient are often employed to prevent overheating and 
assembly difficulty, which limits the designed machine to the 
ideal state.  

Step 4: Optimize the models for the whole system, including 
the motor level and control level. 

The optimization problem can be defined as [11] 
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where xs, f, gi are the design parameter vector, objective and 
constraints of motor, respectively, xs consists of motor 
parameter vector and control parameter vector, xsl and xsu are 
the lower boundary and upper boundary, respectively.  

There are two strategies for the optimization of model (1), 
single space and sequential subspace strategies. The single 
space strategy optimizes all motor and control parameters 
simultaneously by using an algorithm like GA and DEA. It 
requires huge computation cost of FEA and control simulation 
as (1) is normally a high-dimensional optimization problem 
(dimension usually no less than 10). To improve the 
optimization efficiency, a sequential subspace optimization 
strategy was presented for electrical drive systems [11], [12]. 

Step 5: Evaluation of system’s performance. 
This step can be divided into two aspects, i.e., static 

performance of the motor and dynamic performance of the 
whole system. The static performance of SRMs can reflect the 
characteristics of motor topology and the dynamic performance 
of drive system can evaluate the integration of the motor and 
control. 

B.  Multiobjective optimization of SRM drive systems 
Fig. 2 shows the flowchart of the proposed multiobjective 

system level optimization method for SRM drive systems. This 
method includes multiobjective, sequential subspace and 
system level optimizations, and it can be divided into seven 
steps as follows. 

Step 1: Build the multiobjective optimization problem 
considering the system parameters for the SRM drive systems, 
and determine the selection criterion to choose the optimal 
solution. 

The multiobjective model can be defined as 
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And the selection criterion can be defined as 

1 2min :         { ( ), ( ),..., ( )}s s m sF f f fx x x                  (3) 

For the multiobjective optimization, the objectives are 
conflicting to each other in most design situations [31]. The 
improvement of one objective may cause the decrease of the 
other objectives. The Pareto front as a set of non-dominated 
solutions is a good choice to show the optimal solutions of 
multiobjective optimization. 

Step 2: Carry out sensitivity analysis for all parameters of the 
SRM drive system, including motor level and control level. 

Sensitivity analysis is suitable for the high dimensional 
optimization problems to further divide all the parameters into 
different levels. As optimizing all the parameters in one 
subspace is time-consuming and common approximate 
methods lack sufficient accuracy in high dimensional problems, 
this method contributes to reducing the computing cost and 
building the approximate models. Four types of sensitivity 
analysis methods are commonly used, i.e., local sensitivity 
analysis, global sensitivity analysis, sizing equation, and 
analysis of variance. 

Step 3: Divide the system parameters into three subspaces X1, 
X2, and X3, where X1, X2, and X3 represent the highly 
significant, significant, and non-significant subspaces of 
system design parameters, respectively. 

The principle of the division is decided by the results of 
influences on the defined optimization objectives in (2). The 
results can be achieved from the sensitivity analysis or the 
design experience. 
 

 
 
Fig. 2.  Flowchart of multiobjective system level optimization method for 
SRM drive systems. 
 

Step 4: Optimize subspace X1. 



 

In the implementation, parameters in X2 and X3 are fixed as 
the initial values at the first iteration. The approximate models 
and intelligent algorithms are applied in the optimization 
process. Firstly, develop a parametric finite element model 
(FEM) in X1 for the investigated SRM and implement the 
simulation by using a design of experiment (DoE) technique. 
Secondly, obtain the simulation results and evaluate the motor 
performance. Thirdly, build an approximate model based on the 
obtained results and motor performance. This approximate 
model can reduce the computational cost greatly. Finally, an 
intelligent algorithm is employed to find the optimal solutions 
of the motor. The Pareto optimal solution set of X1 is obtained 
in this step, and then the optimal solution is selected for the 
optimization of the next subspace X2 according to (3). 

Step 5: Optimize subspace X2. 
Similar to the last step, the Pareto optimal solution set of X2 

is obtained in this step based on the selected values of 
parameters in X1. It should be noted that in this process, the 
parametric FEM is related to the variables in X2. After the 
development of the optimization problem and implementation 
of the optimization algorithm, the optimal solutions of X2, 
together with those of X1 obtained in step 4, will be sent to the 
optimization of the next subspace X3. 

Step 6: Optimize subspace X3. 
The values of parameters in X1 and X2 are fixed as selected in 

this step. Similarly, after the development of FEM and 
optimization problem, the Pareto optimal solutions set of X3 
can be achieved by using an optimization algorithm.  

It should be noted that the whole optimization of X1, X2, and 
X3 is regarded as one iteration process. After the optimization 
of subspace X3, the optimal solution of this iteration can be 
achieved. 

Step 7: Termination judgement. 
Compare the objective functions between two successive 

iterations. If their relative error is smaller than a given value, 
terminate the iteration progress and output the optimization 
results/Pareto front. Otherwise, update the parameters in X2 and 
X3, and go to step 4 to conduct another iteration. Steps 4-7 can 
be regarded as a sequential optimization process. 

C. Optimization techniques 
1) Approximate models 
Approximate models act as an alternative for FEA and MEC, 

which ease the computational burden. In the modeling process, 
the flux linkage model and the torque model can be established 
by the approximate models based on the data achieved form the 
FEA or experiment samples. Besides, in the multiobjective 
optimization process, the relationship between the objectives 
and the parameters can be expressed by the approximate 
models. Kriging model is superior in the modeling of local 
nonlinearities since it includes both mean trend and variances 
of the responses compared with others, such as RSM and RBF 
[11]. The Kriging model will be investigated in this paper. 

Given n sample points {x1, x2, ..., xn} and their responses 
{y(x1), y(x2), …, y(xn), for an input x, the response y(x) of the 
Kriging model can be expressed as 

( ) ( , ) ( )y F z
∧

= +x β x x                        (4) 

where F(β,x) is the regression model and z(x) is a random error 
term used for the modeling of local deviation. F(β,x) is 
represented as 

1 1( , ) (x) (x) ( )T
p pF f f fβ β= + ⋅⋅⋅ + =β x x β         (5) 

The coefficients βk are regression parameters and f(x) is a 
known approximation model. z(x) is usually assumed to be a 
vector with mean of zero, covariance σ2, and covariance matrix 
covij as 

2cov ( , x , x )ij i jσ θ= R                     (6) 
where R(θ, xi, xj,) is the correlation model with parameters θ. 

 
2) Optimization algorithms 
In the multiobjective optimization method, the optimal 

solutions are actually a compromise between all the objectives. 
The Pareto solutions are usually obtained by optimization 
algorithms. Various optimization algorithms have been applied 
to the multiobjective optimization problems, such as 
multiobjective DEA, non-dominated sorting genetic algorithm 
(NSGA), and its improved version NSGA II. Among these, 
NSGA II is one of the most efficient multiobjective 
evolutionary algorithms and has been widely applied in 
industrial multiobjective optimization problems. 

III. EXAMPLE OF A SRM DRIVE SYSTEM 
In this example, an SSRM is designed for belt-driven 

starter/generator (BSG) application in HEVs. The 
specifications of SSRM are shown in Table I. A SRM drive 
system consisting of this SSRM and the APC control system 
will be investigated. 

 
TABLE I 

SPECIFICATIONS OF THE SSRM 
 

Parameters Unit value 
Rated power kW 1.8 
Rated speed r/min 6000 

Rated voltage V 60 
Efficiency % 0.85 

Outer diameter mm 128 
Axial length mm 80 

 
Fig. 3 shows the topology of the SSRM. As shown, the stator 

of this SSRM is composed of excited and auxiliary poles. The 
excited poles are wound by windings, while the auxiliary poles 
are only functioned as flux return paths without any windings. 
The rotor contains a series of discrete segmented rotors, and 
each component is embedded in the nonmagnetic isolator [32]. 
Aside from the numbers of phases, stator and rotor, the other 
ten parameters listed in Table II are considered as the 
optimization parameters, which include the parameters of 
motor level and control level. It should be noted that the 
diameter of winding is kept as a constant during the 
optimization process. The main reason for this assumption is 
that it can simplify the optimization since it is hard to reflect the 
change of the winding’s diameter for the SRM in FEA. 
Meanwhile, in the practical design process of an SRM, for a 
specific slot fill factor, there are several feasible combinations 
of the diameter of winding and the number of turns. A common 



 

practice is that select the diameter first, then determine the 
optimal number of turns according to the slot fill factor and 
other constraints. Furthermore, the influence of the winding 
diameter on the resistance can also be reflected by the number 
of turns for a given slot fill factor. 
 

Isolator

Stator

Winding Segmented-rotor  
 
Fig. 3.  Topology of the SSRM. 
 

TABLE II 
INITIAL DESIGN VALUES OF THE SSRM 

 
Par. Description Unit Value 
Nph Number of phases - 4 
Ns Number of stator poles - 16 
Nr Number of rotor poles - 10 
Dso Stator outer diameter mm 128 
l Axial length mm 80 

Dro Rotor outer diameter mm 82 
βs1 Excited stator pole arc deg. 21.375 
βs2 Auxiliary stator pole arc deg. 10.688 
βr Rotor pole arc deg. 26.64 
Lsy Stator yoke mm 7 
hcr Height of segmented rotor mm 5.5 
g Air gap  mm 0.25 
N Number of turns - 24 
θon Turn-on angle deg. -3 
θoff Turn-off angle deg 12 

 
For this SSRM drive system, in addition to the torque and 

loss, the torque ripple is another important characteristic 
compared to the other types of machine as it is the main 
obstacle for the wide application of SRMs in industry. The loss 
is the sum of the copper loss and iron loss. In this application, 
the optimization problem can be defined as follows. 
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where Tavg, Ploss and Tripple are the three optimization objectives, 
which represent the average output torque, average loss and 
torque ripple, respectively. η, Pout, sf and Jc represent the 
efficiency, output power, slot fill factor and current density, 
respectively. It should be noted that although f1(xs) and f2(xs) 
can reflect the efficiency, they do not directly show whether the 
efficiency meet the requirement. Besides, the specification of 

the efficiency is listed in Table I. Thus, it has been taken as one 
constraint. 

To select the optimal solution for a practical application, the 
selection criterion is defined as  

_
1 2 3

_ _

min :       avg initial rippleloss

avg loss initial ripple initial

T TP
F w w w

T P T
= + +    (8) 

where Tavg_initial, Ploss_initial and Tripple_initial are the average torque, 
loss and torque ripple of the initial design, and w1, w2, and w3 
are the weight factors. In this example, w1, w2, and w3 are 
assigned as 0.4, 0.3, and 0.3, respectively. The single objective 
function (8) is adopted for the determination of the convergence 
of Pareto front since it can provide a fast optimization process 
[11]. 

IV. IMPLEMENTATION AND RESULTS 
The whole discussion of the optimization method is based on 

the results of finite element model (FEM). Thus, the first step is 
to verify the reliability of the data achieved from FEM. Second, 
local sensitivity analysis is carried out to divide all the 
parameters into different subspaces to release the burden of 
computation. Third, the proposed multiobjective system level 
optimization process is performed. Then, the accuracy of the 
Kriging model is verified by the FEM results. Finally, 
comparison between the optimal solution and the initial design 
is investigated, and the results are further presented and 
discussed. 

A.  Verification of FEM 
Fig. 4 shows the platform for the SSRM drive system. The 

simulation model is established in Ansoft/Maxwell, as shown 
in Fig. 5. The control method is angle position control (APC) 
and the voltage is set as 60 V. Then, mesh generation, boundary 
conditions and analysis setup are determined. The torque, and 
copper and iron losses values can be achieved in the established 
FEM after computation. The comparison of output torque 
between simulation and measured results is shown in Fig. 6. 
More details, including static and dynamic performances, can 
be found in [32]. All the measured results can verify the 
effectiveness of simulation results, and further prove the 
reliability of the FEM. Thus, the FEM samples prepared for the 
optimization are reliable. 
 

a
b

c hg

f

d e

 
Fig. 4.  Platform of the investigated SSRM drive system. (a) The 16/10 
SSRM. (b) Torque and speed sensor. (c) Magnetic power brake. (d) PC. 
(e) Oscilloscope. (f) dSPACE. (g) Power converter and driving circuit. (h) 
Power supply. 
 



 

 
 
Fig. 5.  The 2D FEM of the SSRM. 
 

 
Fig. 6.  Output torque comparison of the experimental and simulation 
results under APC at speed 6000 r/min. 
 

B.  Local sensitivity analysis 
To divide all the design parameters into the proposed 

subspaces, the local sensitivity analysis [33], [34], which can 
reflect the influence/sensitivity of each parameter on the 
performances, are performed. Mathematically, the sensitivity 
of the ith parameter xi at the point x0 can be defined as 

0
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∂
=

∂
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x
                                 (9) 

where Si is the sensitivity, and f(x) is the objective function. In 
this paper, f(x) refers to torque, loss and torque ripple, 
respectively. 

The whole sensitivity analysis is based on the FEA, and there 
is no accurate analytical expression of the objective function. 
Thus, in this case, a differential form is taken to calculate Si. 
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It should be noted that the sensitivities of different 
parameters calculated by (10) have different units. Thus, a 
normalization step considering absolute value is carried out as 
follows. 
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Fig. 7.  Local sensitivity indices of torque, loss, and torque ripple. 
 

In general, there are two methods to determine the increment 
Δxi. The first one is the parameter variation method, in which 
Δxi is usually defined as 10%, 20% or both of its initial value. 
The other one is known as the deviation variation method, in 
which Δxi is usually defined as the standard deviation of xi. In 
this paper, the first method will be investigated as the deviation 
is not given. It should be noted that the initial absolute value 
and variation range of θoff are both four times those of θon, 
respectively, thus the local analysis of θon and θoff can be 
referenced in this example. 

The stator outer diameter and the axial length is determined 
by the space requirement of the application. Excluding Nph, Ns, 
Nr, Dso and l, the rest ten parameters listed in Table II are 
considered as the optimization variables. Totally, 41 samples 
are required for the calculation, including 40 samples for those 
four variations (-20%, -10%, 10%, and 20%) and one initial 
sample. The four relative errors of each objective function are 
calculated by (6), and then the average of absolute values of 
these four values represents the sensitivity of the specific 
objective function. 
Fig. 7 shows the local sensitivity analysis results of the ten 
parameters. Three subspaces are determined according to the 
sensitivity influence on the defined optimization objectives, i.e., 
average torque, loss and torque ripple. Subspace X1 includes 
parameters Dro, βr and N, subspace X2 includes parameters βs1, 
βs2 and θoff, and subspace X3 includes parameters θon, Lsy, hcr, 
and g. 

C. Sequential subspace optimization 
In the process of multiobjective optimization, Kriging model 

is used to approximate the SRM drive model, and NSGA II is 
selected as the optimization algorithm. For this SRM drive 
system, FEM is employed to calculate the torque, loss and 
torque ripple under APC method at the rated speed 6000 r/min. 
The 6000 r/min is the rated speed of the investigated SSRM; 
thus, the whole optimization is conducted under this speed. 
With the increase of the speed, the value of torque ripple 
decreases. Since torque ripple of SRM is directly related to the 
structure due to its double salient poles, the change of torque 
ripple has the same tendency under the whole speed range. 
Therefore, the value of torque ripple under fixed speed can 
reflect this performance of the whole speed range. 



 

As illustrated in Fig. 2, the optimization will be terminated 
when the result of F defined in (8) meets the convergence 
criterion. In total, three iteration processes are carried out in this 
example where each iteration contains the sequential 
optimization of the three subspaces of X1, X2, and X3. Figs. 
8-10 show the Pareto optimal solutions of each subspace under 
each iteration, respectively.  

The parameters in the subspace X1 are highly significant to 
the overall performances of the drive system, and they are 
optimized at the first subspace. In this subspace, 1001 (11x13x7, 
where 11, 13 and 7 are the sampling numbers of parameters Dro, 
βr, and N, respectively) FEM samples are simulated for the 
optimization. After optimization of the subspace X1, significant 
parameters in the subspace X2 will be optimized under the 
selected values of parameters in X1. For the optimal solution in 
X1, 150 (6x5x5, where 6, 5, and 5 mean the sampling numbers 
of parameters βs1, βs2 and θoff, respectively) FEM samples are 
sampled, and the corresponding Pareto solutions can be 
achieved during the optimization of subspace X2. Similarly, for 
the optimal solution in X3, 180 (3x3x5x4, where 3, 3, 5 and 4 

mean the numbers of values of θon, Lsy, hcr, and g, respectively) 
FEM samples are required for the optimization of subspace X3.  

From Fig. 8(a), it can be found that the proposed method can 
provide a set of optimal solutions for situations with different 
output power demands. And the solution with a minimum value 
of F defined in (8) has been sent to the optimization of subspace 
X2. In the same way, an optimal solution with a minimum value 
of F was sent to the next subspace. Comparing Figs. 8(a) and 
8(b), the torque ripple has been reduced greatly. It means the 
optimization of subspace 2 can help reduce the torque ripple of 
the SSRM. The optimal solutions of each iteration are listed in 
Table III, which are shown as Iteration 1, Iteration 2 and 
Iteration 3. The value of ε (as illustrated in Fig. 2) is set as 1%. 
Since the value of ∆F/F of Iterations 2 and 3 is 0.17%, less than 
1%, the optimization is terminated after three iterations.  

Thus, the final optimal solution is the optimal result of the 
iteration 3. The value of F gradually decreases with the increase 
of the iteration times, as shown in Figs. 8(c), 9(c) and 10(c), and 
Table III. 
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Fig. 8.  Pareto optimal solutions of iteration 1. (a) Subspace X1, (b) Subspace X2, and (c) Subspace X3. 
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Fig. 9.  Pareto optimal solutions of iteration 2. (a) Subspace X1, (b) Subspace X2, and (c) Subspace X3. 
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Fig. 10.  Pareto optimal solutions of iteration 3. (a) Subspace X1, (b) Subspace X2, and (c) Subspace X3. 

 
TABLE III OPTIMIZATION RESULTS  



 

 
Par. Unit Initial Iteration 1 Iteration 2 Iteration 3 
Dro mm 82.00 84.98 84.66 77.11 
βs1 deg. 21.38 21.50 21.50 21.50 
βs2 deg. 10.69 10.45 9.00 9.02 
βr deg. 26.64 25.46 27.00 27.04 
Lsy mm 7.00 8.56 8.94 9.00 
hcr mm 5.5 6.95 5.82 5.97 
g mm 0.25 0.3 0.25 0.25 
N - 24 20 20 20 
θon deg. -3.00 -2.50 -2.50 -2.85 
θoff deg 12.00 11.00 11.00 11.00 
Tavg Nm 3.03 4.72 4.43 4.30 
Pout kW 1.90 2.97 2.78 2.70 
Ploss W 195.06 250.68 235.18 252.94 
η % 90.69 92.22 92.20 91.43 

Tripple % 93.64 65.03 43.44 31.94 
F - 1.00 0.8507 0.7745 0.7732 
 
On the other hand, sequential subspace optimization can 

greatly improve the computational efficiency for the whole 
system optimization. The direct one-level optimization, for 
example, optimizing all ten parameters by using FEM and GA, 
requires around 50,000 FEM samples (500*100, where 500 is 
an average iteration number of GA and 100 is the population 
size in each iteration) are required. If Kriging model is 
employed, the required FEM samples (1001*150*180) will be 
much larger. Regarding the sequential subspace optimization, if 
one optimal point is selected, only 1331 (1001+150+180) FEM 
samples are required for one iteration in the optimization of this 
drive system. During the optimization process, three iteration 
processes are performed and totally 3993 FEM samples are 
required. Therefore, the proposed sequential subspace 
optimization method can greatly reduce the burden and cost of 
computation, especially for the optimization of 
high-dimensional structure. Besides, the computation time of 
each subspace is presented in Table IV, where T_FEM, 
T_Kriging, and T_NSGA II mean the computer time of FEM, 
Kriging model and NSGA II, respectively. The computation 
time is almost consumed by the FEM, while Kriging model and 
NSGA II only take up several seconds. The computation time 
of each iteration is the sum of the three subspaces and the final 
total time is the product of iteration number and the 
optimization time each iteration. 

 
TABLE IV 

COMPUTATION TIME OF EACH SUBSPACE 
 

Subspace T_FEM T_Kriging T_NSGA II 
X1 25 h 6.49 s 13.10 s 
X2 3.73 h 0.11 s 2.39 s 
X3 4.5 h 0.26 s 2.55 s 

D. Verification of Kriging model 
The Kriging model is taken to reduce the burden of 

computation. To ensure the optimization efficiency, it is 
necessary to verify the accuracy of the Kriging model. After the 
optimization process, the optimal solutions of each iteration are 
selected. Thus, the results between Kriging model and FEM of 

these points are compared to verify the effectiveness of the 
approximate model. The FEM results have been verified by the 
comparison with the experiment results, as mentioned above. 
Thus, the accuracy of Kriging model can be verified by the 
FEM results.  

 
TABLE V 

COMPARISON BETWEEN KRIGING MODEL AND FEM  
 

Par. Iteration 1 Iteration 2 Iteration 3 
 Krig. FEM Krig. FEM Krig. FEM 

Tavg (Nm) 4.72 4.68 4.43 4.31 4.30 4.22 
Ploss (W) 250.68 254.77 235.18 244.57 252.94 244.32 
Tripple (%) 65.03 63.06 43.44 42.92 31.94 32.88 
Tavg error 0.85% 2.71% 1.86% 
Ploss error 1.63% 3.99% 0.35% 

Tripple error 3.03% 1.20% 1.86% 
 
Table V lists the values of the three optimization objectives 

calculated by Kriging model and FEM. As shown, the 
maximum errors of torque, loss, and torque ripple of these three 
optimal points are only 3.03%, 3.99%, and 1.86%, respectively. 
Thus, the accuracy of Kriging model acceptable. 
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Fig. 11.  Comparison of torque between the initial and optimal solutions.  
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Fig. 12.  Comparison of current between the initial and optimal solutions.  
 

E.  Results comparison 
After verification of the Kriging model, it is credible for the 

optimal solutions in Figs. 8-10. The comparisons of torque and 
current between the optimal solution and initial design are 
displayed in Figs. 11 and 12, respectively. It should be noted 
that, to save the computation cost, the time step is 2e-5 s for the 



 

simulation during the whole optimization process, which is 
twice that in Fig. 6. Thus, the simulation results between Figs. 6 
and 11 may be slightly different. As shown in Fig. 11, the 
SSRM with the select optimal design has obvious higher 
average output torque and smaller torque ripple than those of 
the motor with the initial design. As shown in Fig. 12, 
compared with the initial design, the waveform of the optimal 
design is closer to the ideal flat waveform. Detailed 
comparisons of values between the initial design and the final 
selected optimal solution (optimum in the third iteration) are 
listed in Table III.  

For the initial design, average torque is 3.03 Nm, efficiency 
is 90.69%, and torque ripple is 93.64%. After optimization of 
the whole system by using the proposed method, the motor’s 
average torque reaches 4.30 Nm, which is increased by about 
41.9%. The torque ripple is only 31.94%, which is reduced by 
about 65.89%. It means the proposed method can greatly 
reduce the problem of high torque ripple of SSRM drive 
without the sacrifice of its average torque and efficiency. 

V. CONCLUSION 
In this paper, a new multiobjective and system-level design 

optimization methods was presented for SRM drive systems. 
The proposed method aims to provide a fast way to achieve the 
best performance of the SRM drive system. An example of an 
SSRM and its APC control method was investigated to show 
the effectiveness of the proposed method. Three optimization 
objectives, i.e., torque, loss and torque ripple, were selected. To 
improve the overall performance of the system and reduce the 
computation cost, all the parameters in the design level and 
control level have been considered together and divided into 
three optimization subspaces by using the sensitivity analysis. 
The accuracy of the FEM and the Kriging model is verified 
successively. An optimal solution has been selected according 
to the defined selection criterion after three iteration processes. 
The optimal solution obtained from the proposed method 
exhibits many benefits for the drive system, including high 
efficiency and low torque ripple. In future work, different 
starting points and more design parameters including the 
winding diameter will be considered for the proposed 
sequential subspace optimization method. Moreover, other 
kinds of optimization methods, like nonlinear programming 
method, and other convergence criteria for the Pareto front, like 
hypervolume, will be investigated and compared for the 
multiobjective optimization of electrical drive systems.  
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