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Abstract

In this paper, we define the Pell-Pell p-sequence and then we discuss
the connection of the Pell-Pell p-sequence with Pell and Pell p-sequences.
Also, we provide a new Binet formula and a new combinatorial repre-
sentation of the Pell-Pell p-numbers by the aid of the nth power of the
generating matrix the Pell-Pell p-sequence. Furthermore, we obtain an
exponential representation of the Pell-Pell p-numbers and we develop
relationships between the Pell-Pell p-numbers and their permanent, de-
terminant and sums of certain matrices.

1 Introduction

The well-known Pell sequence {P,} is defined by the following recurrence
relation:

Poio=2P,11+ P, for n > 0 in which Py =0 and P, = 1.

The generalized Pell (p, i)-numbers {P, (n)} for any given p (p =1,2,3,...) is
defined [14] by the following recurrence equation:

PZS’) (n) = 2P1§’) (n—1)+ PZE") (n—p—1)

for n > p+1 and 0 <4 < p, with initial conditions P]Ei) (1) =

and P (i+1) = - = P (p+1) = 1. When i = 0 and

=P (i)=0
p = 1, the
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generalized Pell (p,i)-numbers {P, (n)} is reduced to the usual Pell sequence
(P},

It is easy to see that the characteristic polynomials of the Pell sequence
and the Pell p-sequence are fi () = 22 — 2z — 1 and fo () = 2PT! — 22P — 1,
respectively. We use these in the next section.

Let the (n+ k)th term of a sequence be defined recursively by a linear
combination of the preceding k terms:

Aptk = CoQp + C1Ap41 + - + Ck—10nyk—1

in which ¢, ¢q, ..., cx—1 are real constants. In [13], Kalman derived a number
of closed-form formulas for the generalized sequence by the companion matrix
method as follows:

Let the matrix A be defined by

o 1 0 --- 0 0
o o0 1 --- 0 0
o 0 o0 . 0 0
A= [al}j}kxk = .
0 0 0 0 1
| Co C1 C2 Ck—2 Ck—1 |
then
ao Qn,
ai Gn41
A" . =
ar—1 Ap4k—1
forn > 0.

Number theoretic properties such as those obtained from homogeneous
linear recurrence relations relevant to this paper have been studied recently
by many authors: see for example, [2, 5, 8 9, 10, 11, 12, 21, 22, 23, 26].
In [1, 6, 7, 14, 15, 16, 17, 18, 24, 25, 27], the authors defined some linear
recurrence sequences and gave their various properties by matrix methods.
In this paper, we discuss connections between the Pell and Pell p-numbers.
Firstly, we define the Pell-Pell p-sequence and then we give recurrence relation
among this sequence, the Pell and Pell p-sequences. Also, we give the relations
between the generating matrix of the Pell-Pell p-numbers and the elements of
the Pell and Pell p-sequences. Furthermore, using the generating matrix of
the Pell-Pell p-sequence, we obtain some new structural properties of the Pell
p-numbers such as the Binet formula and the combinatorial representations.
Finally, we obtain an exponential representation of the Pell-Pell p-numbers
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and we derive relationships between the Pell-Pell p-numbers and their sums,
and permanents and, determinants of certain matrices.

2 The Main Results

Now we define the Pell-Pell p-sequence by the following homogeneous linear
recurrence relation for any given p(3,4,5,...) and n >0

PP =APVE L, —3PVP L — 2P0 + PV — 2PV — PPP (1)

n+p+3 — n+p+2 n+p+1 n+p n+1
: ; Pp _ . _ pPp _ Pp _
in which Py =--- =P,y =0and Py = 1.

First, we consider the relationship between the above the Pell-Pell p-
sequence, Pell and Pell p-sequences.

Theorem 2.1. Let P, P, (n) and PPP be the nth Pell number, Pell p-number
and Pell-Pell p-numbers, respectively, then

Po= P, =PI+ Py p—1)
forp >3 andn > 0.

Proof. The assertion may be proved by induction on n. It is clear that Py =
P:fi — P(f’p + P,(p—1) = 0. Suppose that the equation holds for n > 0.
Then we must show that the equation holds for n+ 1. Since the characteristic
polynomial of the Pell-Pell p-sequence {P,IlD ’p}, is

q(x) = 2P — 4xPt2 4 3Pt 4 22P — 22 4 22 4+ 1

and
q(z) = f1(z) f2 (2)

where f (z) and f5 (x) are the characteristic polynomials of the Pell sequence
and the Pell p-sequence, respectively, we obtain the following relations:

Potpys =4Pnipi2 —3Ppipi1 — 2Paqp + Poyo — 2P — P
and

P,(n+p+3)=4P,(n+p+2)-3P, (n+p+1)—2P, (n+p)+P, (n+2)—2P, (n+ 1)—P, (n)

for n > 0. Thus, the conclusion is obtained. O]
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From the recurrence relation (1), we have

4 -3 -2 0 0 01 -2 -1
1 0 0 0 00 0 O 0
pPo 0 1 0 0 000 0 0 pPp
PR o 010 000 0 0 PP
mpel 110 0 0 1 - 000 0 0 o2
Poip S N N
- 00 0 0 100 0 0 .
Py 0 0 0 0 010 0 0 Puih
0 O 0 0 0 01 O 0
0 0 0 0 000 1 0 |
for the Pell-Pell p-sequence { P/'P}. Now we define
[ 4 -3 -2 0 001 -2 —11]
1 0 0 0 0 0 0 O 0
0 1 0 0 0 0 0 O 0
0 0 1 0 0 0 0 O 0
0 0 0 1 0 0 0 O 0
Ap = : - : :
0 0 0 0 1 0 0 O 0
0 0 0 0 01 0 0 0
0 0 0 0 0 01 0 0
[0 0 0 0 - 000 1 0 | oo
The companion matrix A, = [aivj](p-‘,-S)X(p—‘rS) is said to be the Pell-Pell p-

matrix. For more details on the companion type matrices, see [19, 20]. From
induction on n, we get

P,p P,p P,p
P%+p+2 4P A 1+ Pnt Prpi —2P”+p1;r1 + Pp(n+1) Pp (n + 2)
,D .P < \D
Pn#};p;rl _4P;+p + Ppn—1+ Pn_p _}j}:?n+p+Pp () Pp (n +1)
" Pn_"_p *4Pn-‘¢-p—1 +Pp_o+ Pp_p_1 72Pn_;_p_1+Pp (n—1) Pp (n) A;
(Ap)™ =
P:fl —aPPP 1P, L 4Py g, —2PPP 4 Py (n = p) Pp(n—p+1)---

P,p P,p P,p
P;, —4P P 4+ P, o+ Py oy 1 —2P P + Pp(n—p—1) Pp (n — p)
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for n > 2p + 1, where

r P, P, P, T
P, (n+p-1) _2P%+I;+1 _PF)n-i-pp _Pn+p+1
A* — PP (n +p— 3) _2Pn-£)—1 - Pn—i-pp—Q _Pn—f;)—l
P . . .
Pyn-2)  —2pPr PP _pPs
P, (n—3) —2P7h — P, P

It is clear that detA, = (—1)P*1.

In [14], Kilic gave a Binet formula for the Pell p-numbers by matrix method.
Now we concentrate on finding another Binet formula for the Pell-Pell p-
numbers by the aid of the matrix (A,)".

Lemma 2.1. The characteristic equation of all the Pell-Pell p-numbers xP+3 —
4xP+2 4 3P+ 4 22P — 22 + 22+ 1 = 0 does not have multiple roots for p > 3.
Proof. Tt is clear that xP+3 —4xP+2 43P 4207 — 224+ 220+1 = (prrl — 22P — 1)
(2 — 2z —1). In [14], it was shown that the equation 2P™' — 227 — 1 = 0
does not have multiple roots for p > 1. It is easy to see that the roots of
the equation 22 — 22z — 1 = 0 are 1 + v/2 and 1 — V2. Since (1+ \/ﬁ)p+1 -
2(1+v2)" —1#0and (1-v2)"" =2(1=v2)" =1 # 0 for p > 1, the
equation zP+3 — 42P+2 4 32PT1 4 227 — 22 + 224 1 = 0 does not have multiple
roots for p > 3. O

Let 21, 7a,...,2pr3 be the roots of the equation zP+3 — 42P+2 4 3P+ +
22P — 2% + 2z +1 =0 and let V,, be a (p+ 3) x (p + 3) Vandermonde matrix
as follows:

(fﬂl)p+j (12)p+i e ($p+3)p+i
(z)P" (z)P" (p43)""
v, = :
T T2 . Tp+3
1 1 .. 1

Assume that V), (¢,7) is a (p +3) x (p + 3) matrix derived from the Vander-
monde matrix V,, by replacing the j** column of V,, by W, (i), where, W, (4)
is a (p + 3) x 1 matrix as follows:
(xl)n+p+37i
n+p+3—1
T2
| @

(xp+3)n+p+3_i
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Theorem 2.2. Let p be a positive integer such that p > 3 and let (Ap)" =
[agg’n)] forn > 1, then
a(.Pj") _ det Vlﬂ(iyj)
J det V,

Proof. Since the equation xzP*3 — 42P2 4+ 3P+ 4 227 — 22 + 224+ 1 = 0
does not have multiple roots for p > 3, the eigenvalues of the Pell-Pell p-
matrix A, are distinct. Then, it is clear that A, is diagonalizable. Let D, =
diag (x1,%2,...,%pts), then we may write A,V, = V,D,. Since the matrix
Vp is invertible, we obtain the equation (Vp)_1 ApV, = Dyp. Therefore, A, is
similar to Dp; hence, (4,)" V, =V, (D,)" for n > 1. So we have the following
linear system of equations:

n 2 7 1 n n 3—i
e o e
a7 (22)"" 4 a p’ (902)p o taly = (2)"TTTT

N 2 n i n n 3—i
az(ﬁ )(»Tp )p+ +a(p )($p+3)p+ +oee +a£f;+)3 = (¥p+3) MR
Then we conclude that o
() det ‘/';Zv])
al =P
b det V,,
foreach 7,5 =1,2,...,p+ 3. [

Thus by Theorem 2.2 and the matrix (A4,)", we have the following useful
result for the Pell-Pell p-numbers.

Corollary 2.3. Let p be a positive integer such that p > 3 and let PPP be the
nth element of Pell-Pell p-number, then

detV, (p+3,1)

PPP =
" det V,
and
PP,p _ _det VP (p + 27p+ 3)
noo det V,,
forn > 1.

It is easy to see that the generating function of the Pell-Pell p-sequence
{PI?} is as follows:

Pt2

1 —4x + 322 + 223 — xPT1 4 2P +2 4 gp+37

(p)( ) =
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where p> 3.
Then we can give an exponential representation for the Pell-Pell p-numbers
by the aid of the generating function with the following Theorem.

Theorem 2.4. The Pell-Pell p-sequences {Pf’p} have the following exponen-
tial representation:

o] 7 .

g?) (x) = 2P exp <Z @ (4 — 3z — 222 + 2P — 2P — xp+2)l> ,

)
i=1

where p= 3.

Proof. Since

Ing® (z) =nzP*2 —In (1 —da + 32° + 22° — 2P + 22712 4 2P H3)

and
—ln(1—4m+3m2+2x3—zp+1+2rp+2+rcp+3):—[—m(4—3m—2x2+mp—2mp+l—rcp+2)—
1 2 1 i
5:32 (473w72z2+wp72wp+17wp+2) 7-~-7fa:1 (473x72w2+a:p72a:p+17:vp+2)17

i

it is clear that

i

g(p) (z) = P2 exp (Z (L) (4 — 3z — 222 + 2P — 2P — m”"‘?)i)
i
i=1

by a simple calculation, we obtain the conclusion. O
Let K (ki,ka,...,ky) be a v X v companion matrix as follows:
ki ke -k
10 0

K (k1,koy ... ky) =
0 -~ 1 0
Theorem 2.5. (Chen and Louck [4]) The (i,7) entry kz(?;) (k1, ko, ..., ky) in
the matriz K™ (k1, ke, ..., ky) is given by the following formula:

n t'+t'+1+"'+tv t1+"'+tv

K™ ey, ko k) = it y )kn...ktv

ERE <t1§.t>t1+t2+“'+tv bty )
(2)

where the summation is over nonnegative integers satisfying t1 + 2to + --- +

. . tr4etty)! - . . .
vt, =n—1+7, (tij tt“) = (1;,7'[,) is a multinomial coefficient, and the

coefficients in (2) are defined to be 1 if n =i — j.
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Then we can give other combinatorial representations than for the Pell-Pell
p-numbers by the following Corollary.

Corollary 2.6. i.

pbr — Z ty+t2+ -+ tp+3 4t (_3)752 (_2)t3+tp+2 (_1)tp+3 (n > 1)
! t13t27~~~7tp+3 ’ =
(t1,t2,... tpt3)

where the summation is over nonnegative integers satisfying t1 + 2to + --- +
(p+3)tprs=n—p—2.

Pp _ tp+3 titto 4t 3\ 4y ovto o ovtat ot
PP = > —t1+t2+-~-+tp+3x( bt )41( 3)'2 (—2)tattpt2 (_1)ip+3
(t1:t2,stpt3)
n > 1, where the summation is over nonnegative integers satisfying t1 + 2ts +
o+ (p+3)tprs =n+1.

Proof. If we take i = p+ 3, j = lfor the casei. and i =p+2, j =p+3
for the case ii. in Theorem 2.5, then we can directly see the conclusions from
(A)". O

Now we consider the permanental representations for the Pell-Pell p-numbers.

Definition 2.1. A ux v real matriz M = [m, ;] is called a contractible matric
in the k™ column (resp. row.) if the k" column (resp. row.) contains exactly
two non-zero entries.

Suppose that zi, x2, ...,z, are row vectors of the matrix M. If M is
contractible in the k'™ column such that m; x # 0,m;; # 0 and i # j, then
the (u — 1) x (v — 1) matrix M;;.;, obtained from M by replacing the i'! row
with m; x; + m; z; and deleting the j*® row. The k'™ column is called the
contraction in the £*® column relative to the i* row and the ;' row.

In [3], Brualdi and Gibson obtained that per (M) = per (N) if M is a real
matrix of order > 1 and N is a contraction of M.

Now we concentrate on finding relationships among the Pell-Pell p-numbers
and the permanents of certain matrices which are obtained by using the gen-
(p)

erating matrix of the Pell-Pell p-numbers. Let P,l,ip = [pi } be the m x m
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super-diagonal matrix, defined by

4 ifi=rand j=rforl <r<m,
ifi=r4+landj=rforl1<r<m-1
1 and
i=randj=r+pforl <r<m-—p,
-1 fi=randj=r+p+2forl<r<m-—p-—2,
pz('fjj): ifi=randj=r+2for1<r<m-—2 , form = p+3.
-2 and
i=rand j=r+p+lforl<r<m-p-—1,
-3 ifi=randj=r+1lforl<r<m-1,
0 otherwise.

Then we have the following Theorem.

Theorem 2.7. Form >p—+3,

P P,
perP, , = Pm-{-)p+2'
Proof. Let us consider the matrix Pnlz’p and let the equation be hold for m >
p + 3. Then we show that the equation holds for m + 1. If we expand the
perPnlz’p by the Laplace expansion of permanent with respect to the first row,
then we obtain

P P P P P P P
peer+1~p = 4peer=p—Speer71Yp—2peer721p+peer7pyp—2peerip7l,p—peeripizp.
Since

P _ pPp
peTPm)p - Pm+p+2’
P _ pPp
peer_Lp = Pm+p+1,
P _ pPp
peerfz’p = Pmﬂ,7
P _ pbPp
peTmep,p - Pm+27
P _ pbPp
perpm—p—l,p - P7n+1
and
P _ pPp
pe’erfpflp - Pm ’

it is clear that perPL,, = P,ifp+3. So the proof is complete. O
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Let RE = [r;’})] be the m x m matrix, defined by

4 ifi=randj=rforl<r<m-p-—1,
ifi=randj=rform—p<r<m,
i=r+landj=rforl1<r<m-p-—2

1 and
i=rand j=r+pforl <r<m-—p,
7'1(?: -1 ifi=randj=r+p+2forl<r<m-—p-—2, form>p+3.
ifi=randj=r+2for1<r<m-p-1
-2 and

i=randj=r+p+lforl<r<m-p-1,
-3 ifi=randj=r+1lforl<r<m-p-1,
0 otherwise.

Then we have the following Theorem.

Theorem 2.8. Form >p—+3,
perRﬁL,p = P;r?j—)l'

Proof. Let us consider the matrix Rf;’p and let the equation hold for m > p+3.

Then we show that the equation holds for m+ 1. If we expand peTRf;’p by the
Laplace expansion of permanent according to the first row, then we obtain

perRZ_FLP = 4perRiyp73perR§L_Lp72perR51_2)p+pe'r'R5,,_p)p72perRZ_p_Lpfpeer:,,_p_zyp.
Also, since
P _ pPbp
perRm,p - Pm+1’
P _ pPp
perRm—l,p - Pm ’
P _ pPp
perRm_Q’p =P.",
P _ pPp
peTRmfp,p - mep+17
P _ pbp
pe’rRm—p—l,p - Pm—p
and
P _ pPp
perRmfpflp - mepfl’

it is clear that perR) .| = PnlzfQ. So the proof is complete. O
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Assume that S,}:Lyp = {sg,pj)] be the m x m matrix, defined by

(m—p—1)th
b
1 - 1 0 e 0
1
p 0
S = | RP , for m > p + 3,
(') m—1,p
_O -

then we have the following results:

Theorem 2.9. Form > p—+ 3,

m

P _ P.p
perS,, , = g P
i=0

Proof. If we expand the perSﬁL’p with respect to the first row, we write

P

perSz,p =perSy,_1,p + perRE

P
Thus, by the results and an inductive argument, the proof is easily seen. [

A matrix M is called convertible if there is an n x n (1, —1)-matrix K such
that per M = det (M o K), where M o K denotes the Hadamard product of M
and K.

Now we give relationships among the Pell-Pell p-numbers and the determi-
nants of certain matrices which are obtained by using the matrix P,}:’p, R%p
and Sﬁp. Let m > p+ 3 and let H be the m x m matrix, defined by

11 1 - 11
-1 1 1 - 1 1
1 -1 1 - 1 1

H = :
1 1 -1 1 1
1 11 -1 1|

Corollary 2.10. Form > p+ 3,

det (Pf;jp o H) = Pn]»jfp+27
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det (R o H) = PP,

and
m

det (S5 ,0 H) = Z PP,
=0

Proof. Since perPnP;p =det (P,I,ip o H) , peTR,{;;’p =det (RP o H) and perS,IZ’p

m,p

= det (Sf;,p o H) for m > p+ 3, by Theorem 2.7, Theorem 2.8 and Theorem
2.9, we have the conclusion. O

Now we consider the sums of the Pell-Pell p-numbers. Let

n

Sn=>Y PP

=0

for n > 1 and let Y} and (Y2)" be the (p +4) x (p + 4) matrices such that

100 --- 0 0 01
1
0
Y= A, ,for p >3
0
0
_O .

If we use induction on n, then we obtain

1 oo -~ 000

Sn+p+1
Sntp

(Yp)" = : (A)" , for p > 3.
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