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Abstract — Wireless local area network (WLAN)
fingerprint-based localization has become the most at-
tractive and popular approach for indoor localization.
However, the primary concern for its practical implemen-
tation is the laborious manual effort of calibrating suf-
ficient location-labeled fingerprints. The Semi-supervised
extreme learning machine (SELM) performs well in
reducing calibration effort. Traditional SELM methods
only use Received signal strength (RSS) information
to construct the neighbor graph and ignores location
information, which helps recognizing prior information
for manifold alignments. We propose Composite SELM
(CSELM) method by using both RSS signals and location
information to construct composite graph. Besides, the
issue of unlabeled RSS data quality has not been solved.
We propose a novel approach called Composite semi-
supervised extreme learning machine with unlabeled
RSS Quality estimation (CSELM-QE) that takes into
account the quality of unlabeled RSS data and combines
the composite neighbor graph, which considers location
information in the semi-supervised extreme learning
machine. Experimental results show that the CSELM-QE
could construct a precise localization model, reduce the
calibration effort for radio map construction and improve
localization accuracy. Our quality estimation method can
be applied to other methods that need to retain high
quality unlabeled Received signal strength data to improve
model accuracy.

Key words — Wireless local area network (WLAN),
WiFi fingerprints, Radio map construction, Semi-
supervised extreme learning machine (SELM), Received
signal strength (RSS) data quality estimation, Location
based services.

I. Introduction
The Wireless fidelity (WiFi) fingerprint-based lo-

calization has become a popular approach due to its
wide deployment and availability of WiFi infrastructure.
Fingerprint-based indoor localization is generally divided
into offline phase and online phase. The radio map
preprocessing is involved in the offline phase as an
indispensable part in Ref.[1]. The offline phase constructs
a radio map by recording the signal strength from
different Access points (APs) in range and storing
this information in a database along with the known
coordinates of the mobile device. This phase involves
many calibration effort to collect the Received signal
strength (RSS) measures from all available access points
at each known location. These known locations are defined
as Reference points (RPs). The online phase estimates
user location by comparing the current real-time RSS
vector at an unknown location to those stored in the radio
map and returns the closest match.

Localization accuracy is influenced by the collection
density of radio map[2–4]. The heavy initial offline phase
needs to record the signal strength from large number
of RPs to construct an accurate radio map. Compared to
labeled data, the collection of unlabeled RSS data without
locations is relatively easy. Therefore, semi-supervised
learning can solve the problem by using large amount
of unlabeled data together with limited labeled data
to reduce human effort and offer higher accuracy. In
order to reduce the calibration effort of constructing
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the radio map and ensure high localization accuracy,
we propose the CSELM-QE (Composite semi-supervised
extreme learning machine with unlabeled RSS quality
estimation). The main contributions of this paper are
summarized as follows. First, we combine the semi-
supervised learning approach SELM (Semi-supervised
extreme learning machine) with the composite neighbor
graph that preserves the neighbor relations between
location space and RSS space to improve localization
accuracy and reduce data calibration effort at the same
time[5]. Second, we consider the quality of unlabeled RSS
data, which may bring noise to localization and design
a quality estimation method to select high quality RSS
data for SELM. Our Quality Estimation method can
also be applied to other unlabeled RSS data processing
algorithms, which need to retain high quality data to
improve model accuracy. Finally, we conduct sufficient
experiments in a real-world environment to prove that
our method can guarantee high localization accuracy
especially in the sparse environment compared with other
methods.

The remainder of the paper is organized as follows:
Section II reviews related works. Section III details the
basic algorithm used in the current study and introduces
the CSELM-QE approach. Section IV presents how to
select the parameters for indoor localization and the
comparative experimental results. Finally, Section V
draws the conclusion and future work.

II. Related Works
Many researchers have worked to reduce manual

effort in fingerprint-based localization. The common
method is based on machine learning, which is applied
in many fields, such as location-based recommendation
services[6]. Traditional methods are triangulation interpo-
lation, linear interpolation and Kriging interpolation[7].
However, when the fingerprints are sparse, these
methods can not capture the random properties such
as signal propagation characteristic, which leads to low
localization accuracy. Other regression-based methods,
such as Gaussian process regression and support vector
regression[8,9] estimate the expected RSS at non-site-
surveyed locations to reduce the site survey effort.

Compared with the labeled RSS data, the unlabeled
RSS data without locations are easily to collect.
Therefore, another research direction focuses on semi-
supervised manifold learning that utilizes a large number
of unlabeled and few of labeled RSS data to realize
localization without increasing calibration effort[10,11].
Liu et al.[12] proposed the SELM, which uses graph
Laplacian regularization to (Extreme learning machine)
ELM to train a precise model for localization. Zhou
et al.[5] used graph-based semi-supervised manifold

alignments for localization, which preserves the neighbor
relations of data both in signal and physical space. These
methods all import unlabeled data for manifold learning
and made a progress in reducing manual effort. However,
a large number of unlabeled data also bring noise in
semi-supervised manifold learning, which reduces the
localization accuracy.

Other researchers have used user traces with
unlabeled data and limited labeled data to improve
localization accuracy[13,14]. In addition, researchers have
tried crowdsourcing methods to collect training data
at low cost. The crowdsourcing methods collect RSS
measurements and use un supervised learning to estimate
locations[15,16]. Apart from using RSS measurements,
many of them use time stamps and inertial sensors
(e.g., accelerometer, compass, and gyroscope) embedded
in smart phones to collect the sensing data on step
number, direction, and angular rate. Rai et al.[17],

Yang et al. and Wu et al.[18,19] estimated the relative
locations of RSS measurements using inertial sensors and
obtaining the absolute locations by matching these users
traces with indoor map. Although these methods can
reduce the calibration effort to a certain extent, they
need to obtain the locations by relying on additional
sensors. In addition, they have problems with inaccurate
sensors, quality control and fusion of sensing data and
device diversity which could affect localization accuracy.
Several researchers focuses on data quality estimation
for crowdsensing. Liu et al.[20] trained a context-aware
classifier using historical data to estimate the quality
of sensing data based on the Gaussian mixture model
(GMM). Yang et al.[21] integrated quality estimation and
monetary incentive, and proposed a truth estimation and
surplus sharing method for crowdsensing environment.

Based on above works, we use the semi-supervised
learning method SELM to learn the semi-supervised
manifold and reserve location information to construct
neighbor graphs to train the learning model. In addition,
we take into account the quality of all the unlabeled
RSS data and propose the method CSELM-QE with data
quality estimation to improve localization accuracy.

III. CSELM-QE
This section first describes the problem we aim to

solve, and then introduces the basic theory of graph based
SELM algorithm. Secondly, we introduce the neighbor
graph incorporating the physical location relations of
labeled received signal strength data to improve Semi-
supervised extreme learning machine. Finally, we
introduce the method to evaluate the unlabeled received
signal strength data to filter the noised ones.

Our proposed algorithm can be summarized as shown
in Fig.1:
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1. Fundamental definition of proposed algo-
rithm

A localization process can be described as a
regression problem Y = f(x), the input variable is the
vector of received signal strength and Y is the physical
coordinate. And the problem is to train the regression
model f . For indoor localization, high accuracy needs
adequate calibration. Therefore, accurate localization
with low calibration effort is an important issue. Semi-

supervised machine learning methods have been applied
by importing large number of unlabeled received signal
strength data, which are easily collected. In addition,
the ELM is proved to be good at achieving regression
accuracy. To reduce the calibration workload, we use
the semi-supervised extreme machine algorithm combined
with composite graph construction and unlabeled RSS
data quality estimation to reduce manual effort and
ensure localization accuracy.

Fig. 1. The architecture of proposed algorithm

Suppose there are N reference points selected and
M WiFi access points visible in indoor areas. In
the offline phase, we calibrate l RPs in the target
environment and collect the corresponding RSS data as
xi = {rssi1, rssi2, . . . , rssiM } (1 ≤ i ≤ l), the physical
location as li = (pi, qi)

T. We refer to these data as labeled
RSS data. The users can hold mobile phones and walk
in the wireless environment to collect u RSS data with
unknown locations as the unlabeled RSS data. By setting
l and u as the number of labeled data and unlabeled data
respectively, the input signal space can be represented
as X = {x1, x2, . . . , xl+u}, and the output matrix T =

{l1, l2, ..., ll+u} ∈ R(l+u)×2. These data definitions are
used in the following methods in our algorithm.

2. Basic methods
1) Semi-supervised extreme learning machine
Huang et al.[22] proposed ELM as a novel learning

method. It is a Single hidden layer feedforward neural
network (SLFN). The output of a neural network with L

hidden nodes can be represented as follows:

fL (xi) =

L∑
i=1

βiG (ai, bi, xi) , i = 1, 2, . . . , N

s.t. ai ∈ Rn, bi ∈ R, βi ∈ Rm

(1)

where n is the input dimension and m is the output
dimension. βi is the output weight and G (ai, bi, xi) =

g (ai · xi + bi) is the output of the ith hidden neuron
where ai is the input weight vector, bi is the bias
and g (x) is the activation function. Generally, a and
b are initialized randomly, the activation function g (x)

can be sigmoid function. The training set {(xi, li) |i =

1, 2, . . . , N} includes N input vectors and output vectors.
Training the model is equivalent to solving a least-squares
solution of the linear system: Hβ = T , where

H =

 G (a1, b1, x1) . . . G (aL, bL, x1)
... . . . ...

G (a1, b1, xN ) . . . G (aL, bL, xN )


N×L

(2)

β =

 βT
1
...
βT
L


L×m

, T =

 lT1
...
lTN


N×m

(3)

By minimizing the error between the real and expected
output: β = argminHβ − T , the solution is:

β = H†T (4)
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H† is the Moore-Penrose generalized inverse of the hidden
layer output matrix.

Based on the spectral graph theory, we construct a
neighbor graph G using the KNN (K-Nearest Neighbor)
approach. The weight Wij indicates the similarity between
vertices vi and vj in G, which will be further analyzed
in next section. We set Eq.(5) as the objective function
to preserve the neighbor relations (i.e., smoothen the
manifold), where λ is a relative weight. vi and vj are the
observed function values on vertex i and j respectively.

minλ
l+u∑
i,j=1

||vi − vj ||22 Wij (5)

The objective function can be rewritten as:

minλvTLv (6)

where L is the Laplacian matrix which can be computed
as L = D − W , and D is the diagonal matrix given by
Eq.(7):

Dii =
l+u∑
j=1

Wij (7)

2) The construction of a composite neighbor graph
The conventional way of constructing G in SELM is

to connect every two-neighbor RSS data items. This does
not consider the location information of labeled data. The
physical location information can help to recognize the
prior information for semi-supervised manifold alignment,
which is important for constructing a neighbor graph.
The corresponding weights are as follows:

Wr (i, j) =

{
e−

∥xi−xj∥2

θr , xi and xj are connected
0, otherwise

(8)

W l
lol (i, j) =

{
e
−

d(li,lj)
2

θd , li and lj are connected
0, otherwise

(9)

where d (li, lj) is the Euclidean distance between location
coordinate li and lj , θr and θd are the kernel parameters
which will be determined by the experimental test. The
weight matrix Wr is constructed by all (l + u) RSS data
and W l

lol is constructed by l labeled locations. Then we
represent Wr as Eq.(10) and the weight matrix for labeled
and unlabeled RSS data as Eq.(11):

Wr =

[
W l

r W lu
r

Wul
r Wu

r

]
(l+u)×(l+u)

(10)

{
W l = αW l

r + (1− α)W l
lol

Wu = Wu
r

(11)

where α ∈ [0, 1] is a trade-off coefficient. Then we

construct the final composite Laplacian matrix Lc:

Lc =

[
Ll 0

0 Lu

]
+ µLlu

r (12)

Ll = Dl −W l, Lu = Du −Wu (13)

where µ is the parameter for Laplacian operator, W l

is the weight of l labeled RSS data, Wu is the weight
of u unlabeled RSS data respectively, Dl and Du are
the diagonal matrixes computed like Eq.(7), and Llu

r is
constructed between l labeled RSS data and u unlabeled
RSS data, see Ref.[5] for details.

3. CSELM-QE model
1) CSELM: Composite neighbor graph with SELM
We combine SELM with the above-described

composite neighbor graph to optimize localization by
minimizing the sum of the square loss function and the
smoothness penalty as Eq.(14):

arg min
q

1

2

{
v − T 2 + λvTLcv

}
(14)

plug v = Hβ caused by ELM from Eq.(4), we get:

argmin
β

= argmin
β

1

2

{
JHβ − T 2 + λ(Hβ)

T
LcHβ

}
(15)

For the convenience of calculation, J is imported as a
diagonal matrix, where the first l diagonal entries are 1
and others are 0. Similarly, the first l elements of T are
the true coordinates and the rest u elements are 0. By
setting the derivative of objective function to zero, we
have β =

(
J + λLT

c

)
H)−1JT and then the outputs of

unlabeled RSS data can be estimated.
In the above algorithm, the unlabeled RSS data are

collected by walking along the corridors and can be easily
affected by environmental changes. Therefore, not all the
unlabeled data are trusted. We use the quality estimation
method to choose the credible unlabeled RSS data and
filter the distrusted data to improve the model accuracy.
We first use the Affinity propagation (AP) clustering
algorithm[23] to put all the unlabeled RSS data into
clusters. For each unlabeled RSS data item, we calculate
the quality and filter the data whose quality value is lower
than a predetermined threshold in every cluster.

2) CSELM with quality estimation
We use the outlier detection method to filter the

unlabeled RSS data that are far away from the cluster
centroids. We define the distance threshold r to determine
if a data item is the neighbor to another. For each
data xj,k = {rssi1, rssi2, . . . , rssiM} in a cluster Xk =

{x1,k, x2,k, . . . , xn,k}, we calculate the number of its
neighbors within the distance threshold. If most of the
data items are far away from xk, then xk is regarded as
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an outlier. The equation is as follows:

{xj,k|dist (xi,k, xj,k) ≤ r}
|Xk|

≤ γ (16)

where dist is the Euclidean distance between two data
items, threshold γ is a fraction. By calculating the
number of neighbors, we can delete the outliers for quality
estimation. The outliers will be saved into the abnormal
data set NA

k and others into NN
k .

For all data in NN
k , we need to calculate the data

qualities Qk = {q1,k, q2,k, . . . , qm,k} in the kth cluster.
We define the centroid of a cluster as ωk that minimizes
the sum of the weighted squared distance between ωk and
other data. This is shown in Eq.(17):

ωk = argmin
ωk

m∑
i=1

{
dist2 (ωk, xi,k)× qi,k

}
(17)

The quality is determined on the basis of the deviation
di,k from the cluster centroid, data with higher quality is
closer to the centroid. We then set the quality threshold
ξ to filter the unlabeled RSS data with lower quality.

di,k = dist2 (wk, xi,k) (18)

The distance threshold r, threshold γ and quality
threshold ξ are set by single variable method according
to experimental result in Section IV. The pseudo code is
shown in Algorithm 1.

The use of ε is to make sure that the equation makes
sense when di,k = 0. By selection, the unlabeled RSS
data with higher quality will be saved as the final selected
data set Xc for the CSELM algorithm. Our final radio
map consists of limited labeled RSS data and high quality
unlabeled RSS data, which compensate for the sparsity of
raw radio map and enhance its robustness.

IV. Experiment and Analysis
1. Experimental setup
The experiment is implemented on the 3rd floor

of No.13 teaching building in Shandong University of
Science and Technology, the area of corridors is about
60m by 30m. We developed an application for a mobile
device (Android 4.4) to collect the RSS data. For the
training data set, we collected 20 samples at each location
and there are 2 seconds of time interval between two
consecutive RSS measurements. This method can reduce
the i of signal fluctuation. These data are used as the
labeled data, and the unlabeled data are collected by
walking along a predefined path. There are in total 30
APs selected to cover the whole positioning area and
a Samsung Galaxy S4 smart phone is selected as the
receiver to collect the RSS data. In the experiments,

although we do not need all the training data in the
actual implementation, we collected all labeled RSS data
at 100 reference points and used different percentages of
them as a training data set to verify the performance of
our proposed algorithm. And we collected another 150
labeled RSS data as test points and 1200 unlabeled data
by walking along a predefined path in the corridor.

Algorithm 1 Quality estimation of unlabeled RSS data
Input: Clusters of unlabeled RSS data set Xk =

{x1,k, x2,k, . . . , xn,k, k = 1, 2, . . . ,K};
Output: Selected data set Xc;

1 //Outlier Detection
2 Initialize NN

k ← Φ, NA
k ← Φ

3 for i← 1 to n do
4 count ← 0
5 for j ← 1 to n and j ̸= i do
6 if dist (xi,k, xj,k) ≤ r then
7 count← count+ 1

8 end
9 if count ≥ γn then NN

k ← NN
k ∪ {i}

10 else NA
k ← NA

k ∪ {i}
11 end
12 //Quality estimation process
13 qi,k ← 1

m
, i ∈ NN

k

14 while not converged do
15 ωk = arg min

ωk

m∑
i=1

{
dist2 (ωk, xi,k)× qi,k

}
16 for each i ∈ NN

k

17 di,k = dist(ωk, xi,k)
2

18 end
19 λ =

m∑
i=1

di,k

20 update qi,k =

1
di,k
λ

+ε∑m
j=1

1
di,k
λ

+ε

, i ∈ NN
k

21 end
22 Xc ← {xi,k} if qi,k > ξ

2. Parameter comparison of neighbor weight
In order to get the optimal parameters for the

construction of the neighbor weight, we conduct the
comparative experiments under different parameters. We
use the Euclidean distance to evaluate the localization
error, the equation is as below:

error =

√
(p− p̂)

2
+ (q − q̂)

2 (19)

where (p, q) is the real location coordinate and (p̂, q̂) is
the estimated location coordinate. Clearly, the smaller
the error is, the higher the localization accuracy is.
We compare four parameters including µ, α, θr, θd for
construction of the neighbor weight. The neighbor
number k is six. We use 2500 hidden neurons and 50
percent of all the labeled training data set and 1200
unlabeled data set to train the SELM model with a



CSELM-QE: A Composite Semi-supervised Extreme Learning Machine with Unlabeled RSS Quality Estimation... 1021

composite neighbor graph matrix, and 150 test points are
used for localization to obtain the optimal parameters.

As shown in Fig.2(a), two parameters affect the ratio
of weights including the weight for physical locations and
the weight for RSS data. By analyzing their impacts,
we can choose the most effective parameters to improve
localization accuracy. After obtaining the optimal interval
of α and µ, we use the single variable method to make α

and µ gradient from 0.1 to 1 and 1 to 10 respectively.
When α = 0.8 and µ = 10, we obtain the lowest
localization error.

Fig. 2. Localization error under different parameters. (a)
Localization error vs. parameters α and µ; (b)
Localization error vs. parameters θr and θd

In addition, for the selection of kernel parameters θr
and θd, we conduct several experiments and obtain the
localization error as shown in Fig.2(b). θr and θd adopt
the same method as α and µ to obtain the optimal value.
The localization error decreases and then fluctuates with
the increases of value θr, and the lowest error is obtained
when θr = 6. And we set θd = 0.5 to acquire higher
localization accuracy according to the final experimental
results.

3. Unlabeled RSS data quality analysis
1) The parameters of RSS data quality estimation
Because we collect the unlabeled RSS data by

walking along the corridors, the collected RSS data are

not all effective for localization due to signal fluctuation.
We conduct 5 random experiments and get the final
average result to reveal the effect of different numbers of
unlabeled data. We use 10 percent of the labeled reference
points as the training set and different numbers (0, 50,
100,...,1200) of unlabeled RSS data to train the CSELM
model to obtain the locations of 100 test points. Fig.3
presents the average results of the localization error with
respect to the number of unlabeled data. As unlabeled
RSS data increases, the localization error shows irregular
changes. This result reveals that not all the unlabeled data
is effective for localization. Therefore, it is necessary to
evaluate the quality of all unlabeled RSS data and select
the high quality data to improve localization accuracy.

In the process of quality estimation, we first use the
Affinity Propagation clustering algorithm to cluster all
the unlabeled RSS data according to RSS similarity. This
is computed from the Euclidean distance. For each cluster,
we evaluate the data quality using our Quality Estimation
method and obtain the final preserved unlabeled data
set for localization. In the quality estimation, there are
two parameters affecting the selection of unlabeled data.
We use 50 percent of the labeled reference points as
the training set and all unlabeled RSS data to obtain
the optimal parameters for our proposed CSELM-QE
algorithm. We conduct the comparative experiments
between γ and r which affect the neighbor selection and
neighbor number. After obtaining the optimal interval of
γ and r we use the single variable method to make γ and r

gradient from 0.1 to 0.9 and 2 to 20 respectively. Finally,
the lowest localization error is obtained when γ = 0.8 and
r = 20.

Fig. 3. The localization error with respect to the number of
unlabeled RSS data

2) Experimental results of quality estimation
In order to verify the effectiveness of the Quality

Estimation method, we use the above-obtained optimal
parameters and conduct the comparative experiments
of unlabeled RSS data after quality estimation and all
unlabeled data. We use different percentages of labeled
RSS data to compare the results from selecting the
high quality unlabeled data using our proposed method
CSELM-QE and all unlabeled data. Fig.4 shows the
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average localization results against the percentages of
labeled RSS data. We can see that our model with the
Quality Estimation method performs better no matter
how many percentages of labeled RSS data is used
compared to the results using all the unlabeled RSS data.

4. Localization performance
To verify the localization performance of using

the proposed radio map and other existing methods
constructed by SELM[12], GrassMA[5], Kriging[7], LGP[8]

and fingerprint-based method, we use 10 percent of
labeled RSS data and all unlabeled data to do the
localization. The results are shown in Fig.5. In Fig.5(a),it
is clear that our proposed CSELM algorithm outperforms
the others. Besides, we add the Quality Estimation
to SELM and GrassMA, which both use unlabeled
RSS data. In Fig.5(b), we can see that the SELM-QE
and GrassMA-QE outperform the original SELM and
GrassMA methods respectively. The improvement for

GrassMA is not obvious because its model is not very
dependent on unlabeled RSS data, but SELM improves
remarkably. The main probability of localization error is
shown in Table 1.

Fig. 4. Average localization error against the percentage of
labeled RSS data

Table 1. Comparison of different algorithms under 10 RPs

Algorithm Cumulative probability(Error < 2m) Average error(m) CEP(m) CE95(m)
CSELM 36.8% 3.23 2.80 8.03
SELM 11.2% 4.72 4.29 10.14

GrassMA 25.8% 3.87 2.85 10.27
Kriging 26.2% 4.39 3.09 9.18

LGP 15.3% 4.69 4.51 9.22
Fingerprint-based method 0% 13.97 12.02 22.96

CSELM-QE 42.6% 2.87 2.20 7.51
SELM-QE 35.8% 3.42 2.79 8.91

GrassMA-QE 28.0% 3.63 3.02 8.43

Table 2. Average localization error under different percentages of labeled data

Percentage CSELM-QE CSELM SELM GrassMA Kriging LGP Fingerprint-based
10% 2.97 3.56 4.57 4.43 4.26 5.16 15.67
20% 2.05 2.47 3.41 3.27 2.47 3.66 9.72
30% 1.79 2.25 2.86 2.91 2.15 2.25 5.29
40% 1.64 2.01 2.69 2.07 1.92 2.04 3.61
50% 1.52 1.92 2.41 1.82 1.81 1.67 2.37
60% 1.46 1.75 2.57 1.61 1.68 1.53 2.34
70% 1.42 1.68 2.46 1.53 1.67 1.52 2.11
80% 1.42 1.64 2.26 1.56 1.62 1.50 1.96
90% 1.41 1.62 2.29 1.52 1.51 1.50 1.82
100% 1.41 1.62 2.25 1.51 1.49 1.49 1.81

The Circular error probable (CEP) indication is
defined as the smallest error radius of circle centred
at the origin that encloses 50% of test data set. And
Circular error 95% (CE95) is similar to CEP that
encloses 95% of test data set. First, our CSELM method
improves localization accuracy than the SELM algorithm
about 31.5%. Second, we combine the Quality Estimation
method with CSELM, which improves localization
accuracy about 39.2% compared to SELM. This result
reveals that the Quality Estimation method is effective
for improving localization accuracy. Compared with the
basic fingerprint-based method, our algorithm improves

about 79.5% without increasing the calibration effort for
labeled RSS data. For Average error, CEP and CE95, our
CSELM-QE outperforms others.

In addition, we do five random experiments and
obtain the average localization error to demonstrate the
localization performance based on different percentages of
labeled RSS data. We choose labeled RSS data in different
percentages randomly and use them for different methods.
The localization error gradually decreases as the labeled
RSS data increases. As shown in Table 2, our proposed
method performs better no matter what percentage of
labeled data is used.
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(a) (b)

Fig. 5. The CDF of localization error using different methods; (a) Localization error between different
methods; (b) Localization error after using Quality Estimation.

V. Conclusions
This paper investigated a new method to reduce

the effort in radio map construction without sacrificing
localization accuracy. By incorporating the physical
relations of labeled RSS data, the constructed neighbor
graphs include more information for semi-supervised
learning. The effects of noise measurements caused
by the unlabeled RSS data are reduced by adding
a quality estimation method. These high quality data
help in improving localization accuracy. Experimental
results verify that combining composite neighbor graph
and quality estimation can bring good performance on
localization accuracy and robustness especially when the
labeled data is sparse. In addition, our Quality Estimation
method can be applied to other methods which need to
retain high quality unlabeled RSS data to improve model
accuracy. In the future, we intend to apply our method
to the unsupervised approach to further reduce the
calibration effort while keeping high localization accuracy.
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