
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works.”



Efficient Updates for Data Association with
Mixtures of Gaussian Processes

Ki Myung Brian Lee1, Wolfram Martens2, Jayant Khatkar1, Robert Fitch1 and Ramgopal Mettu3

Abstract— Gaussian processes (GPs) enable a probabilistic
approach to important estimation and classification tasks that
arise in robotics applications. Meanwhile, most GP-based meth-
ods are often prohibitively slow, thereby posing a substantial
barrier to practical applications. Existing “sparse” methods to
speed up GPs seek to either make the model more sparse,
or find ways to more efficiently manage a large covariance
matrix. In this paper, we present an orthogonal approach that
memoises (i.e. reuses) previous computations in GP inference.
We demonstrate that a substantial speedup can be achieved
by incorporating memoisation into applications in which GPs
must be updated frequently. Moreover, we derive a novel online
update scheme for sparse GPs that can be used in conjunction
with our memoisation approach for a synergistic improvement
in performance. Across three robotic vision applications, we
demonstrate between 40-100% speed-up over the standard
method for inference in GP mixtures.

I. INTRODUCTION

A fundamental problem in robotics is to robustly associate
noisy sensor measurements to the relevant environmental
phenomena. Instances of such data association problems
include object segmentation, where pixel or pointcloud
measurements are segmented into different objects [1–3],
and multi-target tracking, where measurements need to be
attributed to a (possibly unknown) number of targets [4].
More generally, most active perception algorithms makes
use of the data association step as a fundamental primitive.
A promising approach is to model the measurements as a
mixture of Gaussian processes; approaches in this direction
include Gaussian process (GP) regression and Dirichlet pro-
cess (DP) mixture models. GP [5] is already widely used
in robotics applications because they enable powerful non-
parametric Bayesian inference on both spatial and temporal
data. Similarly, DP mixture models can describe problems
where observed data needs to be associated to distinct latent
components. Markov-Chain Monte Carlo (MCMC) methods
such as Gibbs sampling are used to work with DP mixture
models. DP mixture models over GP components have been
used in robotics applications such as object segmentation [6],
gas distribution mapping [7], and spatiotemporal topic mod-
elling for active exploration [1].

This work is supported in part by an Australian Government Research
Training Program (RTP) Scholarships, the University of Technology Sydney,
and Tulane University.

1University of Technology Sydney, Ultimo, NSW 2006, Aus-
tralia {brian.lee, jayant.khatkar}@student.uts.edu.au,
rfitch@uts.edu.au

2Software and Prototypes for Automation (SPA), Siemens, Berlin, Ger-
many wolfram.martens@siemens.com

3Department of Computer Science, Tulane University, New Orleans, LA
70118, USA rmettu@tulane.edu

A major challenge in the context of robotics is that MCMC
methods for DP mixture models typically require frequent re-
association and likelihood inference that are computationally
expensive. When GPs are used as mixture components, these
operations then require frequent inversion of a large covari-
ance matrix; the cost of this operation scales quadratically
with the number of data points. Thus, these approaches scale
poorly to real-world applications, and there is a pressing
need to improve computational efficiency in order to support
online robotics applications such as active perception.

In this paper, we address this inefficiency through a novel
memoisation framework that reuses results from previous
computations for GP inference. Our core insight is that
we can exploit the linear algebraic operations for online
updates to not only share the results between different
types of operations, but we can also reuse the results from
prior inference computations. This approach is orthogonal to
existing methods to speed up GPs, which generally seek to
improve computational efficiency by considering a low-rank
approximation of the covariance matrix.

We show that our memoisation framework can be used
in both exact and approximate settings, and demonstrate
substantial benefits for three applications. In the exact setting,
memoisation provides a speedup ranging between 40-100%.
We also develop a novel online update scheme for two
existing sparse approximation methods to allow using our
memoisation approach in conjunction. In the sparse setting,
incorporating memoisation incurs a small overhead perfor-
mance for moderate data sizes, but clear gains are evident
for large data sizes.

II. RELATED WORK

Infinite GP mixture models are a powerful tool for solving
general data association problems in a non-parametric set-
ting. The standard approach is to assume a DP model [8] over
GPs, and perform Gibbs sampling [9–11]. In the robotics
community, [6] used Gibbs sampling to cluster pointcloud
measurements into apple fruit detection. Such a probabilistic
formulation allowed principled multi-robot active perception
in [1]. Despite potential usefulness, GP inference on a large
dataset can be prohibitively expensive for even a small
number of evaluations, and scales quadratically with size of
dataset. To address this bottleneck, low-rank approximation
methods, or sparse methods have been extensively studied.
The subset of regressors (SoR) [12], and deterministic train-
ing conditional (DTC) methods [13] are standard approaches
based on a probabilistic formulation.



Our memoisation approach is orthogonal to these methods
because it does not entail additional approximation. In fact,
it is possible to use both in conjunction, provided there is a
suitable online update scheme for the sparse approximation
method used. A challenge is that most sparse approximation
methods only consider batch inference. To this end, we derive
an online update scheme for SoR and DTC methods, and
show how our approach can be used in conjunction.

III. PRELIMINARIES

A. Gaussian Process Regression

We are interested in zero-mean scalar Gaussian processes
(GPs) over x ∈ Rd,

f ∼ GP (0, kf (x,x
′)) , (1)

with kernel function kf (x,x′) = cov(f(x), f(x′)).
Let D = {d1, · · · , dN} be a set of data points with di =

{xi, yi}, where yi = f(xi) + εi is an observation of the
value of f at xi with measurement noise εi ∼ N (0, σ2).
Given D, the conditional likelihood of measurement y∗ at a
query location x∗ is given by [5]:

logP(y∗ | x∗,D) = −1

2

( (y∗ − µ∗)2
σ∗2

+ log 2πσ∗2
)
, (2)

with mean and variance:

µ∗ = k∗T (K+ σ2IN)
−1yD,

σ∗2 = k∗∗ − k∗T (K+ σ2IN)
−1k∗.

(3)

Here, yD ∈ RN×1 denotes the concatenation of the observa-
tions for all data points. The covariance terms, K ∈ RN×N ,
k∗ ∈ RN×1, and k∗∗ are constructed as Kmn = k(xm, xn),
k∗n = k(xn,x

∗), and k∗∗ = k(x∗,x∗) respectively.

B. Sparse Gaussian Process

We consider two variants of sparse approximations,
namely Subset of Regressors (SoR) and Deterministic Train-
ing Conditional (DTC). In these approximations, we pick a
subset from the measurements D to serve as the active points
that induce the rest of the measurements. Throughout the
paper, we assume that the data points are ordered such that
the active points come first. Given M active points, the SoR
approximation is to assume:

k̂(x,x′) ≈ kM(x)
TK−1MMkM(x

′), (4)

where KMM is the covariance matrix of the active points, and
(kM(x))i = k(x,xi) for active points xi.

With (4), the inference equations become [5]:

µ∗SR = k∗TM (KT
MKM + σ2KMM)

−1KT
MyD,

σ∗2SR = σ2k∗TM (KT
MKM + σ2KMM)

−1k∗M ,
(5)

where k∗M = kM(x
∗), and KM is the first M columns of the

full covariance matrix.
DTC approximation has the same mean as SoR, but a

‘correction term’ is applied to the variance term:

σ∗2DTC = k∗∗ − k∗TM K−1MMk+ σ∗2SoR. (6)

Algorithm 1 GP MIXTURE INFERENCE

1: for fixed number of iterations do
2: Sample di from D
3: Remove di from current expert
4: for each expert ej do
5: Compute GP likelihood P(di | Dj)
6: Compute expert prior P(ej | E \ ej)
7: Compute posterior using lines 5 and 6
8: Choose e∗ based on the posterior
9: Add di to D∗

It is important to note that both the DTC and SoR approx-
imations require the inversion of an M ×M matrix, instead
of the usual N ×N covariance matrix. Since M � N , this
leads to a substantial speed-up.

C. Mixture of GP Experts
The aim of the data association problem is to correctly

associate each data point di ∈ D to disjoint subsets Dj ⊂
D, where each subset Dj follows a GP ‘expert’ ej =
GP(0, kj(x,x′)) ∈ E . For simplicity, we will assume that the
kernel function kj(x,x′) for each expert ej are drawn from
a known set of kernel functions with fixed hyperparameters.

An important class of algorithms for GP mixture inference
is sampling-based algorithms such as Gibbs sampling [9], or
GP-INSAC [14]. These sampling-based algorithms typically
follow the pattern shown in Algorithm 1. Each iteration
begins with a random selection of a measurement pair to
process (Line 2). The selected pair is first dissociated from
its current expert (Line 3). Then, for each expert, we compute
the measurement likelihood of the selected pair through GP
inference (2), and a prior on the expert itself. Given the
likelihood and prior, we compute the posterior, and select
the new expert for the current measurement pair.

For example, in infinite mixture of GP experts [9], the
expert prior is a DP, and the expert is selected by sampling
from posterior. In GP-INSAC [14], the expert prior is a
Bernoulli distribution over inlier and outlier events, and the
expert with maximal posterior is chosen.

IV. INCREMENTAL UPDATES
Addition and removal of data points to a GP expert are

necessary for GP mixture updates. In this section, we present
how to efficiently update the inference results when data
points are being added or removed. We review the case
of exact inference, and derive a similar method for sparse
approximate inference.

A. Inference
1) Exact Inference: A standard method for efficient incre-

mental updates is to use the Cholesky factor of the covariance
matrix. The Cholesky factor L = chol(K + σ2IN×N ) is
a lower triangular matrix such that LLT = K + σ2IN×N .
Using L, we re-write the inference equation (3) in a form that
will become useful later. Define p = L−1k∗,q = L−1yD ∈
RN . Then, the inference equation can be re-written as:

µ∗ = pTq,

σ∗2 = k∗∗ − pTp.
(7)



Therefore, inference is of order O(N) given p and q.
2) Sparse Approximate Inference: Despite the compelling

need for incremental sparse approximate GP inference in
robotics applications, there is currently no literature on doing
so to the best of our knowledge. Here, we give a formulation
for updates in sparse approximations that is similar to the
exact case. Assume, for the moment, that the set of active
points are given, and comprise the first M data points. Divide
the covariance matrix as:

K̂ =

[
KMM KM(N−M)

K(N−M)M K(N−M)MK
−1
MMKM(N−M)

]
. (8)

An analogue of the Cholesky decomposition in the sparse
case is the incomplete Cholesky decomposition. The incom-
plete Cholesky decomposition of K̂ is computed as [15]:

L̂ =

[
L̂MM

L̂(N-M)M

]
=

[
chol(KMM)

K(N−M)ML̂
−T
MM

]
. (9)

In terms of the incomplete Cholesky factor, the inference
equations (5) can be written as:

µ∗SR = µ∗DTC = k∗T L̂−TMM (L̂T L̂+ σ2IM)
−1L̂−1MML̂

TyD,

σ∗2SR = σ2k∗T L̂−TMM (L̂T L̂+ σ2IM)
−1L̂−1MMk

∗,

σ∗2DTC = k∗∗ − k∗T L̂−TMM L̂−1MMk
∗ + σ∗2SR,

(10)

which is also referred to as the V-method in [16]. It is still
difficult to update (10) incrementally as we did for exact
inference, because of the inversion of X = (L̂T L̂ + σ2IM),
and the multiplication of yD by L̂−1MML̂

T .
In this work, we use the QR decomposition to compute

the Cholesky factor of X, which now allows for incremental
updates. QR decomposition of a matrix A ∈ RP×Q with
P ≥ Q is given by A = QR where Q ∈ RP×P is a unitary
matrix (i.e. QQT = Ip) and R ∈ RP×Q is upper triangular.

Define L̃ =
[
L̂T σIM

]T
, and consider L̃ = QR. Then,

we have RT = chol(X), because X = RTR and R is
upper triangular. It can be shown that the L̂−1MML̂

T term also
cancels, and the inference equations become:

µ∗SR = µ∗DTC = k∗T L̂−TMM R−1QTy

σ∗2SR = σ2k∗T L̂−TMM R−1R−T L̂−1MMk
∗

σ∗2DTC = k∗∗ − k∗T L̂−TMM L̂−1MMk
∗ + σ∗2SR .

(11)

Similar to exact inference, define p̂ = L−1MMk
∗
M, q̂ = QTyD,

and r̂ = R−1p. Then, the inference equations become:

µ∗SoR = µ∗DTC = r̂T q̂

σ∗2SoR = σ2r̂T r̂

σ∗2DTC = k∗∗ − p̂T p̂+ σ∗2SoR.

(12)

Therefore, performing sparse approximate inference is of
order O(M) given p̂, q̂, and r̂.

B. Insertion of a Data Point
1) Exact Case: Consider the insertion of data point d+ =
{x+, y+}. For simplicity, we only append data points to the
end of the covariance matrix:

K+ =

[
K k+

kT
+ k++

]
, (13)

Then, the Cholesky factor can be updated as [17]:

L+ =

[
L 0
l+ l++

]
, (14)

where l+ = (L−1k+)
T , and l++ =

√
k++ − lT+l+.

2) Sparse Case: For sparse inference, we need to update
the incomplete Cholesky factor L̂ and the QR decomposition
Q and R. We begin with L̂. Let k+ = [kT

M kT
(N−M) k++]

T

be the covariance vector to be added, and define
l̂M = L̂−1MMkM. A convenient criterion for deciding whether
a new point should be added to the active set is to use:

l̂2++ = k++ − l̂TM l̂M . (15)

The new point is added to the active set if l̂2++ > σ2
T , or the

inactive set otherwise. From a probabilistic perspective, the
criterion (15) is the predictive variance of the new point given
the current active set. A new data point is considered inactive
if it is almost certainly predicted by the existing active data
points (i.e. low variance). Numerically, (15) ensures that the
diagonals of L̂ are sufficiently greater than zero, which is
essential for stable computation of future updates. While it
is also possible to compute and use other criteria (e.g. [18])
through algebraic manipulations, we defer the use of other
criteria to future work for simplicity.

If the new point is decided as inactive, the update is simply
a row insertion L̂+ = [L̂T l̂M ]T . If it is active, the matrix is
updated as:

L̂+ =

 L̂ 0

l̂TM l̂++

L̂(N−M)M l̂(N−M)

 , (16)

where l̂(N−M) = l̂−1++(k(N−M) − L̂(N−M)M l̂M ).
Afterwards, the QR decomposition is updated. Note that,

whether active or inactive, the updates on L̂ are row and/or
column insertions. Equivalently, we need to compute the
QR decomposition after inserting row and/or column to
the augmented matrix L̃. Fortunately, this can be computed
efficiently with Givens rotations in O(M2) time.

C. Deletion of a Data Point

1) Exact Case: Consider the removal of a data point dj .
Divide L into block matrices as:

L =

 L11 0 0
lj∗ ljj 0
L31 l∗j L33

 . (17)

Let K(\j,\j) be the covariance matrix after removing the
jth row and column from K. Then, we have:

chol(K(\j,\j)) = L(\j) =

[
L11 0
L31 U

]
, (18)

where U = cu(L33, l∗j). cu(L,x) is the rank-1 update of L
with x, defined by cu(L,x) = chol(LLT + xxT ). Rank-1
updates can be performed in O((N−j)2) time using Givens
rotations.



(a) (b)

Fig. 1. An illustrative example for rank-1 update memoisation. Suppose di
had been temporarily removed previously in (a). Between (a) and (b), one
point was removed (blue), and another was added (yellow). If we attempt
removal of di again in (b), the red part of the matrix remains unchanged.
Best viewed in colour.

2) Sparse case: Again, in the sparse case, we need to
update L̂, Q and R. There are two possibilities. First, if the
data point being removed is inactive, then we simply need
to remove the corresponding row from the Cholesky factor.
Then, the QR factors are updated incrementally, through a
row deletion operation [19]. The row deletion operation is
of order O(M2).

If the data point is active, then a rank-1 update must be
performed on the Cholesky factor. The process is the same as
the usual rank-1 update, except that the Givens rotation need
not go beyond column M . Therefore, rank-1 update is of
complexity O((M−j)(N−j)). Because the contents of the
Cholesky factor has been modified, the QR decomposition
must be recomputed in full, which is of order O(NM2).

V. MEMOISATION OF ONLINE UPDATES

In this section, we present a memoisation approach that
reuses previous results of incremental updates described in
Sec. IV.

A. Cache Structure

Each GP expert is endowed with a cache to store previous
results of online updates that we will re-use later. The content
of the cache is as follows for the exact and sparse cases.

1) Exact case: For all data points di ∈ Dj currently asso-
ciated to the expert, we store L(\i), the result of temporary
removal for association testing, and q(\i) = L−1(\i)yD\{di}.

For all data points D (not necessarily in Dj), we store
p = L−1k. Most importantly, we store the discrepancy index
δi for all data points in D, which we define as the furthest
left (i.e. numerically lowest) column index of the data points
that have been removed from ej since the last update. The
predominant component of space complexity is the storage
of L(\i), which is of order O(N3).

2) Sparse Case: Similarly to the exact case, we store
L̂(\i) for all associated data points, and p̂ = L̂−1kM for
any data point. The discrepancy index δi is also stored, but
we only consider the column indices of the active data points
removed since the last update. The space complexity is of
order O(M2N) for storage of L̂(\i), where M is the size of
active set. With correct choice of threshold (15), M � N .

B. Temporary Removal

Let us first consider a simple example depicted in Fig. 1.
We would like to temporarily remove di for association test-
ing (Algorithm 1, Line 3). Suppose di has been considered

for removal previously, so that the previous result of rank-
1 update is already available in cache as L(\i) (the area
marked red in Fig. 1a). Since then, one data point, say d∗,
has been removed (marked blue in Fig. 1b, and another has
been added (marked yellow in Fig. 1b).

Recall from Sec. IV-C that removal of a data point affects
only the columns beyond, and insertion affects the rows
below. Therefore, changes are limited to the columns beyond
d∗, and the rows beyond the size of current cache. The
previous result in cache is valid up to the column where
removal occurred, and up to the row where the last update
was computed. More generally, if multiple points have been
removed since the last update, the rank-1 update result will
remain the same up to the furthest left (i.e. lowest) column
removed, which is precisely the discrepancy index δi we
stored in the cache.

Therefore, if δi > di, we can ‘hot-start’ the rank-1 update
from column δi onwards. This way, the complexity of the
rank-1 update is reduced to O((N − δi)2).

In the sparse case, the cache can help reduce complexity of
the temporary removal of active points (Sec. IV-C). Because
rank-1 update is identical in the sparse case, we can achieve
a similar reduction in complexity through ‘hot-start’. The
complexity is then O((N − δi)(M − δi)).

C. Likelihood Inference and Insertion

For exact inference, we need to update p and q in (3).
Similar to the case of rank-1 updates, the changes in the
Cholesky factor L are limited to the columns beyond the
discrepancy index δi. Further, the changes to the covariance
vector k or yD is limited to the rows beyond δi. Because L
is triangular, the solutions p and q also remain unchanged
above δi. We can use back-substitution to update only the
changed part of p. The complexity of solving for p is
reduced from O(N2) to O(N(N − δi)).

The same argument can be made for the update of p̂ in the
sparse case, because L̂MM also remains unchanged in columns
beyond δi. The complexity of solving for p̂ is reduced from
O(M2) to O(M(M−δi)). A difference is that q̂ and r̂ need
to be updated after the QR row/column insertion operations,
as all of Q and R change. Re-computing q̂ through matrix
multiplication is of order O(NM), and solving for r̂ is of
order O(M2).

For both exact and sparse inference, insertion requires
L−1k = p and L−1MMkM = p̂ respectively. In the context of
mixture updates, inference is always performed immediately
before insertion. Therefore, the cache entry for p and p̂ is
always up to date, and we can immediately re-use the result.

VI. EMPIRICAL STUDIES

In this section, we consider three applications of our
approach and demonstrate its benefits with experimental
evaluations. We consider naive and memoised versions of
exact and DTC inference, a total of four combinations. In the
‘naive’ version, the GP experts are updated incrementally, but
do not re-use previous results. In all applications considered,
we choose the threshold σ2

T used for sparse approximation to



(a) Raw data. (b) Association result.

(c) Computation time

Fig. 2. Application of Gibbs sampling for a synthetic data association
problem. In (b), Different colours represent association to a different GP. In
(c), amortised time is the average computation time per iteration, and total
time is the total for 100,000 iterations.

be equal to the noise variance σ2. In other words, if a data
point is more uncertain than the assumed noise model, it
is considered active. These combinations were implemented
using the Armadillo library [20].

Overall, memoisation provides a clear benefit in perfor-
mance over the standard exact approach to performing infer-
ence in GPs. We also show that incorporating memoisation
into a sparse approximation provides a synergistic benefit
when data size is large, but imposes a small overhead when
data sizes are more moderate.

A. DP Mixture of 1D GPs

We first consider a synthetic dataset generated from a
Dirichlet process (DP) mixture of GPs as a controlled
benchmark for the behaviour of amortised computation time
with dataset size. The DP prior is given by:

P(ej | E \ {ej}) ∝ ‖Dj‖,
P(e | e /∈ E) ∝ α,

(19)

where α ≥ 0 controls the generation of new experts. In other
words, a new sample is drawn from a particular GP expert
with probability proportional to its current size, and a new
GP expert are created with a non-zero probability. As such,
it is possible to generate, or associate with unknown number
of GP experts.

With the generated data, we used Gibbs sampling to solve
the data association problem. Gibbs sampling is a special
case of our template in Algorithm 1, where the expert prior
is set as DP (19), and selection is done by sampling. One
instance of the result is shown in Fig. 2, where it can be

(a) A frame from original video

(b) Trajectory of detected targets over time

(c) Result after Gibbs sampling

Fig. 3. Data association for multi-target tracking using the Parking Lot
dataset [21]. Combining Gibbs sampling with GPs allows solving not only
the data association problem, but also inference of missing measurements;
in (b) and (c), x and y are image coordinates.

seen that the Gibbs sampler correctly associates and infers
over the raw data.

The results in Fig. 2c show that memoisation consistently
provides around 50% speed-up in the sparse case, and around
60% in the exact case for larger dataset sizes. In terms
of total computation time, the naive exact method requires
around 20 seconds while memoisation requires 10 seconds.
Interestingly, the computation time for the exact inference
shows increasing deviation as the dataset size grows for both
memoised and naive case. Detailed profiling revealed that the
difference is due to memory allocation and manipulation.
This is consistent with the lack of variation for the sparse
cases, because the sparse inference requires much less mem-
ory. Regardless, memoisation consistently exhibits compu-
tational benefits even under deviations. Another interesting
pattern is that sparse inference is initially slower than exact
inference for smaller dataset sizes, but eventually becomes
faster for larger dataset sizes. This is as expected, because
for a smaller dataset size maintaining QR decomposition in
addition to the Cholesky factor incurs substantial overhead.

B. Multi-Target Tracking

To examine the computational benefits in a practical
scenario, we consider the example of data association and
tracking for multiple targets, a compelling application of
mixture of GPs. We consider the parking lot dataset in [21],
which provides detections of pedestrians in a surveillance



Fig. 4. Computation time of Gibbs sampling with varying dataset size for
multi-target tracking. Amortised time is the average time per iteration, and
total time is for all 50,000 iterations.

footage over time. An example frame from the video, and
the raw detection results provided by the dataset are shown
in Figs. 3a and 3b respectively.

We model the position of each pedestrian as a two di-
mensional GP over time, except with no correlation. This
allows modelling each component as separate GPs, which is
a straightforward extension from the benchmark example. As
before, we pose a DP prior on the GP experts (i.e. individual
pedestrians), and use Gibbs sampling to associate detections
to the correct targets. The result of Gibbs sampling is shown
in Fig. 3c. As can be seen, the Gibbs sampler can produce
correct associations between detection and pedestrians, and,
at the same time, generate a smooth trajectory through
inference.

We examined the behaviour of amortised computation
time of the Gibbs sampler with variation in dataset size
through downsampling. As shown in Fig. 4, memoisation
provides up to 100 % speed up (i.e. half the computation
time) for full inference, and around 50% speed up for sparse
inference. In terms of total computation time, memoisation
offers up to 200 seconds reduction. It is worth noting that
sparse inference scales worse for this application than the
benchmark case, and is in fact slower than exact inference.
This is because the measurements of each pedestrian are
already sparse, and numerous active points are produced for
sparse inference. In turn, these active points are temporarily
removed during the mixture update iterations, incurring a
large computational cost due to full re-computation of QR
decomposition, which is not covered by memoisation.

C. Pointcloud Segmentation

To examine the behaviour in a large, dense dataset, we
consider ground segmentation in pointcloud data. Similar to
GP-INSAC [22], we pose the problem as outlier detection by
modelling the height of the ground as a scalar GP over two
dimensions, and treating the non-ground objects as outliers.
Then, outlier detection can be solved as a special case of
Algorithm 1 with a simple Bernoulli distribution for expert
prior. We used a dataset containing a palm tree shown in
Fig. 5a, collected using a Riegl 3D scanner. An instance of

(a) Full pointcloud. (b) Segmentation result

(c) Computation time

Fig. 5. Ground segmentation. In (a), the color represents height. In (b), blue
is classified as ground, and orange is classified as outlier (i.e. an object). In
(c), amortised time is the average time per iteration, and total time is for
50,000 iterations.

the result is shown in Fig. 5b. It can be seen that the ground
is segmented correctly, with few erroneous classifications.

A comparison of amortised computation time is shown in
Fig. 5c. It can be seen that memoisation offers speed-up of
around 40% for exact inference, and around 70% for sparse
inference. In this application, sparse inference outperforms
exact inference, because pointcloud data is much denser
than the image data in the multi-target tracking application.
Further, it is worth noting that computation time of memoised
sparse inference is less than half of the naive exact case, with
6 second reduction in computation time. This demonstrates
that combining memoisation with existing sparse inference
methods can lead to substantial computational benefits, en-
abling the use of GP mixture models in practical applications
that are otherwise infeasible.

VII. CONCLUSION

In this paper, we have presented a memoisation approach
to increasing the efficiency of inference using GPs. Our
method achieves substantial speedup when combined with
sampling methods such as MCMC, where we must repeat-
edly add and remove points from one or more GPs. The
memoisation approach is orthogonal to the conventional
sparse approximation methods, and, as we have demon-
strated, can be combined with the conventional methods for
even greater computational benefit.

In the future, we would like to combine our memoisation
framework with more advanced variable reordering methods
such as [15]. Further, we would like to scale our approach to
bigger problem instances such as 3D multi-object segmenta-
tion [1, 6, 23].



REFERENCES

[1] F. Sukkar, G. Best, C. Yoo, and R. Fitch, “Multi-robot region-of-
interest reconstruction with dec-mcts,” in International Conference on
Robotics and Automation (ICRA), May 2019, pp. 9101–9107.

[2] H. van Hoof, O. Kroemer, and J. Peters, “Probabilistic segmentation
and targeted exploration of objects in cluttered environments,” IEEE
Trans. Robot., vol. 30, no. 5, pp. 1198–1209, 2014.

[3] L. L. Wong, L. P. Kaelbling, and T. Lozano-Pérez, “Data association
for semantic world modeling from partial views,” Int. J. Robot. Res.,
vol. 34, no. 7, pp. 1064–1082, 2015.

[4] V. Indelman, E. Nelson, N. Michael, and F. Delaert, “Multi-robot pose
graph localization and data association from unknown initial relative
poses via expectation maximization,” in Proc. of IEEE ICRA, 2014,
pp. 593–600.

[5] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[6] P. R. Soria, F. Sukkar, W. Martens, B. C. Arrue, and R. Fitch, “Multi-
view probabilistic segmentation of pome fruit with a low-cost rgb-d
camera,” in Iberian Robotics conference. Springer, 2017, pp. 320–
331.

[7] C. Stachniss, C. Plagemann, A. J. Lilienthal, and W. Burgard, “Gas dis-
tribution modeling using sparse gaussian process mixture models,” in
International Conference on Robotics Science and Systems, Robotics:
science and systems, 2008, Zürich, Switzerland, June 25-28, 2008,
vol. 4. MIT Press, 2008, pp. 310–317.

[8] R. M. Neal, “Markov chain sampling methods for Dirichlet process
mixture models,” J. Comput. Graph. Stat., vol. 9, no. 2, pp. 249–265,
2000.

[9] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of Gaussian
process experts,” in Advances in Neural Information Processing Sys-
tems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. MIT
Press, 2002, pp. 881–888.

[10] J. Shi, R. Murray-Smith, and D. Titterington, “Bayesian regression
and classification using mixtures of Gaussian processes,” Int. J. Adapt.
Control. Signal. Process., vol. 17, no. 2, pp. 149–161, 2003.

[11] E. Meeds and S. Osindero, “An alternative infinite mixture of Gaus-
sian process experts,” in Advances in Neural Information Processing
Systems 18, Y. Weiss, B. Schölkopf, and J. C. Platt, Eds. MIT Press,
2006, pp. 883–890.

[12] G. Wahba, Spline models for observational data. Siam, 1990, vol. 59.
[13] M. Seeger, C. Williams, and N. Lawrence, “Fast forward selection

to speed up sparse gaussian process regression,” in 9th Workshop on
Artificial Intelligence and Statistics, 2003.

[14] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros,
P. Morton, and A. Frenkel, “On the segmentation of 3D LIDAR point
clouds,” in Proc. of IEEE ICRA, 2011, pp. 2798–2805.

[15] F. R. Bach and M. I. Jordan, “Predictive low-rank decomposition for
kernel methods,” in Proceedings of the 22nd international conference
on Machine learning. ACM, 2005, pp. 33–40.

[16] L. Foster, A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rinsky,
C. Satyavolu, M. J. Way, P. Gazis, and A. Srivastava, “Stable and
efficient gaussian process calculations,” Journal of Machine Learning
Research, vol. 10, no. Apr, pp. 857–882, 2009.

[17] M. A. Osborne, S. J. Roberts, A. Rogers, S. D. Ramchurn, and
N. R. Jennings, “Towards real-time information processing of sensor
network data using computationally efficient multi-output gaussian
processes,” in 2008 International Conference on Information Process-
ing in Sensor Networks (ipsn 2008). IEEE, 2008, pp. 109–120.

[18] A. J. Smola and P. L. Bartlett, “Sparse greedy Gaussian process
regression,” in Advances in Neural Information Processing Systems
13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. MIT Press,
2001, pp. 619–625.

[19] S. Hammarling and C. Lucas, “Updating the qr factorization and the
least squares problem,” in Manchester University MIMS EPrints, 2008.

[20] C. Sanderson and R. Curtin, “Armadillo: a template-based C++ library
for linear algebra,” Journal of Open Source Software, vol. 1, p. 26,
2016.

[21] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, “Part-based
multiple-person tracking with partial occlusion handling,” in 2012
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2012, pp. 1815–1821.

[22] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros,
P. Morton, and A. Frenkel, “On the segmentation of 3d lidar point
clouds,” in Proc. of IEEE ICRA. IEEE, 2011, pp. 2798–2805.

[23] W. Martens, Y. Poffet, P. R. Soria, R. Fitch, and S. Sukkarieh, “Ge-
ometric priors for gaussian process implicit surfaces,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 373–380, April 2017.


	Clipboard Data(1)
	_ICRA_20__Cholesky_memoisation (1).pdf

