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Quantum Random Access Stored-Program Machines

Qisheng Wang ∗ Mingsheng Ying †

Abstract

Random access machines (RAMs) and random access stored-program machines (RASPs) are
models of computing that are closer to the architecture of real-world computers than Turing
machines (TMs). They are also convenient in complexity analysis of algorithms. The relation-
ships between RAMs, RASPs and TMs are well-studied [7, 2]. However, a clear relationships
between their quantum counterparts are still missing in the literature.

We fill in this gap by formally defining the models of quantum random access machines
(QRAMs) and quantum random access stored-program machines (QRASPs) and clarifying the
relationships between QRAMs, QRASPs and quantum Turing machines (QTMs). In particular,
we prove:

1. A T (n)-time QRAM (resp. QRASP) can be simulated by an O(T (n))-time QRASP (resp.
QRAM).

2. A T (n)-time QRAM under the logarithmic (resp. constant) cost criterion can be simulated
by an Õ(T (n)4)-time (resp. Õ(T (n)8)-time) QTM. 1

3. A T (n)-time QTM can be simulated within error ε > 0 by an O(T (n)2 polylog(T (n), 1/ε))-
time QRAM (under both the logarithmic and constant cost criterions).

As a corollary, we have: P ⊆ EQRAMP ⊆ EQP ⊆ BQP = BQRAMP, where EQRAMP

and BQRAMP stand for the sets of problems that can be solved by polynomial-time QRAMs
with certainty and bounded-error, respectively.
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Õ(·) suppresses poly-logarithmic factors.
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1 Introduction

Models of Quantum Computing: Various traditional models of computing have been
generalised to the quantum setting as the models of quantum computing, including quantum Turing
machines (QTMs) [9] and quantum circuits [10]. Several novel quantum computing models that
have no classical counter-parts have also been proposed, e.g. measurement-based and one-way
quantum computing [25, 26], adiabatic quantum computing [11]. Furthermore, the relationships
between these models have been thoroughly studied [29, 3, 1].

Quantum Random Access Machines: Random access machines (RAMs) and random access
stored-program machines (RASPs) are another model of computing that is closer to the architecture
of real-world computers than Turing machines (TMs). They are also convenient in complexity
analysis of algorithms [7, 2].

The notion of quantum random access machine (QRAM) was first introduced in [16], as a
basis of the studies of quantum programming. Essentially, it is a RAM in the traditional sense
with the ability to perform a set of quantum operations on quantum registers, including: (1) state
preparation, (2) certain unitary operations, and (3) quantum measurements.

Recently, several quantum computer architectures have been proposed based on the QRAM
model with some practical quantum instruction sets, including IBM OpenQSAM [14], Rigetti’s guil
[27] and Delft’s eQASM [12].

Contributions of This Paper: However, a clear relationship between QRAMs and QTMs is
still missing in the literature. The aim of this paper is to fill in this gap. In [16], QRAMs were
described only in an informal way, and to our best knowledge, QRASPs have not been introduced
in the existing literature. For our purpose, we first formally define the models of QRAMs and
QRASPs as appropriate generalisation of RAMs and RASPs [2]. It is worth mentioning that the
formal model of QRASPs also provides us with a theoretical foundation of quantum programming
(see [18] and Section 8.1 of [30] for a discussion of the significance of such a foundation). Then we
clarify the relationships between QTMs, QRAMs and QRASPs. Our main results are:

1. A T (n)-time QRAM (resp. QRASP) can be simulated by an O(T (n))-time QRASP (resp.
QRAM).

2. A T (n)-time QRAM under the logarithmic (resp. constant) cost criterion can be simulated
by an Õ(T (n)4)-time (resp. Õ(T (n)8)-time) QTM.

3. A T (n)-time QTM can be simulated within error ε > 0 by an O(T (n)2 polylog(T (n), 1/ε))-
time QRAM (under both the logarithmic and constant cost criterions).

In comparison with the classical counterparts [7], T (n)-time RAMs under the logarithmic (resp.
constant) criterion can be simulated by O(T (n)2)-time (resp. O(T (n)3)-time) TMs. Conversely,
T (n)-time TMs can be simulated by Õ(T (n))-time RAMs.

The above results have some immediate corollaries on computational complexity. We define
two complexity classes:

• EQRAMP stands for exact quantum random access machine polynomial-time, and

• BQRAMP stands for bounded-error quantum random access machine polynomial-time.

Then it holds that
P ⊆ EQRAMP ⊆ EQP ⊆ BQP = BQRAMP. (1)
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Not much has been known in the literature about the relationship between EQP and other com-
plexity classes. Here, an inclusion between EQP and EQRAMP is established. However, we still
do not know which inclusion in (1) is proper.

Major Challenge: The main difficulty in comparing the computational power of QTMs,
QRAMs and QRASPs comes from the difference between their halting schemes:

• There have been a bunch of discussions about the halting scheme of QTMs [21, 17, 24, 28, 19].
We decide to adopt the model defined in [3], where QTMs are required to terminate exactly
at a fixed time (depending on the input) with certainty.

• On the other hand, it is reasonable to allow QRAMs and QRASPs to terminate at any time
with an appropriate probability.

We resolve this issue by introducing the notion of standard QTM as a step stone and giving a
constructive proof that every well-formed QTM within time T (n) can be simulated by a standard
QTM within time O(T (n) log2 T (n)). Based on the notion of standard QTM, we are also able to
give an alternative definition of complexity classes EQP and BQP in terms of QTMs.

Organisation of the Paper: In Section 2, we recall from [3] the definition of QTM and then
introduce the notion of standard QTM. In Section 3, the formal definitions of QRAM and QRASP
are given. Our main results are presented in Section 4.

The remaining sections are then devoted to give all of the details. The computations of QRAMs
and QRASPs are carefully described in Sections 5 and 6, respectively. The simulations of QRAMs
and QRASPs with each other are described in Section 7, and the simulations of QRAMs and QTMs
with each other are given in Section 8.

2 QTMs

The purpose of this section is two-fold. For convenience of the reader, in the first two subsections,
we review some basic notions of quantum Turing machines (QTMs). Our exposition is mainly
based on [3]. In the last subsection, we define the notion of standard QTM and show that every
well-formed QTM can be efficiently simulated by a standard QTM. This result will serve as a step
stone in comparing the computational power of QTMs with that of QRAMs and QRASPs.

2.1 Single-Track QTMs

Let T : N → N be a mapping from natural numbers to themselves. We write C(T (n)) for the
set of all T (n)-time computable complex numbers, i.e. for every x ∈ C(T (n)), there is a T (n)-
time deterministic Turing machine M such that |M(1n)− x| < 2−n, where M(1n) denotes the
output floating point complex number of M on input 1n. Let C̃ be the set of all polynomial-time
computable complex numbers, i.e. C̃ =

⋃∞
k=1C(n

k).

Definition 2.1. A Quantum Turing Machine (QTM) is a 5-tuple M = (Q,Σ, δ, q0, qf ), where:

1. Q is a finite set of states;

2. Σ is a finite set of alphabet with blank symbol #;

3. δ : Q× Σ× Σ×Q× {L,R} → C̃ is the transition function;

4. q0 ∈ Q is the initial state; and
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5. qf ∈ Q is the final state (q0 6= qf).

A configuration of the tape is described by a function T : Z → Σ such that T (m) = #
except for finitely many integers m. Thus, the symbol at position m on the tape is denoted T (m).
We write Σ# ⊆ ΣZ for the set of all possible tape configurations. Moreover, a (computational)
configuration ofM is a 3-tuple c = (q,T , ξ) ∈ Q×Σ#×Z, where q is the current state, T is the tape
configuration and ξ is the head position. It represents a basis state |c〉 = |q〉Q |T 〉Σ# |ξ〉Z = |q,T , ξ〉
of the quantum machine. Therefore, the state Hilbert space of M is span{|c〉}, where c ranges over
all configurations of M . The time evolution operator U of M is defined by δ as follows:

U |p,T , ξ〉 =
∑

σ,q,d

δ(p,T (ξ), σ, q, d)
∣

∣q,T σξ , ξ + d
〉

,

where

T σξ (m) =

{

T (m) m 6= ξ

σ otherwise.

The relation δ(p, τ, σ, q, d) = α can be interpreted as follows: if the machine is in state p and the
symbol on the tape head is τ , then with amplitude α the machine writes the symbol σ on the
tape head, changes its state to q and moves to the direction d. It is reasonable to require that M
is well-formed in the sense that its time evolution operator U is unitary, i.e. U †U = UU † = I.
A deterministic Turing machine (DTM) can be regarded as a QTM with transition function δ :
Q × Σ × Σ × Q × {L,R} → {0, 1} such that for every p ∈ Q and σ ∈ Σ, there is a unique triple
(τ, q, d) ∈ Σ×Q×{L,R} with δ(p, σ, τ, q, d) = 1. Moreover, a reversible Turing machine (RTM) is
a well-formed DTM.

The computation of M begins at time t = 0. The initial configuration is prepared to be |c0〉 =
|q0,T0, 0〉 . At each step, M performs U on the current configuration |c〉 and makes a measurement
to ensure whether the configuration is in the final state qf . The measurement result is “yes” with
probability p = ‖PFU |c〉‖2 and “no” with probability 1− p, where PF = |qf 〉Q 〈qf |.

• If the result is “yes”, then M halts with configuration 1√
p
PFU |c〉;

• If the result is “no”, then M continues running with configuration 1√
1−pP

⊥
F U |c〉, where P⊥

F =

I − PF .

The probability thatM halts on |c0〉 exactly at time t is p(t) = ‖|ct〉‖2, where |ct〉 = PFU(P⊥
F U)t−1 |c0〉.

M is said to halt on |c0〉 within time T if
∑T

t=1 p(t) = 1; in this case, the configuration after M

halts is a mixed state ρ =
∑T

t=1 |ct〉 〈ct| . Especially, M is said to halt on |c0〉 exactly at time T ,

denoted |c0〉 M−→
T
|cT 〉, if p(T ) = 1.

2.2 Multi-Track QTMs

The alphabet Σ of a k-track QTM is regarded as the Cartesian product Σ = Σ1 × Σ2 × · · · × Σk.
In particular, let #i be the blank symbol in Σi for 1 ≤ i ≤ k. For convenience, for every x ∈ Σ∗,
we write x to indicate the tape X :

X (m) =

{

x(m) 0 ≤ m < |x| ,
# otherwise,
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where x(m) is the m-th symbol of x. The joint of k tapes X1,X2, . . . ,Xk is the tape of k tracks:

(X1;X2; . . . ;Xk)(m) = (X1(m),X2(m), . . . ,Xk(m))

for every m ∈ Z. On input x ∈ {0, 1}∗, we put x on the first track and leave the other tracks
empty; that is, the initial tape Tx = x; ǫ; . . . ; ǫ, where ǫ denotes the empty string. Let T : N → N.
A k-track QTM M is said to be within time T (n), if for every x ∈ {0, 1}∗, M halts on |q0,Tx, 0〉
within time T (|x|), where |x| is the length of x. Especially, M is said to be with exact time T (n),
if for every x ∈ {0, 1}∗, M halts on |q0,Tx, 0〉 exactly at some time τx ≤ T (|x|), where τx depends
on x.

LetM be a QTM within time T (n), and ρx the configuration afterM halts on input x. The tape
contents of ρx are obtained by performing a measurement on each position −T (|x|) ≤ m ≤ T (|x|)
(the head position ξ never goes beyond |ξ| > T (|x|)). We define function TM : {0, 1}∗×Σ# → [0, 1]
by letting for every x ∈ {0, 1}∗, TM (x,Z) be the probability that on input x, M halts with tape Z
after measurement. Formally, TM (x,Z) = tr

(

MZρxM
†
Z

)

, where MZ = |Z〉Σ# 〈Z|. We note that

if Z(m) 6= # for some position m with |m| > T (|x|), then TM(x,Z) = 0.
We design the output track to be the second track. Suppose Z is the tape after measurement.

For −T (|x|) ≤ m ≤ T (|x|), let ym ∈ Σ2 be the symbol of Z(m) in the second track. Then the
output y is defined to be the concatenation of ym’s for −T (|x|) ≤ m ≤ T (|x|) after ignoring blank
symbols #2. We write y = extract(Z) if the contents of tape Z implies output y. We assume
that y consists of only symbols 0 and 1, i.e. y ∈ {0, 1}∗. In this way, QTM M defines a function
M : {0, 1}∗ × {0, 1}∗ → [0, 1] so that M on input x outputs y with probability M(x, y), i.e.

M(x, y) =
∑

extract(Z)=y

TM (x,Z).

In case M(x, y) = 1 for some x, y ∈ {0, 1}∗, we may write M(x) = y, indicating that M on input
x outputs y with certainty.

2.3 Standard QTMs

Note that the above definition of QTM is different from that in [3], where QTMs are prevented
from reaching a superposition in which some configurations are in state qf but others are not, and
therefore intermediate measurements on the state of the QTM (i.e. to see whether the state is in
qf or not) will not modify the configurations during the computation. However, QTMs defined
above are allowed to reach a superposition of the final state and the other states. For our purpose,
it is natural to assume that each time the configuration is measured (and therefore changes), the
configuration will collapse to one of the configurations either in qf or not with probability according
to the amplitudes. In this subsection, we establish a connection between these two kinds of QTMs.
Let us first introduce several terminologies.

Definition 2.2 (Stationary QTMs). A QTM M is said to be stationary, if it halts on every
x ∈ {0, 1}∗ and

tr(P0ρx) = 1,

where P0 = |0〉Z 〈0|, and ρx is the configuration after M halts on x.

Definition 2.3 (Normal Form QTMs). A QTM M is said to be in normal form, if for every
τ, σ ∈ Σ, q ∈ Q and d ∈ {L,R},

δ(qf , τ, σ, q, d) =

{

1 (σ, q, d) = (τ, q0, R),

0 otherwise.
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Definition 2.4 (Unidirectional QTMs). A QTM M is said to be unidirectional, if for every q ∈ Q,
there is a direction dq ∈ {L,R} such that

δ(p, τ, σ, q, d̄q) = 0

for every p ∈ Q and τ, σ ∈ Σ, where d̄ denotes the reverse direction of d.

Intuitively, a stationary QTM always halts with tape head at position 0, i.e. the starting
position. In a normal form QTM, the transitions from qf is technically specified for convenience,
since every QTM always halts before any transition out of qf . In a unidirectional QTM, any state
can be entered from only one direction.

LetM be a normal form QTM and |c0〉 = |q0,T0, ξ0〉 its initial configuration. If the configuration
|c〉 becomes |c′〉 after t steps, i.e. U(P⊥

F U)t−1 |c〉 = |c′〉, we write |c〉 M−→
t
|c′〉 . If M halts on |c0〉

exactly at time T with the final state |cf 〉 = |qf ,Tf , ξf 〉, then we write |T0, ξ0〉 M−→
T
|Tf , ξf 〉 . If M is

stationary (and thus) ξ0 = ξf = 0, we simply write |T0〉 M−→
T
|Tf 〉 . Moreover, if both |T0〉 and |Tf 〉

are in the computational basis, we often write T0 M−→
T
Tf .

Definition 2.5 (Standard QTM). A QTM M is standard, if it is well-formed, normal form,
stationary and unidirectional and there is a function T : N→ N such that for every x ∈ {0, 1}∗, M
on input x halts exactly at time T (|x|).

For comparing different QTM models, we need the notion of time constructible function.

Definition 2.6 (Time Constructible Functions). Let T : N → N and T (n) ≥ n for every n ∈ N.
T (n) is said to be time constructible, if there is a standard QTM M with exact time O(T (n)) such
that for every x ∈ {0, 1}∗,

x; ǫ
M−−−−−−→

O(T (|x|))
x;T (|x|). (2)

Note that in (2), a natural number n ∈ N written on a tape or track indicates a binary string
a = a0a1 . . . ak−1 ∈ {0, 1}k such that k is the smallest positive integer that 2k > n and n =
∑k−1

i=0 2k−i−1ai.
Now we are able to show our first result that every well-formed QTM can be efficiently simulated

by a standard QTM. For any QTM M , we write C(M) for the set of its transition coefficients of a
QTM M ; that is,

C(M) = {δ(p, σ, τ, q, d) : p, q ∈ Q,σ, τ ∈ Σ, d ∈ {L,R}}.

Theorem 2.1 (Standardisation). Let T : N → N be a function time constructible by QTM. For
every well-formed and normal form QTM M within time T (n), there is a standard QTM M ′ with
exact time O(T (n) log2 T (n)) such that

1. M(x, y) =M ′(x, y) for every x, y ∈ {0, 1}∗.

2. C(M ′) ⊆ C(M) ∪ {0, 1}.
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3 QRAMs and QRASPs

It is a common sense in the existing literature that a practical quantum computer (of the first
generation at least) consists of a classical computer with access to quantum registers, where the
classical part performs classical computations and controls the evolution of quantum registers, and
the quantum part can be initialised in certain states (e.g. basis state |0〉), perform elementary
unitary operations (e.g. Hadamard, π/8 and CNOT gates), and be measured with the outcomes
sent to the classical machine. The models of QRAMs and QRASPs are defined based on this
intuition.

3.1 QRAMs

Formally, a quantum random access machine (QRAM) is a program P , i.e. a finite sequence of
QRAM instructions operating on an infinite sequence of both classical and quantum registers. Each
classical register holds an arbitrary integer (positive, negative, or zero), while each quantum register
holds a qubit (in state |0〉, |1〉 or their superposition). The contents of the i-th (i ≥ 0) classical
(resp. quantum) register is denoted by Xi (resp. Qi).

Associated with the machine is a cost function l(n), which denotes the memory required to
store, or the time required to load the number n. Two forms of l(n) commonly used in studying
classical RAMs are:

1. l(n) is a constant, i.e. l(n) = O(1); and

2. l(n) is logarithmic, i.e. l(n) = O(log |n|).

Definition 3.1. The instructions for QRAM and their execution times are given in Table 1.

Table 1: QRAM instructions
Type Instruction Execution time

Classical Xi ← C, C any integer 1
Classical Xi ← Xj +Xk l(Xj) + l(Xk)
Classical Xi ← Xj −Xk l(Xj) + l(Xk)
Classical Xi ← XXj

l(Xj) + l(XXj
)

Classical XXi
← Xj l(Xi) + l(Xj)

Classical TRA m if Xj > 0 l(Xj)
Classical READ Xi l(input)
Classical WRITE Xi l(Xi)

Quantum CNOT[QXi
, QXj

] l(Xi) + l(Xj)
Quantum H[QXi

] l(Xi)
Quantum T [QXi

] l(Xi)

Measurement Xi ←M [QXj
] l(Xj)

The QRAM instructions in Table 1 are divided into two types. The classical-type instructions
are the same as those adopted in [7]. Here, i, j, k are any nonnegative integers, and m are integers
between 0 and L (inclusive), where L is the length of the QRAM program and also denotes termi-
nation (see Section 5.1 for details about m). The effect of most of the instructions are obvious. For
example, Xi ← C causes Xi to hold C, while Xi ← Xj±Xk causes Xi to hold the calculation result
of Xj±Xk. The instruction TRAm if Xj > 0 causes them-th instruction to be the next instruction

9



to execute if Xj > 0. READ Xi causes Xi to hold the next input number on the input tape, while
WRITE Xi causes Xi to be printed on the output tape. The indirect instruction Xi ← XXj

causes
Xi to hold XXj

, provided Xj ≥ 0, while XXi
← Xj causes XXi

to hold Xj, provided Xi ≥ 0. The
indirect instructions allow a fixed program to access unbounded registers. It should be noted that
classical registers are needed as classical address to indirectly access quantum registers.

The quantum-type instructions include quantum gates and measurements. For simplicity of
presentation, we choose to use a minimal but universal set of quantum gates: CNOT, H and
T . Indeed, any finite universal set of quantum gates is acceptable. The measurement instruction
Xi ← M [QXj

] is a bridge between classical and quantum registers, which causes Xi to hold the
measurement result of QXj

in the computational basis, provided Xj ≥ 0.

3.2 QRASPs

A quantum random access stored-program machine (QRASP) is a program P , i.e. a finite sequence
of QRASP instructions operating on infinite sequences of both classical and quantum registers.

Definition 3.2. The instructions for QRASP are given in Table 2.

Note that the classical-type QRASP instructions are the same as RASP instructions defined in
[7], and the quantum-type QRASP instructions are the same as in QRAMs.

Strictly speaking, a QRASP is a finite sequence of integers that are to be interpreted into
QRASP instructions during the execution rather than an explicit program. The reason is that
QRASP may modify itself during the execution and causes unpredictable interpreted QRASP in-
structions. Our machine has an accumulator (AC), which holds an arbitrary integer, an instruction
counter (IC), and two infinite sequences of both classical and quantum registers. Each classical
register Xi holds an arbitrary integer, while each quantum register Qi holds a qubit. An instruction
is stored in two or three consecutive classical registers depending on its operation code. The first
classical register contains an operation code (shown in Table 2). In case that the operation code
is beyond the range 1 to 11, the execution immediately terminates. The second (and the third
if needed) classical register contains the parameter of the instruction. In fact, only the CNOT
operation needs two parameters while other operations do not. It is noted that indirect addressing
is not allowed in QRASP, the programs need to modify themselves in order to access unbounded
number of (both classical and quantum) registers.

4 Main Results

In this section, we state our main results, which clarify the relationships between QTMs, QRAMs
and QRASPs.

The relationship between QRAMs and QRASPs is simple. We prove that QRAMs and QRASPs
can simulate each other with constant slowdown. For a QRAM (or QRASP) P and x, y ∈ {0, 1}∗,
let P (x, y) denote the probability that P on input x outputs y (see Section 5 and Section 6 for its
formal definition).

Theorem 4.1. Let T : N→ N with T (n) ≥ n.

1. For every T (n)-time QRAM P , there is a O(T (n))-time QRASP P ′ such that for every
x, y ∈ {0, 1}∗, P (x, y) = P ′(x, y).

2. For every T (n)-time QRASP P , there is a O(T (n))-time QRAM P ′ such that for every
x, y ∈ {0, 1}∗, P (x, y) = P ′(x, y).
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Table 2: QRASP instructions
Type Operation Mnemonic code Description Execution time

Classical load constant LOD, j 1
AC← j;
IC← IC + 2

l(IC) + l(j)

Classical add ADD, j 2
AC← AC +Xj;
IC← IC + 2

l(IC) + l(j)+
l(AC) + l(Xj)

Classical subtract SUB, j 3
AC← AC −Xj;
IC← IC + 2

l(IC) + l(j)+
l(AC) + l(Xj)

Classical store STO, j 4
Xj ← AC;
IC← IC + 2

l(IC) + l(j)+
l(AC)

Classical
branch on
positive

accumulator
BPA, j 5

if AC > 0 then
IC← j; otherwise
IC← IC+2

l(IC) + l(j)+
l(AC)

Classical read RD, j 6
Xj ← next input;
IC← IC + 2

l(IC) + l(j)+
l(input)

Classical print PRI, j 7
output Xj ;
IC← IC + 2

l(IC) + l(j)+
l(Xj)

Quantum CNOT CNOT, j, k 8
CNOT[Qj, Qk];
IC← IC + 3

l(IC) + l(j)+
l(k)

Quantum H H, j 9
H[Qj];
IC← IC + 2

l(IC) + l(j)

Quantum T T, j 10
T [Qj];
IC← IC + 2

l(IC) + l(j)

Measurement measure MEA, j 11
AC←M [Qj ];
IC← IC + 2

l(IC) + l(j)

Termination halt HLT - stop l(IC) + l(XIC)

11



To further compare QRAMs (and thus QRASPs) with QTMs, we need a QRAM variant of time
constructible functions.

Definition 4.1 (QRAM-Time Constructible Functions). Let T : N → N and T (n) ≥ n for every
n ∈ N. T (n) is said to be QRAM-time constructible, if there is an O(T (n))-time QRAM P such
that for every x ∈ {0, 1}∗,

P (x, T (|x|)) = 1,

where T (|x|) denotes its binary form as in Definition 2.6.

The relationship between QRAMs and QTMs is then established in the following:

Theorem 4.2. 1. Let T : N → N. Suppose P is a T (n)-time QRAM. Then there is a well-
formed and normal form QTM M within time T ′(n) such that

(a) P (x, y) =M(x, y) for every x, y ∈ {0, 1}∗.
(b) C(M) = {0, 1, 1√

2
,− 1√

2
, exp(iπ/4)}.

Moreover,

(a) If l(n) is logarithmic, then T ′(n) = O(T (n)4).

(b) If l(n) is constant, then T ′(n) = O(T (n)8).

2. Let T : N → N be a QRAM-time constructible function, and λ : N → N with λ(n) ≥ n. For
every standard QTM M with exact time T (n) and C(M) ⊆ C(λ(n)), there is a constant c > 0
such that for every 0 < ε < 1, there is a O(T (n)2(λ(log(T (n)/ε)))c)-time QRAM P such that
|M(x, y)− P (x, y)| < ε for every x, y ∈ {0, 1}∗.

It is well-known [5] that square roots are computable in polynomial time in n with precision n,
and thus

√
2 ∈ C̃. So, it holds that C(M) ⊆ C̃ in the first part of the above theorem.

A combination of the above two theorems and Theorem 2.1 indicates that QTMs, QRAMs and
QRASPs can simulate each other with polynomial slowdown.

The above results have some simple corollaries on quantum complexity classes. To present
them, let us first recall the definitions of EQP and BQP from [3].

Definition 4.2. Let L ⊆ {0, 1}∗. The language L is said to be in EQP, if there is a well-formed,
normal form and stationary multi-track QTM M with exact time T (n), satisfying:

1. x ∈ L if and only if M(x, 1) = 1;

2. x /∈ L if and only if M(x, 1) = 0;

3. T (n) is a polynomial in n.

The language L is said to be in BQP, if there is a well-formed, normal form, stationary, multi-track
QTM M with exact time T (n),

1. x ∈ L if and only if M(x, 1) ≥ 2
3 ;

2. x /∈ L if and only if M(x, 1) ≤ 1
3 ;

3. T (n) is a polynomial in n.
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The complexity classes EQP’ and BQP’ are defined by removing the stationary condition and
allowing QTMs to be within time T (n) in the above definition. Immediately from Theorem 2.1, we
have:

Proposition 4.3. EQP = EQP’ and BQP = BQP’.

The QTM in the first part of Theorem 4.2 is only guaranteed to be well-formed and normal
form, but not to halt at an exact time. But Theorem 2.1 can be employed to strengthen it by a
standard QTM with exact time O(T (n)4 log2 T (n)) for logarithmic l(n), and O(T (n)8 log2 T (n))
for constant l(n), provided T (n) is time constructible.

Let EQRAMP and BQRAMP denote the classes of languages that are computable by exact
and bounded-error quantum random access machine in polynomial time, respectively (see Section
5.3 for their formal definitions). Then we have:

Theorem 4.4. P ⊆ EQRAMP ⊆ EQP and BQP = BQRAMP.

Note that BQP and BQRAMP coincide, but it seems that EQP and EQRAMP do not.
This is because a QRAM only has a finite number of quantum gate operations, while a QTM can
have an infinite (but countable) number of quantum gate operations. It is almost impossible to
simulate an infinite set of quantum gates by a finite set of quantum gates with no errors. On the
other hand, in the definitions of EQP and EQRAMP, the probabilities are restricted to 0 and 1,
which also make the two complexity classes are unlikely to coincide.

5 Computations of QRAMs

For this section on, we provide all of the details for proving our main results. In this section, we
carefully describe the computations of QRAMs. It is presented in the forms of operational and
denotational semantics of QRAMs in Subsections 5.1 and 5.2, respectively. QRAM computation
and the notion of two complexity classes EQRAMP and BQRAMP are formally defined in
Section 5.3.

Section 5.4 gives a useful method for shifting addresses, based on which we show in Section 5.5
that every QRAM can be simulated by a address-safe QRAM in the sense that it never accesses
invalid addresses. Postponing measurements is a widely used technique in quantum computing. In
Section 5.6, we introduce the notion of measurement-postponed QRAMs.

5.1 Operational semantics

Formally, a QRAM is represented by a sequence P = P0, P1, P2, . . . , PL−1 of instructions with
L = |P | being the length of P , i.e. the number of instructions in this QRAM. In the execution
of a QRAM, there is an instruction counter (IC) indicating which instruction to be executed. A
configuration of the QRAM is a tuple (ξ, µ, |ψ〉 , x, y), where:

1. ξ ∈ N ∪ {↓} denotes the current IC, with ↓ indicating the end of execution;

2. µ : N→ Z is the description of all contents of classical registers;

3. |ψ〉 ∈ H =
⊗∞

i=0Hi is the state of quantum registers, with Hi = span{|0〉i , |1〉i};

4. x ∈ Z
ω is a sequence of integers to read on the input tape;

5. y ∈ Z
∗ is a sequence of printed integers on the output tape.
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We write C = (N ∪ {↓}) × Z
N × H × Z

ω × Z
∗ for the set of all configurations. A configuration

c = (ξ, µ, |ψ〉 , x, y) ∈ C is called a terminal configuration if ξ =↓. Let Cf ⊆ C denote the set of all
terminal configurations.

The execution transition is a function →: C × C → [0, 1] × N. For two configurations c and
c′, → (c, c′) = (p, T ) means that configuration c is changed to configuration c′ in time T with
probability p after executing one instruction. For readability, we write

c
p−→
T
c′,

wherein p can be ignored if p = 1. Then the operational semantics of QRAMs is defined by the
following transitional rules:

1. If ξ is out of range [0, L),

(ξ, µ, |ψ〉 , x, y) −→
1

(↓, µ, |ψ〉 , x, y).

2. If Pξ has the form Xi ← C,

(ξ, µ, |ψ〉 , x, y) −→
1

(ξ + 1, µCi , |ψ〉 , x, y),

where

µba =

{

µ(j) j 6= a,

b j = a.

3. If Pξ has the form Xi ← Xj +Xk,

(ξ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(µ(j))+l(µ(k))

(ξ + 1, µ
µ(j)+µ(k)
i , |ψ〉 , x, y).

4. If Pξ has the form Xi ← Xj −Xk,

(ξ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(µ(j))+l(µ(k))

(ξ + 1, µ
µ(j)−µ(k)
i , |ψ〉 , x, y).

5. If Pξ has the form Xi ← XXj
, whenever µ(j) ≥ 0, then

(ξ, µ, |ψ〉 , x, y) −−−−−−−−−−−→
l(µ(j))+l(µ(µ(j)))

(ξ + 1, µ
µ(µ(j))
i , |ψ〉 , x, y);

otherwise,
(ξ, µ, |ψ〉 , x, y) −−−−→

l(µ(j))
(↓, µ, |ψ〉 , x, y).

6. If Pξ has the form XXi
← Xj , whenever µ(i) ≥ 0, then

(ξ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(µ(i))+l(µ(j))

(ξ + 1, µ
µ(j)
µ(i) , |ψ〉 , x, y);

otherwise,
(ξ, µ, |ψ〉 , x, y) −−−−→

l(µ(i))
(↓, µ, |ψ〉 , x, y).
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7. If Pξ has the form TRA m if Xj > 0, whenever µ(j) > 0, then

(ξ, µ, |ψ〉 , x, y) −−−−→
l(µ(j))

(m,µ, |ψ〉 , x, y);

otherwise,
(ξ, µ, |ψ〉 , x, y) −−−−→

l(µ(j))
(ξ + 1, µ, |ψ〉 , x, y).

8. If Pξ has the form READ Xi, let a be the first integer in x, then

(ξ, µ, |ψ〉 , x, y) −−→
l(a)

(ξ + 1, µai , |ψ〉 , x′, y),

where x′ denotes the string obtained by deleting the first integer x.

9. If Pξ has the form WRITE Xi,

(ξ, µ, |ψ〉 , x, y) −−−−→
l(µ(i))

(ξ + 1, µ, |ψ〉 , x, y′),

where y′ denotes the string obtained by appending an integer µ(i) to y.

10. If Pξ has the form CNOT[QXi
, QXj

], whenever µ(i) ≥ 0 and µ(j) ≥ 0, then

(ξ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(µ(i))+l(µ(j))

(ξ + 1, µ,CNOTµ(i),µ(j) |ψ〉 , x, y),

where for a0, a1, a2, · · · ∈ {0, 1}, CNOTi,j |a0, a1, a2, . . .〉 = |b0, b1, b2, . . .〉 with

bk =

{

ak if k 6= j,

ai ⊕ aj otherwise,

and ⊕ denotes modulo-2 addition; otherwise,

(ξ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(µ(i))+l(µ(j))

(↓, µ, |ψ〉 , x, y).

11. If Pξ has the form A[QXi
] with A = H or T , whenever µ(i) ≥ 0, then

(ξ, µ, |ψ〉 , x, y) −−−−→
l(µ(i))

(ξ + 1, µ,Aµ(i) |ψ〉 , x, y),

where

Ai

∞
⊗

j=0

|aj〉 =
i−1
⊗

j=0

|aj〉 ⊗A |ai〉 ⊗
∞
⊗

j=i+1

|aj〉

for a0, a1, a2, · · · ∈ {0, 1}; otherwise,

(ξ, µ, |ψ〉 , x, y) −−−−→
l(µ(i))

(↓, µ, |ψ〉 , x, y).

12. If Pξ has the form Xi ←M [QXj
], whenever µ(j) ≥ 0, then

(ξ, µ, |ψ〉 , x, y) ‖Pj |ψ〉‖2−−−−−→
l(µ(j))

(ξ + 1, µ0i ,
Pj |ψ〉
‖Pj |ψ〉‖2

, x, y),
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(ξ, µ, |ψ〉 , x, y) 1−‖Pj |ψ〉‖2−−−−−−−→
l(µ(j))

(ξ + 1, µ1i ,
(I − Pj) |ψ〉
1− ‖Pj |ψ〉‖2

, x, y),

where

Pj =

j−1
⊗

i=0

Ii ⊗ |0〉j 〈0| ⊗
∞
⊗

i=j+1

Ii;

otherwise,
(ξ, µ, |ψ〉 , x, y) −−−−→

l(µ(i))
(↓, µ, |ψ〉 , x, y).

5.2 Denotational semantics

An execution path π = c0, c1, . . . , cn is a non-empty sequence of configurations, i.e. π ∈ C+. We
define the length of π as |π| = n. A path is called terminal, if cn is a terminal configuration. For
readability, an execution path π is usually written as

π : c0
p1−→
T1

c1
p2−→
T2

c2
p3−→
T3

. . .
pn−1−−−→
Tn−1

cn−1
pn−→
Tn

cn,

where for every 1 ≤ i ≤ n, ci−1
pi−→
Ti

ci is a transition defined in the above subsection. We may

simply write:

π : c0
p−→
T

n
cn,

where

T =

n
∑

i=1

Ti, p =

n
∏

i=1

pi.

It should be noted that there could be multiple paths of the form c0
p−→
T

n
cn with different pairs of

p and T .
For simplicity of presentation, let us introduce several abbreviations:

• π.p1 (resp. π.T1) denotes the transition probability (resp. time) in the first step of π.

• π.p (resp. π.T ) denotes the transition probability (resp. time) of π.

• π.c|π|.ξ = ↓ means that the last configuration of π is a terminal configuration; that is, π.c|π| ∈
Cf , where |π| is the length of π.

Moreover, for a QRAM P , we use the following notations:

• P denotes the set of all execution paths of P .

• P(c) denotes the set of all execution paths starting from c (with positive probabilities), i.e.

P(c) = {π ∈ P : π.c0 = c and π.p > 0}.

• Pf (c) denotes the set of all terminal execution paths starting from c, i.e.

Pf (c) = {π ∈ P(c) : π.c|π| ∈ Cf}.

• P=n(c) denotes the set of all execution paths of length n, starting from c, i.e.

P=n(c) = {π ∈ P(c) : |π| = n}.
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• P=n
f (c) denotes the set of all terminal execution paths of length n, starting from c, i.e.

P=n
f (c) = {π ∈ P=n(c) : π.cn ∈ Cf}.

• Pn(c) denotes the set of all execution paths starting from c within n steps, i.e.

Pn(c) =
n
⋃

m=0

P=m
f (c).

Definition 5.1. 1. The n-step semantics function JP Kn : C → (C → [0, 1]) is defined by

JP Kn(c) =
∑

π∈Pn(c)

π.p · Iπ.c|π|
,

where

Ic(c
′) =

{

1 c = c′,

0 otherwise.

2. The semantic function JP K : C → (C → [0, 1]) is defined by

JP K(c) = lim
n→∞

JP Kn(c).

It should be noted that JP K(c) may not exist.

Definition 5.2. The worst case running time τP : C → N ∪ {∞} is defined by

τP (c) = sup{π.T : π ∈ P(c)}.

The following lemma is straightforward:

Lemma 5.1. For any c ∈ C, we have:

1. if τP (c) <∞, then JP K(c) = JP KτP (c)(c);

2. if τP (c) <∞ and JP K(c)(c′) > 0 for some c′ ∈ C, then c′ ∈ Cf .

5.3 QRAM computations

We are interested in the time required for a QRAM to recognize a language on a finite alphabet
Σ = {σ0, σ1, σ2, . . . , σm−1}. An input string x = σi0σi1 . . . σin−1 is represented in the machine as
the sequence of integers i0, i1, . . . , in−1, (−1)ω , where the infinite occurrences of −1 at the end of
the sequence indicate the end of the string. This input convention guarantees that whenever an
instruction of the form READ Xi is executed, Xi always obtain −1 if the string has been read up.
We use in : Σ∗ → Z

ω to denote this conversion from an input string x to the contents on input
tape in(x).

After the execution of the QRAM, a finite sequence y of integers is obtained on the output
tape. In order to extract the output string on Σ from the contents on the output tape, we define
out : Z→ Σ by

out(n) =

{

σn 0 ≤ n < m− 1,

σm−1 otherwise.

This function can be extended to out : Z∗ → Σ∗ by concatenation of each single conversion.
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Example 1. Consider the simplest alphabet Σ = {0, 1}. The input string x = 0101 is converted
to in(x) = 0, 1, 0, 1,−1,−1,−1, . . . . An output string out(y) = 0111 is extracted from the contents
y = 0, 1, 2, 3 on the output tape.

With the above input/output conventions, we can now describe the notion of QRAM compu-
tation. Before the computation, IC is set to 0 initially, with all classical registers being zero and
all quantum registers being |0〉; that is, µ0 = 0 and

|ψ0〉 =
∞
⊗

i=0

|0〉i .

Suppose the input string is x, then the initial configuration is cx = (0, µ0, |ψ0〉 , in(x), ǫ). The
distribution D : Σ∗ → (C → [0, 1]) of terminal configurations is:

D(x) = JP K(cx).

The computational result P : Σ∗ × Σ∗ → [0, 1] of QRAM P is defined by

P (x, y) =
∑

c∈Cf :out(c.y)=y
D(x)(c),

and the worst case running time TP : Σ∗ → N ∪ {∞} is defined by

TP (x) = τP (cx).

Definition 5.3. Let T : N → N. P is said to be a T (n)-time QRAM, if for every x ∈ Σ∗,
TP (x) ≤ T (|x|).

In particular, P is said to be a polynomial-time QRAM, if it is a p(n)-time QRAM for some
polynomial p. Furthermore, two complexity classes are defined as follows:

• EQRAMP stands for Exact Quantum Random Access Machine Polynomial-time. More
precisely, a language L ⊆ {0, 1}∗ is said to be in EQRAMP, if there is a polynomial-time
QRAM P such that for every x ∈ {0, 1}∗,

1. x ∈ L⇐⇒ P (x, 1) = 1,

2. x /∈ L⇐⇒ P (x, 1) = 0.

• BQRAMP stands for Bounded-error Quantum Random Access Machine Polynomial-time.
More precisely, a language L ⊆ {0, 1}∗ is said to be in BQRAMP, if there is a polynomial-
time QRAM P such that for every x ∈ {0, 1}∗,

1. x ∈ L⇐⇒ P (x, 1) ≥ 2
3 ,

2. x /∈ L⇐⇒ P (x, 1) ≤ 1
3 .

5.4 Address shifting

In order to describe algorithms more conveniently, we introduce the technique of address shifting,
which enables us to flexibly deal with free variables.

Lemma 5.2. Let T : N→ N. For every T (n)-time QRAM P and every integer k > 0, there is an
O(T (n))-time QRAM P ′ such that
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1. P (x, y) = P ′(x, y) for every x, y ∈ Σ∗.

2. P ′ never accesses to the classical registers X1,X2, . . . ,Xk.

Proof. Suppose P consists of L instructions P0, P1, . . . , PL−1. Let δ = k + 1. In the following,
we shift the address to the right by δ with the help of X0. The modified instructions for address
shifting are listed in Table 3. Most of them are directly obtained except indirect addressing and
jumping.

Table 3: Modified QRAM instructions for address shifting by δ
Type Instruction Modified instruction

Classical Xi ← C, C any integer Xi+δ ← C
Classical Xi ← Xj +Xk Xi+δ ← Xj+δ +Xk+δ

Classical Xi ← Xj −Xk Xi+δ ← Xj+δ −Xk+δ

Classical Xi ← XXj
Xi+δ ← XXj+δ+δ

Classical XXi
← Xj XXi+δ+δ ← Xj+δ

Classical TRA m if Xj > 0 TRA m′ if Xj+δ > 0
Classical READ Xi READ Xi+δ

Classical WRITE Xi WRITE Xi+δ

Quantum CNOT[QXi
, QXj

] CNOT[QXi+δ
, QXj+δ

]

Quantum H[QXi
] H[QXi+δ

]
Quantum T [QXi

] T [QXi+δ
]

Measurement Xi ←M [QXj
] Xi+δ ←M [QXj+δ

]

In order to precisely describe how to make this shifting, we first list the lengths needed for all
instructions in Table 4. For 0 ≤ l < L, we write length(l) to denote the length needed for address
shifting according to Table 4. In order to label the instructions in P ′, we define:

label(l) =

l−1
∑

i=0

length(i)

for 0 ≤ l ≤ L. Especially, the length of P ′ is defined to be L′ = label (L).

Table 4: Lengths of QRAM instructions for address shifting
Type Instruction length

Classical Xi ← C, C any integer 1
Classical Xi ← Xj +Xk 1
Classical Xi ← Xj −Xk 1
Classical Xi ← XXj

6
Classical XXi

← Xj 6
Classical TRA m if Xj > 0 1
Classical READ Xi 1
Classical WRITE Xi 1

Quantum CNOT[QXi
, QXj

] 1
Quantum H[QXi

] 1
Quantum T [QXi

] 1

Measurement Xi ←M [QXj
] 1
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Now we are ready to describe how to construct P ′. For every 0 ≤ l < L, we convert Pl to one
or more instructions in P ′.

Case 1. If Pl is indirect addressing, the two modified instructions for Xi ← XXj
and XXi

← Xj

are indeed problematic in Table 3. To resolve this issue, we consider Xi ← XXj
for example and

use the following instructions with the help of X0:

label(l) :X0 ← 0

X0 ← X0 −Xj+δ

TRA L′ if X0 > 0

X0 ← δ

X0 ← X0 +Xj+δ

Xi+δ ← XX0

Similarly, the instructions for XXi
← Xj are as follows:

label(l) :X0 ← 0

X0 ← X0 −Xi+δ

TRA L′ if X0 > 0

X0 ← δ

X0 ← X0 +Xi+δ

XX0 ← Xj+δ

Case 2. If Pl is jumping, i.e. TRA m if Xj > 0, we use a single modified instruction:

label(l) :TRA m′ if Xj+δ > 0

with m′ = label (m).

Case 3. For other cases, use the instructions according to Table 4.

It can be seen that the constructed QRAM P ′ can simulates QRAM P through shifting the
address to the right by δ = k + 1, with X1,X2, . . . ,Xk untouched. Instead, the slowdown is a
constant factor, which depends on k.

5.5 Address-safe QRAMs

In this subsection, we show that address-safety can be enforced for QRAMs.

Lemma 5.3. Let T : N→ N. For every T (n)-time QRAM P , there is a O(T (n))-time QRAM P ′

such that

1. P (x, y) = P ′(x, y) for every x, y ∈ Σ∗.

2. P ′ never accesses to an invalid address in the execution. We call such a QRAM P ′ address-
safe.

Proof. The construction of P ′ is straightforward. Note that the only way to access to an invalid
address is indirect addressing. Thus, we could avoid accessing to an invalid address by checking
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whether the indirect address is valid beforehand. For example, if an instruction Pl is of the form
Xi ← XXj

, then it can be replaced in P ′ by introducing an independent variable tmp with the code

tmp ← 0

tmp ← tmp −Xj

TRA L′ if tmp > 0

Xi ← XXj

where L′ denotes the length of P ′. Instead, the value of m in the jumping instruction should be
changed to an appropriate value m′ similar to Lemma 5.2.

According to Lemma 5.2, the variable tmp is involved by shifting the address to the right by
δ = 2.

5.6 Measurement-postponed QRAMs

In this subsection, we generalise the technique of postponing measurements, which has been widely
used in quantum computing, to QRAMs.

Definition 5.4. A QRAM is said to be measurement-postponed, if no further operations are per-
formed on the quantum registers once they are measured.

Theorem 5.4. Let T : N → N. For every T (n)-time QRAM P , there is a O(T (n))-time QRAM
P ′ such that

1. P (x, y) = P ′(x, y) for every x, y ∈ Σ∗.

2. P ′ is measurement-postponed.

Proof. Suppose P consists of L instructions P0, P1, . . . , PL−1. By Lemma 5.3, we can assume that
P is address-safe. In order to postpone measurements, we recall the technique shown in Figure 1.
Inspired by this, we use a special variable mea to count how many measurements are performed.

Figure 1: Quantum circuits for postponing measurements

✌
✌
✌ U = • U

|0〉 ✌
✌
✌

We split quantum registers into two disjoint parts, one of which is of even addresses and the
other is of odd addresses. The quantum registers of even addresses are used for quantum gate
operations while the rest (i.e. those of odd addresses) are used only for measurements. For a better
understanding, we first give an intuition behind our construction. We use two functions f(x) = 2x
and g(x) = 2x+1. For a quantum gate (CNOT, Hadamard and π/8 gates), say CNOT[Qa, Qb], we
can perform CNOT[Qf(a), Qf(b)]. For a measurement, say M [Qa], let mea be the current number
of measurements that have been performed, then we can perform CNOT[Qf(a), Qg(mea)] and then
measure Qg(mea), i.e. M [Qg(mea)].
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In order to precisely describe how to postpone measurements, we first list the lengths needed for
all instructions in Table 5. For 0 ≤ l < L, we write length(l) for the length needed for postponing
measurements according to Table 5. To label the instructions in P ′, we define:

label(l) =
l−1
∑

i=0

length(i)

for 0 ≤ l ≤ L. Especially, the length of P ′ is defined to be L′ = label (L).

Table 5: Lengths of QRAM instructions for postponing measurements
Type Instruction length

Classical Xi ← C, C any integer 1
Classical Xi ← Xj +Xk 1
Classical Xi ← Xj −Xk 1
Classical Xi ← XXj

1
Classical XXi

← Xj 1
Classical TRA m if Xj > 0 1
Classical READ Xi 1
Classical WRITE Xi 1

Quantum CNOT[QXi
, QXj

] 7
Quantum H[QXi

] 4
Quantum T [QXi

] 4

Measurement Xi ←M [QXj
] 12

Now we are ready to describe our construction of P ′. For every 0 ≤ l < L, we convert Pl to one
or more instructions in P ′. Note that we need three extra variables mea, a and b.

Case 1. If Pl is CNOT[QXi
, QXj

], the instructions for P ′ are as follows.

label(l) :a← 0

a← a+Xi

a← a+ a

b← 0

b← b+Xj

b← b+ b

CNOT[Qa, Qb]

Case 2. If Pl is H[QXi
] (resp. T [XXi

]), the instructions for P ′ are as follows.

label(l) :a← 0

a← a+Xi

a← a+ a

H[Qa](resp. T [Qa])
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Case 3. If Pl is Xi ←M [QXj
], the instructions for P ′ are as follows.

label(l) :a← 1

mea ← mea + a

b← 0

b← b+mea

b← b+ b

a← 1

b← b+ a

a← 0

a← a+Xj

a← a+ a

CNOT[Qa, Qb]

Xi ←M [Qb]

Case 4. If Pl is jumping, i.e. TRA m if Xj > 0, we use a single modified instruction

label(l) :TRA m′ if Xj+δ > 0

with m′ = label (m).

Case 5. For other cases, use the same instructions as in P .

It can be seen that the constructed QRAM P ′ simulates QRAM P with a constant factor
slowdown. Since mea always increases, no quantum register will be measured more than once. To
the end, according to Lemma 5.2, the variables mea, a and b are involved by shifting the address
to the right by δ = 4.

6 Computations of QRASPs

In this section, we define the computations of QRASPs in terms of operational and denotational
semantics, in parallel with what we did for QRAMs in the last section.

6.1 Operational semantics

A configuration of a QRASP P is a tuple (ξ, ζ, µ, |ψ〉 , x, y), where:

1. ξ ∈ N ∪ {↓} denotes the current IC, with ↓ indicating the end of execution.

2. ζ ∈ Z denotes the current AC.

3. µ : N→ Z is the description of all contents of classical registers;

4. |ψ〉 ∈ H =
⊗∞

i=0Hi is the state of all quantum registers, with Hi = span{|0〉i , |1〉i};

5. x ∈ Z
ω is a sequence of integers to read on the input tape;

6. y ∈ Z
∗ is a sequence of printed integers on the output tape.
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We write C = (N∪{↓})×Z×Z
N×H×Z

ω×Z
∗ for the set of all configurations. A configuration

c = (ξ, ζ, µ, |ψ〉 , x, y) ∈ C is a terminal configuration if ξ = ↓. Let Cf ⊆ C denote the set of all
terminal configurations.

Similar to the case of QRAMs, the execution transition of a QRASP P is a function→: C×C →
[0, 1] × N defined by the following rules:

1. When µ(ξ) is beyond [1, 11],

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−→
l(ξ)+l(µ(ξ))

(↓, ζ, µ, |ψ〉 , x, y).

2. When µ(ξ) = 1,

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(ξ)+l(µ(ξ+1))

(ξ + 2, µ(ξ + 1), µ, |ψ〉 , x, y).

3. When µ(ξ) = 2, if µ(ξ + 1) ≥ 0, then

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−−−−−−−−−−−−−→
l(ξ)+l(µ(ξ+1))+l(ζ)+l(µ(µ(ξ+1)))

(ξ + 2, ζ + µ(µ(ξ + 1)), µ, |ψ〉 , x, y);

otherwise,
(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→

l(ξ)+l(µ(ξ+1))
(↓, ζ, µ, |ψ〉 , x, y).

4. When µ(ξ) = 3, if µ(ξ + 1) ≥ 0, then

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−−−−−−−−−−−−−→
l(ξ)+l(µ(ξ+1))+l(ζ)+l(µ(µ(ξ+1)))

(ξ + 2, ζ − µ(µ(ξ + 1)), µ, |ψ〉 , x, y);

otherwise,
(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→

l(ξ)+l(µ(ξ+1))
(↓, ζ, µ, |ψ〉 , x, y).

5. When µ(ξ) = 4, if µ(ξ + 1) ≥ 0, then

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−−−−→
l(ξ)+l(µ(ξ+1))+l(ζ)

(ξ + 2, ζ, µζ
µ(ξ+1), |ψ〉 , x, y);

otherwise,
(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→

l(ξ)+l(µ(ξ+1))
(↓, ζ, µ, |ψ〉 , x, y).

6. When µ(ξ) = 5, if ζ > 0, then:

(a) if µ(ξ + 1) ≥ 0,

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−−−−→
l(ξ)+l(µ(ξ+1))+l(ζ)

(µ(ξ + 1), ζ, µ, |ψ〉 , x, y),

(b) if µ(ξ + 1) < 0,

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−−−−→
l(ξ)+l(µ(ξ+1))+l(ζ)

(↓, ζ, µ, |ψ〉 , x, y);

otherwise,
(ξ, ζ, µ, |ψ〉 , x, y) −−−−−→

l(ξ)+l(ζ)
(ξ + 2, ζ, µ, |ψ〉 , x, y).
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7. When µ(ξ) = 6, if µ(ξ + 1) ≥ 0, then let a be the first integer in x, and

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−−−−→
l(ξ)+l(µ(ξ+1))+l(a)

(ξ + 2, ζ, µaµ(ξ+1), |ψ〉 , x′, y),

where x′ denotes the string obtained by deleting the first integer from x; otherwise,

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(ξ)+l(µ(ξ+1))

(↓, ζ, µ, |ψ〉 , x, y).

8. When µ(ξ) = 7, if µ(ξ + 1) ≥ 0, then

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−−−−−−−−−−→
l(ξ)+l(µ(ξ+1))+l(µ(µ(ξ+1)))

(ξ + 2, ζ, µ, |ψ〉 , x, y′),

where y′ denotes the string obtained by appending µ(µ(ξ + 1)) to y; otherwise,

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(ξ)+l(µ(ξ+1))

(↓, ζ, µ, |ψ〉 , x, y).

9. When µ(ξ) = 8, if µ(ξ + 1) ≥ 0 and µ(ξ + 2) ≥ 0, then

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−−−−−−−−→
l(ξ)+l(µ(ξ+1))+l(µ(ξ+2))

(ξ + 3, ζ, µ,CNOTµ(ξ+1),µ(ξ+2) |ψ〉 , x, y);

otherwise,
(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→

l(ξ)+l(µ(ξ+1))
(↓, ζ, µ, |ψ〉 , x, y).

10. When µ(ξ) = 9, if µ(ξ + 1) ≥ 0, then

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(ξ)+l(µ(ξ+1))

(ξ + 2, ζ, µ,Hµ(ξ+1) |ψ〉 , x, y);

otherwise,
(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→

l(ξ)+l(µ(ξ+1))
(↓, ζ, µ, |ψ〉 , x, y).

11. When µ(ξ) = 10, if µ(ξ + 1) ≥ 0, then

(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→
l(ξ)+l(µ(ξ+1))

(ξ + 2, ζ, µ, Tµ(ξ+1) |ψ〉 , x, y);

otherwise,
(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→

l(ξ)+l(µ(ξ+1))
(↓, ζ, µ, |ψ〉 , x, y).

12. When µ(ξ) = 11, if µ(ξ + 1) ≥ 0, then

(ξ, ζ, µ, |ψ〉 , x, y)
‖Pµ(ξ+1) |ψ〉‖2−−−−−−−−−→
l(ξ)+l(µ(ξ+1))

(ξ + 2, 0, µ,
Pµ(ξ+1) |ψ〉
‖Pµ(ξ+1) |ψ〉‖2

, x, y),

(ξ, ζ, µ, |ψ〉 , x, y)
1−‖Pµ(ξ+1) |ψ〉‖2−−−−−−−−−−→
l(ξ)+l(µ(ξ+1))

(ξ + 2, 1, µ,
(I − Pµ(ξ+1)) |ψ〉
1− ‖Pµ(ξ+1) |ψ〉‖2

, x, y);

otherwise,
(ξ, ζ, µ, |ψ〉 , x, y) −−−−−−−−−→

l(ξ)+l(µ(ξ+1))
(↓, ζ, µ, |ψ〉 , x, y).
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6.2 Denotational semantics

The notions of execution path, semantic function and worst case running time for a QRASP can
be defined in the same way as those for a QRAM in Subsection 5.2. Moreover, it is easy to show
that Lemma 5.1 holds for QRASPs too.

6.3 QRASP computations

A QRASP is a sequence P = P0, P1, . . . , PL−1 of integers with L = |P | the length of P , which is
initially stored in the classical registers. More precisely, the initial contents of classical registers are
described by

µ0(ξ) =

{

Pξ 0 ≤ ξ < L,

0 otherwise.

Moreover, initially IC and AC are set to 0 and all quantum registers are |0〉, i.e.

|ψ0〉 =
∞
⊗

i=0

|0〉i .

Similar to the case of QRAMs, the computation of a QRASP P is defined on finite strings over
a finite alphabet Σ. Suppose the input string is x ∈ Σ∗, then the computation starts from the
configuration

cx = (0, 0, µ0, |ψ0〉 , in(x), ǫ).
The computational result P : Σ∗ × Σ∗ → [0, 1] is then defined by

P (x, y) =
∑

c∈Cf :out(c.y)=y
JP K(cx)(c),

and the worst case running time TP : Σ∗ → N ∪ {∞} is defined by

TP (x) = τP (cx).

Furthermore, let T : N → N. Then P is said to be a T (n)-time QRASP, if for every x ∈ Σ∗,
TP (x) ≤ T (|x|).

7 Comparison of QRAMs and QRASPs

With the precise definitions of QRAMs and QRASPs given in the previous sections, we are now
ready to prove Theorem 4.1. Subsection 7.1 shows how QRAMs can simulate QRASPs, and Sub-
section 7.2 shows how QRASPs can simulate QRAMs.

7.1 QRAMs simulate QRASPs

7.1.1 Simulation construction

Let QRASP P be given as a sequence P0, P1, P2, . . . , PL−1 of integers. The idea of the simulation
is to hardcode P into the classical registers of a QRAM P ′, and then simulate the execution of
P . The details of the simulation are presented in Algorithm 1. For readability, we only present P ′

as pseudo-codes. (The translation from the pseudo-codes to QRAM instructions can be done in a
familiar way, and the details are provided in Appendix A for completeness).

26



Algorithm 1 QRAM pseudo-code for simulating QRASP.

Input: Input: a QRASP to be simulated.
Output: Output: a QRAM that simulates the QRASP.
1: integer array memory ;
2: integer IC,AC,flag , op, j, k;
3: memory [0]← P0;memory [1]← P1; . . .memory [L− 1]← PL−1;
4: while flag = 0 do

5: op ← memory [IC];
6: if op = 1 then

7: j ← memory [IC + 1]; AC← j; IC← IC + 2;
8: else if op = 2 then

9: j ← memory [IC + 1]; AC← AC+memory [j]; IC← IC + 2;
10: else if op = 3 then

11: j ← memory [IC + 1]; AC← AC−memory [j]; IC← IC + 2;
12: else if op = 4 then

13: j ← memory [IC + 1]; memory [j]← AC; IC← IC + 2;
14: else if op = 5 then

15: if AC > 0 then

16: j ← memory [IC + 1]; IC← j;
17: else

18: IC← IC + 2;
19: end if

20: else if op = 6 then

21: j ← memory [IC + 1]; READ memory [j]; IC← IC + 2;
22: else if op = 7 then

23: j ← memory [IC + 1]; WRITE memory [j]; IC← IC + 2;
24: else if op = 8 then

25: j ← memory [IC + 1]; k ← memory [IC + 2]; CNOT[Qj, Qk]; IC← IC + 3;
26: else if op = 9 then

27: j ← memory [IC + 1]; H[Qj ]; IC← IC + 2;
28: else if op = 10 then

29: j ← memory [IC + 1]; T [Qj]; IC← IC + 2;
30: else if op = 11 then

31: j ← memory [IC + 1]; AC←M [Qj]; IC← IC + 2;
32: else

33: flag ← 1;
34: end if

35: end while
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7.1.2 Correctness proof

The remaining part of this subsection is devoted to prove correctness of Algorithm 1; that is, for
any QRASP P , the QRAM P ′ constructed by Algorithm 1 can simulate P with a suitable time
complexity.

Let (ξ, ζ, µ, |ψ〉 , x, y) be a configuration of P and (ξ′, µ′, |ψ′〉 , x′, y′) a configuration of P ′. We
use µ′(var ) to denote the value of variable var stored in P ′ according to µ′.

Definition 7.1. We say that a QRAM configuration (ξ′, µ′, |ψ′〉 , x′, y′) agrees with a QRASP con-
figuration (ξ, ζ, µ, |ψ〉 , x, y), written (ξ′, µ′, |ψ′〉 , x′, y′) |= (ξ, ζ, µ, |ψ〉 , x, y), if

1. µ′(AC) = ζ, (µ′(flag) = 1 or ξ′ =↓), µ′(memory [j]) = µ(j) for every j ∈ N, |ψ′〉 = |ψ〉,
x′ = x and y′ = y in the case ξ =↓; or

2. µ′(AC) = ζ, µ′(IC) = ξ, µ′(memory [j]) = µ(j) for every j ∈ N, |ψ′〉 = |ψ〉, x′ = x and y′ = y
in the case ξ ∈ N.

Lemma 7.1. For every c′ ∈ C′, there is a unique c ∈ C such that c′ |= c.

Proof. We only need to observe: (1) if c′ |= c1 and c′ |= c2, then c1 = c2; and (2) for every c′, there
is a c such that c′ |= c.

Let C and C′ be the set of configurations of P and P ′, respectively, and let c0 ∈ C and c′0 ∈ C′
be their initial configurations. We write C′L5 = {c′ ∈ C′ : c′.ξ = 5} for the set of configurations of
P ′ that reaches Line 5 in Algorithm 1 (Here, we use the line number to indicate the current IC).

Lemma 7.2. Let c′ ∈ C′L5 and c, d ∈ C. If c′ |= c, and c
p−→
T
d, then there is a d′ ∈ C′L5 such that

d′ |= d and c′
p−−−→

Θ(T )
d′.

Proof. Direct from the operational semantics.

We use P and P ′ to denote the sets of all possible execution paths of P and P ′, respectively.
Let π′ ∈ P ′

f (c
′
0) be a path of length |π′| = k:

π′ : c′0
p′1−→
T ′
1

c′1
p′2−→
T ′
2

. . .
p′k−1−−−→
T ′
k−1

c′k−1

p′k−→
T ′
k

c′k,

and let 0 < i0 < i1 < · · · < im−1 < k be all indices that c′(j) = c′ij ∈ C′L5 for 0 ≤ j < m. Then it can
be written as

π′ : c′0
p′
(0)−−→
T ′
(0)

∗
c′(0)

p′
(1)−−→
T ′
(1)

∗
c′(1)

p′
(2)−−→
T ′
(2)

∗
. . .

p′
(m−1)−−−−→
T ′
(m−1)

∗
c′(m−1)

p′
(m)−−−→
T ′
(m)

∗
c′(m) = c′k,

where

p′(j) =

ij
∏

l=ij−1+1

p′l,

and

T ′
(j) =

ij
∑

l=ij−1+1

T ′
l

for 0 ≤ j ≤ m, and i−1 = 0, im = k. We define ‖π′‖ = m.
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Lemma 7.3. c′(0) |= c0 and c′0
1−−−→

O(1)

∗
c′(0).

Proof. Obvious.

Definition 7.2. Let π′ ∈ P ′
f (c

′
(0)) and π ∈ Pf (c0). Then we say that π′ agrees with π, denoted

π′ |= π, if

1. ‖π′‖ = |π|.

2. c′(j) |= cj for 0 ≤ j ≤ ‖π′‖.

3. p′(j) = pj and T
′
(j) = Θ(Tj) for 1 ≤ j ≤ ‖π′‖.

Lemma 7.4. For every π′ ∈ P ′
f (c

′
(0)), there is a unique π ∈ Pf (c0) such that π′ |= π.

Proof. Obvious.

Lemma 7.4 implies that P ′ is time bounded by O(T (n)). Let T ′ : N → N be the worst case
running time of P ′.

Lemma 7.5. For every π ∈ Pf (c0), there is a unique π′ ∈ P ′
f (c

′
(0)) such that π′ |= π. We use

h : P(c0)→ P ′(c′(0)) to denote this bijection.

Proof. (Existence) Directly by Lemma 7.2.
(Uniqueness) For every π ∈ P(c0), we choose an arbitrary π′ ∈ P ′(c′(0)) such that π′ |= π and

write h(π) = π′. We note that

1 =
∑

π∈P(c0)

π.p =
∑

π∈P(c0)

h(π).p ≤
∑

π′∈P ′(c′
(0)

)

π′.p = 1,

the uniqueness of h(π) follows immediately.

Finally, we are ready to show that P ′ actually simulate P . Let x ∈ Σ∗ be the input string
and the initial configuration of P be c0 = (0, 0, µ0, |ψ0〉 , in(x), ǫ). Since P is a T (n)-time QRASP,
|π| ≤ T (|x|) is finite for every π ∈ P(c0). Now that each transition leads to at most two branches,
|P(c0)| ≤ 2T (|x|) must be finite too. Thus, for every y ∈ Σ∗, we have:
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P (x, y) =
∑

c∈Cf :out(c.y)=y
JP K(c0)(c)

=
∑

c∈Cf :out(c.y)=y
JP KT (|x|)(c0)(c)

=
∑

π∈PT (|x|)(c0):out(π.c|π|.y)=y

π.p

=
∑

π∈PT (|x|)(c0):out(h(π).c|f(π)|.y)=y

h(π).p

=
∑

π′∈P ′T ′(|x|)(c′
(0)

):out(π′.c|π′|.y)=y

π′.p

=
∑

π′∈P ′T ′(|x|)(c′0):out(π
′.c|π′|.y)=y

π′.p

=
∑

c′∈C′
f
:out(c′.y)=y

JP ′KT
′(|x|)(c′0)(c)

=
∑

c′∈C′
f
:out(c′.y)=y

JP ′K(c′0)(c)

= P ′(x, y).

7.2 QRASPs simulate QRAMs

7.2.1 Simulation construction

Let QRAM P be a sequence P0, P1, . . . , PL−1 of QRAM instructions. By Lemma 5.3, we may assume
that P is address-safe without any loss of generality. The QRASP P ′ that simulates QRAM P is
defined as follows. Let δ be an integer greater than the length of P ′, i.e. δ > |P ′|. It will be shown
later that δ = 20L (a finite number) is enough. Define the simulating length simulate(Pi) of Pi
being the length of QRASP code intended to simulate the QRAM instruction Pi. The intended
value for simulate(Pi) are shown in Table 6 according to the instruction type of Pi. In order to
deal with the jump instruction “TRA m if Xj > 0”, label(m) is needed, which is defined to be the
jump address in QRASP corresponding to the jump address m in QRAM. More precisely,

label(m) =
m−1
∑

i=0

simulate(Pi).

The length of our QRASP P ′ is designed to be L′ = |P ′| = label (L). For every 0 ≤ i < L, the
instruction Pi is interpreted into QRASP instructions as simulate(Pi) integers starting from label (i).
In other words, the QRASP instructions P ′

label(i), P
′
label(i)+1, . . . , P

′
label(i+1)−1 are corresponding to

QRAM instruction Pi.
Now for 0 ≤ l < L, we present the QRASP code for simulating Pl. Here we only display those

for quantum instructions (The simulations of classical instructions are standard and thus omitted
here; they are provided in Appendix B for completeness). For readability, the QRASP codes are
written by means of QRASP mnemonics.
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1. Pl is of the form CNOT[QXi
, QXj

]. The QRASP code is

label (l) :LOD, δ

ADD, i+ δ

STO, a+ 1

LOD, δ

ADD, j + δ

STO, a+ 2

a :CNOT, 0, 0

Note that a = label (l) + 12.

2. Pl is of the form A[QXi
] with A = H or T . The QRASP code is

label(l) :LOD, δ

ADD, i+ δ

STO, a+ 1

a :A, 0

Note that a = label (l) + 6.

3. Pl is of the form Xi ←M [QXj
]. The QRASP code is

label (l) :LOD, δ

ADD, j + δ

STO, a+ 1

a :MEA, 0

STO, i+ δ

Table 6: Simulating length of QRAM instructions by QRASP
Type Instruction Simulating length

Classical Xi ← C, C any integer 4
Classical Xi ← Xj +Xk 8
Classical Xi ← Xj −Xk 8
Classical Xi ← XXj

12
Classical XXi

← Xj 12
Classical TRA m if Xj > 0 6
Classical READ Xi 2
Classical WRITE Xi 2

Quantum CNOT[QXi
, QXj

] 15
Quantum H[QXi

] 8
Quantum T [QXi

] 8

Measurement Xi ←M [QXj
] 10
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Note that a = label (l) + 6.

7.2.2 Correctness proof

The proof is similar to that given in Subsection 7.1.2. We note that L′ = |P ′| = label(L) =
label(|P |) ≤ 15L < 20L = δ.

Definition 7.3. We say that a QRASP configuration c′ = (ξ′, ζ ′, µ′, |ψ′〉 , x′, y′) agrees with a
QRAM configuration c = (ξ, µ, |ψ〉 , x, y), denoted c′ |= c, if

1. ξ′ =↓, µ′(i+ δ) = µ(i) for every i ∈ N, |ψ′〉 = |ψ〉, x′ = x and y′ = y in the case ξ =↓; or

2. ξ′ = label(ξ), µ′(i+ δ) = µ(i) for every i ∈ N, |ψ′〉 = |ψ〉, x′ = x and y′ = y in the case ξ ∈ N.

Lemma 7.6. For every c′, there is a unique c such that c′ |= c.

Let C and C′ be the set of configurations of P and P ′, respectively, and c0 ∈ C and c′0 ∈ C′ be
their initial configurations. Define C′L ⊆ C′ being the set of configurations, whose ICs are in

L = {label (0), label (1), . . . , label(L)}.

Lemma 7.7. Let c′ ∈ C′L and c, d ∈ C. If c′ |= c, and c
p−→
T
d, then there is a d′ ∈ C′L such that

d′ |= d and c′
p−−−→

Θ(T )
d′.

Proof. Direct from the operational semantics.

We write P and P ′ for the sets of all possible execution paths of P and P ′, respectively. Let
π′ ∈ P ′

f (c
′
0) be a path of length |π′| = k:

π′ : c′0
p′1−→
T ′
1

c′1
p′2−→
T ′
2

. . .
p′k−1−−−→
T ′
k−1

c′k−1

p′k−→
T ′
k

c′k.

Let 0 = i0 < i1 < · · · < im−1 < im = k be all indices such that c′(j) = c′ij ∈ C′L for 0 ≤ j ≤ m. Then

the execution path π′ can be written as

π′ : c′0 = c′(0)
p′
(1)−−→
T ′
(1)

∗
c′(1)

p′
(2)−−→
T ′
(2)

∗
. . .

p′
(m−1)−−−−→
T ′
(m−1)

∗
c′(m−1)

p′
(m)−−−→
T ′
(m)

∗
c′(m) = c′k,

where

p′(j) =

ij
∏

l=ij−1+1

p′l,

and

T ′
(j) =

ij
∑

l=ij−1+1

T ′
l

for 1 ≤ j ≤ m. We write ‖π′‖ = m.

Lemma 7.8. c′(0) |= c0.

Definition 7.4. Let π′ ∈ P ′
f (c

′
(0)) and π ∈ Pf (c0). Then we say that π′ agrees with π, denoted

π′ |= π, if
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1. ‖π′‖ = |π|.

2. c′(j) |= cj for 0 ≤ j ≤ ‖π′‖.

3. p′(j) = pj and T
′
(j) = Θ(Tj) for 1 ≤ j ≤ ‖π′‖.

Lemma 7.9. For every π′ ∈ P ′
f (c

′
(0)), there is a unique π ∈ Pf (c0) such that π′ |= π.

It follows immediately from Lemma 7.9 that P ′ is time bounded by O(T (n)). Let T ′ : N → N

be the worst case running time of P ′.

Lemma 7.10. For every π ∈ Pf (c0), there is a unique π′ ∈ P ′
f (c

′
(0)) such that π′ |= π. We use

h : P(c0)→ P ′(c′(0)) to denote this bijection.

Proof. (Existence) Direct from Lemma 7.7.
(Uniqueness) For every π ∈ P(c0), we choose an arbitrary π′ ∈ P ′(c′(0)) such that π′ |= π and

define h(π) = π′. Then

1 =
∑

π∈P(c0)

π.p =
∑

π∈P(c0)

h(π).p ≤
∑

π′∈P ′(c′
(0)

)

π′.p = 1.

The uniqueness of h(π) follows.

Now let x ∈ Σ∗ be the input string and the initial configuration of P is c0 = (0, µ0, |ψ0〉 , in(x), ǫ).
Since P is a T (n)-time QRAM, |π| ≤ T (|x|) is finite for every π ∈ P(c0), and |P(c0)| ≤ 2T (|x|) is
also finite because each transition leads to at most two branches. So for every y ∈ Σ∗, we have:

P (x, y) =
∑

c∈Cf :out(c.y)=y
JP K(c0)(c)

=
∑

c∈Cf :out(c.y)=y
JP KT (|x|)(c0)(c)

=
∑

π∈PT (|x|)(c0):out(π.c|π|.y)=y

π.p

=
∑

π∈PT (|x|)(c0):out(h(π).c|f(π)|.y)=y

h(π).p

=
∑

π′∈P ′T ′(|x|)(c′
(0)

):out(π′.c|π′|.y)=y

π′.p

=
∑

π′∈P ′T ′(|x|)(c′0):out(π
′.c|π′|.y)=y

π′.p

=
∑

c′∈C′
f :out(c

′.y)=y

JP ′KT
′(|x|)(c′0)(c)

=
∑

c′∈C′
f
:out(c′.y)=y

JP ′K(c′0)(c)

= P ′(x, y).
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8 Comparison of QRAMs and QTMs

In this section, we prove Theorem 4.2. Subsection 8.1 shows how QTMs can simulate QRAMs, and
Subsection 8.2 describes how QRAMs can simulate QTMs.

8.1 QTMs simulate QRAMs

Our simulation of QRAMs by QTMs simulate QRAMs is divided into two steps. First, we introduce
the notion of Turing machines with a quantum device (TMQs) and prove in Subsection 8.1.1 that
every QRAM can be simulated by a measurement-postponed TMQ. The main technique here is
based on the idea of simulating RAMs by TMs given in [7]. Then we show in Subsection 8.1.2 that
a measurement-postponed TMQ can be simulated by a well-formed and normal form QTM. The
main technique here is based on the idea of simulating TMs by RTMs given in [3].

8.1.1 TMs with quantum devices simulate QRAMs

Let us first define the notion of TM with a quantum device.

Definition 8.1. A TM with a quantum device (TMQ) is a 8-tuple M = (Q,Qs, Qt,Σ, δ, λ, qs, qf ),
where:

1. Q is a finite set of states;

2. Qs ⊆ Q and Qt ⊆ Q are two disjoint sets of states as interactor for the quantum device;

3. δ : (Q \Qs)× Σ→ Σ× (Q \Qt)× {L,R} is the transition function;

4. λ : (Qs × Σ# ×H) × (Qt × H) → [0, 1] is the transition function for quantum device, where
H =

⊗∞
i=0Hi, and Hi = span{|0〉i , |1〉i}. It is required that for every p ∈ Qs,T ∈ Σ#, |ψ〉 ∈

H,
∑

q∈Qt,|φ〉∈H
λ((p,T , |ψ〉), (q, |φ〉)) = 1;

5. qs ∈ Q \Qs \Qt is the initial state;

6. qf ∈ Q \Qs \Qt is the final state.

A configuration of TMQ is a tuple c = (q,T , ξ, |ψ〉) ∈ Q×Σ#×Z×H. Let C = Q×Σ#×Z×H be
the set of configurations. The one step execution transition of TMQ is a function →: C × C → [0, 1]
defined by the following rules: let c = (p,T , ξ, |ψ〉),

1. if p = qf , then the execution terminates.

2. if p ∈ Q \ Qs \ {qf} and δ(p,T (ξ)) = (q, σ, d), then after one step, the configuration will
become c′ = (q,T σξ , ξ + d, |ψ〉), i.e.

(p,T , ξ, |ψ〉) 1−→ (q,T σξ , ξ + d, |ψ〉),

3. if p ∈ Qs and λ((p,T , |ψ〉), (q, |φ〉)) = a, then after one step, the configuration will become
c′ = (q,T , ξ, |φ〉) with probability a, i.e.

(p,T , ξ, |ψ〉) a−→ (q,T , ξ, |φ〉).
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An execution path is then a non-empty sequence of configurations associated with probabilities:

π : c0
a1−→ c1

a2−→ c2 . . . cn−1
an−→ cn.

The length of π is |π| = n, and the probability of path π is a =
∏n
i=1 ai. In this case, we can simply

denote π : c0
a−→n

cn. Let T : N→ N and |ψ0〉 =
⊗∞

i=0 |0〉i . A TMQ is called T (n)-time, if for every

x ∈ {0, 1}∗, and every execution path (q0,Tx, 0, |ψ0〉) a−→t
c, if a > 0, then t ≤ T (|x|).

Now we can explain the basic idea of our simulation of a QRAMs by a TMQ. The TMQ used
to simulate a QRAM needs the following (a finite number of) tracks:

1. “input”: This track initially contains the input.

2. “output”: This track contains the output after the machine halts.

3. “creg”: This track contains contents of classical registers. The format is designed to be
#La1Mb1RLa2Mb2R . . .LarMbrR#, indicating that the content of classical register ai is bi
for 1 ≤ i ≤ s. In particular, if the number x is not found among a1, a2, . . . , ar, then the
content of classical register is 0.

4. “qcnt” — the quantum register counter: This track contains a single non-negative number
indicating the number of used quantum registers.

5. “qreg”: This track contains a correspondence list from virtual addresses to physical addresses.
Similar to track “creg”, the format is designed to be #Lu1Mv1RLu2Mv2R . . .LusMvsR#,
indicating that the virtual address ui corresponds to physical address vi for 1 ≤ i ≤ s. To
avoid too large addresses of quantum registers, the machine re-numbers every used address
of quantum registers (virtual address) to a small number (physical address). Each time
a quantum register a is accessed in the QRAM, the machine checks whether the virtual
address a is collected in “qreg”. If so, convert a to its corresponding physical address; and
if not, increment the quantum register counter and assign a with the value of the current
quantum register counter (“qcnt”) as its physical address (and add this assignment to the
correspondence list).

6. “qdev” — a track for interactions to the quantum device: This track is used for quantum
operation calls to quantum device. In our case, there are four kinds of quantum operations,
i.e. CNOT, Hadamard and π/8 gates and measurements. The format of this track will be
defined shortly.

7. “qret” — a track for calling back after quantum operations: This track contains a single
symbol denoting the returning state, i.e. the next state it should be, after the quantum
operations. This track is used as a system stack in the computers.

8. “worki” for i ≥ 1 — work tracks: The contents of these tracks are ignorant and they will be
cleaned to an empty track after use as a hub.

The output of TMQ is defined to be the contents in track “output”. Moreover, TMQ M defines a
functionM : {0, 1}∗×{0, 1}∗ → [0, 1] withM(x, y) being the probability thatM on input x outputs
y. In our model, there are only four kinds of quantum operations: CNOT, Hadamard and π/8 gates,
and measurements. So, we use qCs , q

H
s , q

T
s , q

M
s to denote their initial states and qCt , q

H
t , q

T
t , q

M
t0 , q

M
t1

to denote their terminating states, and put Qs = {qCs , qHs , qTs , qMs } and Qt = {qCt , qHt , qTt , qMt0 , qMt1 }.
Furthermore, the format of track “qdev” is defined as follows:
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1. For a CNOT gate, the machine reads the contents s of track “qdev”. The string s ∈ {0, 1, 2}∗
is assumed to consist of one 1, one 2 and some 0s. Let 1 and 2 be the a-th and the b-th
elements of s (0-indexed), respectively, and let |ψ〉 ∈ H be the quantum state before the
application of the gate. When the gate is applied, the state of TMQ is changed from qCs to qCt
with the quantum state becoming CNOT[a, b] |ψ〉; that is, the a-th qubit acts as the control
qubit and the b-th qubit as the target qubit (0-indexed).

2. For a Hadamard (resp. π/8) gate, the machine reads the contents s of track “qdev”. The
string s ∈ {0, 1}∗ is assumed to consist of one 1 and several 0s. Let 1 be the a-th element of s
(0-indexed), and let |ψ〉 ∈ H be the quantum state before application of the gate. When the
gate operation is applied, the state of TMQ is changed from qHs (res. qTs ) to q

H
t (resp. qTt );

that is, the gate is performed on the a-th qubit (0-indexed) with the quantum state becoming
H[a] |ψ〉 (res. T [a] |ψ〉).

3. For a measurement, the machine reads the contents s of track “qdev”. The string s ∈ {0, 1}∗
is assumed to consist of one 1 and several 0s. Let 1 be the a-th element of s (0-indexed),
and let |ψ〉 ∈ H be the quantum state before the measurement. When the measurement is
performed, the state of TMQ is changed from qMs to qMt0 such that the quantum state becomes
|φ0〉 with probability p0, and to qMt1 such that the quantum state becomes |φ1〉 with probability
p1, where:

p0 = ‖M0[a] |ψ〉‖2, |φ0〉 =
M0[a] |ψ〉
‖M0[a] |ψ〉‖

, p1 = ‖M1[a] |ψ〉‖2, |φ1〉 =
M1[a] |ψ〉
‖M1[a] |ψ〉‖

and M0[a] = |0〉a 〈0|, M1[a] = I −M0[a].

Now let P = P0, P1, . . . , PL−1 be a QRAM to be simulated by a TMQ. By Lemma 5.3 and
Lemma 5.4, we can assume that P is address-safe and measurement-postponed without any loss
of generality. For every 0 ≤ l < L, we use a bunch of states (pl, 0), (pl, 1), . . . , (pl, kl) to simulate
instruction Pl, where for every l, kl is an appropriate integer. The state (pl, 0) indicates the begin-
ning of the simulation of Pl. During the simulation of Pl, the intermediate states (pl, 1), . . . , (pl, kl)
may be visited. In particular, (pL, 0) indicates the termination of the simulation, and is going to
become qf , which indicates the termination of the execution of TMQ.

Before constructing TMQ, we first show how integers are stored in our machine. For every
integer n ∈ Z, we use bin(n) ∈ {0, 1}∗ to denote its binary form. The first symbol of bin(n) is 0
if n ≥ 0 and 1 otherwise, which is followed by a binary representation of |n|. Conversely, we use
dec(x) to denote the decimal value of the binary string x if it is valid. We also need some TMs
that perform arithmetic and other basic operations:

• Minc — a TM for increment by one: for every a ∈ Z,

Minc(bin(a)) = bin(a+ 1).

The time of Madd is O(log |a|).

• Madd — a TM for addition: for every a, b ∈ Z,

Madd(bin(a); bin(b); ǫ) =Madd(bin(a); bin(b); bin(a+ b)).

The time of Madd is O(log |a|+ log |b|).
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• Msub — a TM for subtraction. Formally, for every a, b ∈ Z,

Msub(bin(a); bin(b); ǫ) =Madd(bin(a); bin(b); bin(a− b)).

The time of Msub is O(log |a|+ log |b|).

• Mgtz — a TM for checking positivity: for every a ∈ Z,

Mgtz(bin(a)) =

{

1 a > 0,

0 otherwise.

The time of Mgtz is O(log |a|).

• Mclean — a TM that cleans a track: for every x ∈ {0, 1}∗, Mclean(x) = ǫ. The time of Mclean

on input x is O(|x|).

• Mread — a TM that reads a symbol from a track: for every x = σ0σ1 . . . σk−1 ∈ {0, 1}∗,

Mread(x; ǫ) =











σ1 . . . σk−1; bin(0) k ≥ 1 and σ0 = 0,

σ1 . . . σk−1; bin(1) k ≥ 1 and σ0 = 1,

ǫ; bin(−1) k = 0.

The time of Mread is O(|x|).

• Mwrite(a) — a TM that writes a specific (pre-determined) content a to the end of a track: for
every x ∈ {0, 1}∗, Mwrite(a)(x) = xa. The time of Mwrite(a) is O(|x|).

• Mappend — a TM that appends the contents in the second track to the end of the first track:
for every x, y ∈ {0, 1}∗, Mappend(x; y) = xy; y. The time of Mappend is O(|x| |y|).

• Mfetch — a TM that fetches the contents of registers: suppose the contents in the first track
is z = La1Mb1RLa2Mb2R . . .LarMbrR. For every x ∈ {0, 1}∗,

Mfetch(z;x; ǫ) =

{

z;x; bi ai = x,

z;x; bin(0) otherwise.

The time ofMfetch is O(|z| (|x|+|y|)), where y is the contents in the third track after execution.

• Mupdate — a TM that updates the contents of registers: suppose the contents in the first
track is z = La1Mb1RLa2Mb2R . . .LarMbrR. For every x ∈ {0, 1}∗,

Mupdate(z;x; y) =

{

La1Mb1R . . .LaiMyR . . .LarMbrR;x; y ai = x,

zLxMyR;x otherwise.

The time of Mupdate is O(|z| (|x|+ |y|)).

• Mqget — a TM that gets the physical address of a virtual address: suppose the contents in
the first track is z = La1Mb1RLa2Mb2R . . .LarMbrR. For every c ∈ N and x ∈ {0, 1}+,

Mqget(z; bin(c);x; ǫ) =

{

z; bin(c);x; bi x = ai,

zLxMbin(c+ 1)R; bin(c+ 1);x; bin(c+ 1) otherwise.

The time of Mqget is O(|z| (|x|+ |y|+log |c|)), where y is the contents in the fourth track after
execution.

37



• Muntary — a TM that converts a non-negative integer c to a string 0c1: for every c ∈ N,

Muntary(bin(c)) = 0c1.

The time of Muntary is O(c log c). This TM is used to produce contents in track “qdev” for
qHs , q

T
s and qMs calls.

• Mpair — a TM that converts a two non-negative integers a and b (a 6= b) to a string sab ∈
{0, 1, 2}∗ of length |sab| = max{a, b}+ 1 that

sab(c) =











1 c = a,

2 c = b,

0 otherwise,

where s(c) denotes the c-th symbol of s (0-indexed). Formally, for every a, b ∈ N with a 6= b,
then

Mpair(bin(a); bin(b); ǫ) = bin(a); bin(b); sab.

The time of Mpair is O((a + b)(log a+ log b)). This TM is used to produce contents in track
“qdev” for qCs calls.

Now we are ready to construct the TMQ. We assume that all of the TMs introduced above are
stationary. Before simulation, we should initialize the “qcnt” track to be decimal value of zero, i.e.

q0 :Mwrite(bin(0))[qcnt]

q1 :transition to (p0, 0)

For every 0 ≤ l < L, if Pl is a classical instruction, it can be simulated in a standard way, and the
details are omitted here but provided in Appendix C. The following are the simulation of quantum
instruction Pl:
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1. If Pl has the form CNOT[QXi
, QXj

], then we use:

(pl, 0) :Mwrite(i)[work1]

(pl, 1) :Mfetch[creg,work1,work2]

(pl, 2) :Mqget[qreg, qcnt,work2,work3]

(pl, 3) :Mwrite(j)[work4]

(pl, 4) :Mfetch[creg,work4,work5]

(pl, 5) :Mqget[qreg, qcnt,work5,work6]

(pl, 6) :Mpair[work3,work6, qdev]

(pl, 7) :Mwrite((pl, 9))[qret]

(pl, 8) :transition to qCs

qCt ,(pl, 9)qret → #qret, (pl, 9), L

(pl, 9),#qret → #qret, (pl, 10), R

(pl, 10) :Mclean[work1]

(pl, 11) :Mclean[work2]

(pl, 12) :Mclean[work3]

(pl, 13) :Mclean[work4]

(pl, 14) :Mclean[work5]

(pl, 15) :Mclean[work6]

(pl, 16) :Mclean[qdev]

(pl, 17) :transition to (pl+1, 0)

2. If Pl has the form A[QXi
] with A = H or T , then we use:

(pl, 0) :Mwrite(i)[work1]

(pl, 1) :Mfetch[creg,work1,work2]

(pl, 2) :Mqget[qreg, qcnt,work2, qdev]

(pl, 3) :Muntary[qdev]

(pl, 4) :Mwrite((pl, 6))[qret]

(pl, 5) :transition to qAs

qAt ,(pl, 6)qret → #qret, (pl, 6), L

(pl, 6),#qret → #qret, (pl, 7), R

(pl, 7) :Mclean[work1]

(pl, 8) :Mclean[work2]

(pl, 9) :Mclean[qdev]

(pl, 10) :transition to (pl+1, 0)
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3. If Pl has the form Xi ←M [QXj
], then we use:

(pl, 0) :Mwrite(j)[work1]

(pl, 1) :Mfetch[creg,work1,work2]

(pl, 2) :Mqget[qreg, qcnt,work2, qdev]

(pl, 3) :Muntary[qdev]

(pl, 4) :Mwrite((pl, 6))[qret]

(pl, 5) :transition to qMs

qMt0 ,(pl, 6)qret → #qret, (pl, 6), L

qMt1 ,(pl, 6)qret → #qret, (pl, 9), L

(pl, 6),#qret → #qret, (pl, 7), R

(pl, 7) :Mwrite(bin(0))[work3]

(pl, 8) :transition to (pl, 11)

(pl, 9),#qret → #qret, (pl, 10), R

(pl, 10) :Mwrite(bin(1))[work3]

(pl, 11) :Mwrite(i)[work4]

(pl, 12) :Mupdate[creg,work4,work3]

(pl, 13) :Mclean[work1]

(pl, 14) :Mclean[work2]

(pl, 15) :Mclean[work3]

(pl, 16) :Mclean[work4]

(pl, 17) :Mclean[qdev]

(pl, 18) :transition to (pl+1, 0)

To conclude this subsection, we prove the correctness of our simulation. Let MQ denote the
TMQ constructed according to the above description.

Lemma 8.1. For every x, y ∈ {0, 1}∗, P (x, y) =MQ(x, y).

Proof. Clear by the construction.

Lemma 8.2. Suppose P is a T (n)-time QRAM. Then:

1. If l(n) is logarithmic, then the number of non-empty symbols in every track ofMQ is O(T (n)).

2. If l(n) is constant, then the number of non-empty symbols in every track ofMQ is O(T (n)2).

Proof. We need to only focus on the tracks “creg” and “qreg”.

Case 1. l(n) is logarithmic: For each executed classical-type QRAM instruction, at most one
classical register is altered. Let ti denote the execution time of the i-th executed instruction. After
the execution of this instruction, the number of non-empty symbols in track “creg” increases at
most O(ti). Therefore, the number of non-empty symbols in track “creg” is

∑

i

O(ti) = O(T (n)).
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For each executed quantum-type QRAM instruction, at most one virtual address is assigned a
physical address. Similarly, after the i-th executed instruction, the number of non-empty symbols
in track “qreg” increases at most O(ti). Therefore, the number of non-empty symbols in track
“qreg” is also O(T (n)).

Case 2. l(n) is constant: The analysis is similar. The only difference is that after each
executed instruction, the number of non-empty symbols in track “creg” and “qreg” increase at
most O(T (n)ti). This is because after executing T (n) QRAM instructions, the largest possible
address could be 2T (n) (by repeatedly executing the instruction Xi ← Xj + Xk with i = j = k),
which is of length T (n) in its binary representation. Therefore, the number of non-empty symbols
in track “qreg” is O(T (n)2).

Lemma 8.3. Suppose P is a T (n)-time QRAM. Then,

1. If l(n) is logarithmic, then MQ is a O(T (n)2)-time TMQ.

2. If l(n) is constant, then MQ is a O(T (n)4)-time TMQ.

Proof. Case 1. l(n) is logarithmic: Let ti denote the execution time of the i-th executed instruction,
then the lengths of addresses accessed are bounded by O(ti). MQ simulates this instruction with
O(tiT (n)) time, which comes from the usage of those basic TMs, e.g. Mappend, Mfetch, Mupdate,
Mqget, Muntary and Mpair. Therefore,MQ is O(T (n)2)-time.

Case 2. l(n) is constant: The lengths of addresses accessed are bounded by O(T (n)) for each
executed instruction. Hence, MQ simulates each instruction with O(T (n)3) time. Consequently,
MQ is O(T (n)4)-time.

8.1.2 QTMs simulate TMQs

Our strategy of simulating MQ - the TMQ constructed above - by a QTM is presented in the
following lemma and its proof.

Lemma 8.4. There is a well-formed, normal form, stationary and unidirectional QTM M within
time O(T (n)2) such that M(x, y) =MQ(x, y) for every x, y ∈ {0, 1}∗.

Proof. LetMQ = (Q,Qs, Qt,Σ, δ, q0, qf ). We recall that MQ is measurement-postponed and sta-
tionary. Our basic idea is to simulate MQ by maintaining a history to make the simulation re-
versible. The technique we use here is partly borrowed from [3].

The TM M used to simulateMQ has five tracks:

• The first track, with alphabet Σ1 = Σ, is used to simulate the tape ofMQ.

• The second track, with track Σ2 = {#,@}, is used to store a @ indicating the position of
tape head ofMQ.

• The third track, with alphabet Σ3 = {#, $} ∪ ((Q \Qs) × Σ) is used to write down a list of
the transitions taken byMQ, starting with the end marker $.

• The fourth track is a “quantum” track and will be defined later.

• The fifth track is an “extra” quantum track for measurements.
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Now we can elaborate the construction of M . We use ∀i to denote any symbol in Σi and ∀′3 to
denote any symbol in Σ3 \ {#, $}. Since the fourth and the fifth tracks are not used in classical
operations, we write only the first three tracks in the transitions unless the fourth or the fifth track
are needed. The first stage of simulation needs the state set

Q1 = Q ∪ ((Q \Qt)× (Q \Qs)× Σ× {1, 2, 3, 4}) ∪ ((Q \Qt)× {5, 6, 7}) ∪ {qa, qb}.

The initial state is qa and the final state is qf . The transitions are defined as follows:

1. At the beginning, we write an end marker @ on the second track and end marker $ on the
third track, and then come back to the initial position with state q0. Include the instructions:

qa, (∀1,#2,#3) → (∀1,@,#), qb, R; 1
qb, (∀1,#2,#3) → (∀1,#, $), qc, R; 1
qc, (∀1,∀2,∀3) → (∀1,∀2,∀3), qd, L; 1
qd, (∀1,∀2,∀3) → (∀1,∀2,∀3), qe, L; 1
qe, (∀1,∀2,∀3) → (∀1,∀2,∀3), qg, L; 1
qg, (∀1,∀2,∀3) → (∀1,∀2,∀3), q0, R; 1

2. For p ∈ Q \ Qs, σ ∈ Σ with p 6= qf and with transition δ(p, σ) = (τ, q, d) in M , we make
transitions to go from p to q updating the first track, i.e. the simulated tape of M , and
adding (p, σ) to the end of the history. Include the instructions:

p, (σ,@,∀3) → (τ,#2,∀3), (q, p, σ, 1), d; 1
(q, p, σ, 1), (∀1,#2, $) → (∀1,@, $), (q, p, σ, 3), R; 1
(q, p, σ, 1), (∀1,#2,∀′3) → (∀1,@,∀′3), (q, p, σ, 3), R; 1
(q, p, σ, 1), (∀1,#2,#3) → (∀1,@,#3), (q, p, σ, 2), R; 1
(q, p, σ, 2), (∀1,#2,#3) → (∀1,#2,#3), (q, p, σ, 2), R; 1
(q, p, σ, 2), (∀1,#2, $) → (∀1,#2, $), (q, p, σ, 3), R; 1
(q, p, σ, 3), (∀1,#2,∀′3) → (∀1,#2,∀′3), (q, p, σ, 3), R; 1
(q, p, σ, 3), (∀1,#2,#3) → (∀1,#2, (p, σ)), (q, 4), R; 1

Whenever (q, 4) is reached, the tape head is on the first blank after the end of the history
(on the third track). Now we move the tape head back to the position of tape head of M by
including the instructions:

(q, 4), (∀1,#2,#3) → (∀1,#2,#3), (q, 5), L; 1
(q, 5), (∀1,#2,∀′3) → (∀1,#2,∀′3), (q, 5), L; 1
(q, 5), (∀1,#2, $) → (∀1,#2, $), (q, 6), L; 1
(q, 5), (∀1,@,∀′3) → (∀1,@,∀′3), (q, 7), L; 1
(q, 5), (∀1,@, $) → (∀1,@, $), (q, 7), L; 1
(q, 6), (∀1,#2,#3) → (∀1,#2,#3), (q, 6), L; 1
(q, 6), (∀1,@,#3) → (∀1,@,#3), (q, 7), L; 1
(q, 7), (∀1,∀2,∀3) → (∀1,∀2,∀3), q, R; 1

3. For p ∈ Qs, we need the “quantum” track (namely, the fourth track) to simulate quantum
operations, but the second and third tracks are useless now. Thus in the following discussion,
we only write the first track and the “quantum” track in transitions. Let Σq = {0, 1} denote
the alphabet of the “quantum” track, whose contents are initially set to 0 (in other words, 0 is
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used to be the empty symbol in the “quantum” track, for readability). The four quantum-type
operations are implemented as follows.

Case 1. p = qHs . Include the instructions:

qHs , (∀1,∀q) → (∀1,∀q), qH1 , L; 1
qH1 , (#1,∀q) → (#1,∀q), qH2 , R; 1
qH2 , (0,∀q) → (0,∀q), qH2 , R; 1

qH2 , (1, 0) → (1, 0), qH2 , R; 1/
√
2

qH2 , (1, 0) → (1, 1), qH2 , R; 1/
√
2

qH2 , (1, 1) → (1, 0), qH2 , R; 1/
√
2

qH2 , (1, 1) → (1, 1), qH2 , R; −1/
√
2

qH2 , (#1, 0) → (#1, 0), qH3 , L; 1
qH3 , (0,∀q) → (0,∀q), qH3 , L; 1
qH3 , (1,∀q) → (1,∀q), qH3 , L; 1
qH3 , (#1, 0) → (#1, 0), qHt , R; 1

Case 2. p = qTs . Include the instructions:

qTs , (∀1,∀q) → (∀1,∀q), qT1 , L; 1
qT1 , (#1,∀q) → (#1,∀q), qT2 , R; 1
qT2 , (0,∀q) → (0,∀q), qT2 , R; 1
qT2 , (1, 0) → (1, 0), qT2 , R; 1
qT2 , (1, 1) → (1, 1), qT2 , R; exp(iπ/4)
qT2 , (#1, 0) → (#1, 0), qT3 , L; 1
qT3 , (0,∀q) → (0,∀q), qT3 , L; 1
qT3 , (1,∀q) → (1,∀q), qT3 , L; 1
qT3 , (#1, 0) → (#1, 0), qTt , R; 1
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Case 3. p = qCs . Include the instructions:

qCs , (∀1,∀q) → (∀1,∀q), qC1 , L; 1
qC1 , (#1,∀q) → (#1,∀q), (qC2 , 0), R; 1

(qC2 , 0), (0,∀q) → (0,∀q), (qC2 , 0), R; 1
(qC2 , 0), (1, 0) → (1, 0), (qC2 , 0), R; 1
(qC2 , 0), (1, 1) → (1, 1), (qC2 , 1), R; 1
(qC2 , 0), (2,∀q) → (2,∀q), (qC2 , 0), R; 1
(qC2 , 0), (#1,∀q) → (#1,∀q), (qC3 , 0), L; 1
(qC2 , 1), (0,∀q) → (0,∀q), (qC2 , 1), R; 1
(qC2 , 1), (1, 0) → (1, 0), (qC2 , 1), R; 1
(qC2 , 1), (1, 1) → (1, 1), (qC2 , 0), R; 1
(qC2 , 1), (2,∀q) → (2,∀q), (qC2 , 1), R; 1
(qC2 , 1), (#1,∀q) → (#1,∀q), (qC3 , 1), L; 1
(qC3 , 0), (0,∀q) → (0,∀q), (qC3 , 0), L; 1
(qC3 , 0), (1,∀q) → (1,∀q), (qC3 , 0), L; 1
(qC3 , 0), (2, 0) → (2, 0), (qC3 , 0), L; 1
(qC3 , 0), (2, 1) → (2, 1), (qC3 , 0), L; 1
(qC3 , 0), (#1,∀q) → (#1,∀q), (qC4 , 0), R; 1
(qC3 , 1), (0,∀q) → (0,∀q), (qC3 , 1), L; 1
(qC3 , 1), (1,∀q) → (1,∀q), (qC3 , 1), L; 1
(qC3 , 1), (2, 0) → (2, 1), (qC3 , 1), L; 1
(qC3 , 1), (2, 1) → (2, 0), (qC3 , 1), L; 1
(qC3 , 1), (#1,∀q) → (#1,∀q), (qC4 , 1), R; 1
(qC4 , 0), (0,∀q) → (0,∀q), (qC4 , 0), R; 1
(qC4 , 0), (1, 0) → (1, 0), (qC4 , 0), R; 1
(qC4 , 0), (1, 1) → (1, 1), (qC4 , 1), R; 1
(qC4 , 0), (2,∀q) → (2,∀q), (qC4 , 0), R; 1
(qC4 , 0), (#1,∀q) → (#1,∀q), qC5 , L; 1
(qC4 , 1), (0,∀q) → (0,∀q), (qC4 , 1), R; 1
(qC4 , 1), (1, 0) → (1, 0), (qC4 , 1), R; 1
(qC4 , 1), (1, 1) → (1, 1), (qC4 , 0), R; 1
(qC4 , 1), (2,∀q) → (2,∀q), (qC4 , 1), R; 1
qC5 , (0,∀q) → (0,∀q), qC5 , L; 1
qC5 , (1,∀q) → (1,∀q), qC5 , L; 1
qC5 , (2,∀q) → (2,∀q), qC5 , L; 1
qC5 , (#1,∀q) → (#1,∀q), qCt , R; 1

Case 4. p = qMs . In order to make the two possible measurement outcomes distinguishable
in the successive configurations, we need an extra track with alphabet Σe = {#, 0, 1}. Include
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the instructions:

qMs , (∀1,∀q,∀e) → (∀1,∀q,∀e), qM1 , L; 1
qM1 , (#1,∀q,∀e) → (#1,∀q,∀e), qM2 , R; 1
qM2 , (0,∀q,∀e) → (0,∀q,∀e), qM2 , R; 1
qM2 , (1, 0,#e) → (1, 0, 0), (qM3 , 0), R; 1
qM2 , (1, 1,#e) → (1, 1, 1), (qM3 , 1), R; 1

(qM3 , x), (0,∀q,∀e) → (0,∀q,∀e), (qM3 , x), R; 1
(qM3 , x), (#1,∀q,∀e) → (#1,∀q,∀e), (qM4 , x), L; 1
(qM4 , x), (0,∀q,∀e) → (0,∀q,∀e), (qM4 , x), L; 1
(qM4 , x), (1,∀q,∀e) → (1,∀q,∀e), (qM4 , x), L; 1
(qM4 , x), (#1,∀q,∀e) → (#1,∀q,∀e), qMtx , R; 1

In the above construction, the “extra” track is used to describe the measurement results at
each position in the “quantum” track, which guarantees that no interference happens between
the branches with different measurement results. This construction heavily depends on the
condition that the simulated TMQ is measurement-postponed because each position of the
extra track is allowed to be altered during the execution only once.

4. Finally, to make M in normal form, we add the transition:

qf , (∀1,∀2,∀3) → (∀1,∀2,∀3), qa, R; 1

It can be easily verified that the QTM M constructed above is well-formed, normal form,
stationary, unidirectional, and within time O(T (n)2).

8.2 QRAMs simulate QTMs

Now we turn to consider how to simulate QTMs by QRAMs. Our simulation strategy is divided
into the following three steps:

1. Simulate a QTM by a family of quantum circuits with the technique developed in [29] and
[23] — Subsection 8.2.1.

2. Use the Solovay-Kitaev algorithm [8] to decompose the gates used in these quantum circuits
into basic gates H,T and CNOT, within bounded errors — Subsection 8.2.2.

3. Translate the family of quantum circuits with the basic gates into a QRAM — Subsection
8.2.3.

8.2.1 Quantum Circuit Families simulate QTMs

We write [n] = {1, 2, . . . , n} and let G be a finite set of gates with their qubits indexed from 1 to n.
A k-qubit quantum gate (1 ≤ k ≤ n) can be written as G = U [q1, ..., qk], indicating a 2k×2k-unitary
operator U on qubits q1, . . . , qk ∈ [n], where q1, . . . , qk are pairwise distinct.

Definition 8.2. An n-qubit a-input b-output quantum circuit C over G is a 4-tuple C = (U , A,B, f),
where:

1. U is a finite sequence of gates from G;

2. A ⊆ [n] with |A| = a is the set of input qubits;
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3. B ⊆ [n] with |B| = b is the set of output qubits;

4. f : [n] \A→ {0, 1} is the initial setting for non-input qubits.

Now we describe the computation of circuit C. Suppose A = {i1, i2, . . . , ia} and U = G1G2...Gt.
For every x = x1x2 . . . xa ∈ {0, 1}a, the input state is set to |ψx〉 = |u1〉 |u2〉 . . . |un〉, where

uk =

{

xl il = k,

f(k) otherwise.

The final state of U on input x is |φx〉 = Gt . . . G2G1 |ψx〉. Then we measure it in the computational
basis of the output qubits qi (i ∈ B), and C outputs y = y1y2 . . . yb ∈ {0, 1}b with probability
‖My |φx〉‖2, where measurement operator My =

∑

v∈Sy
|v〉 〈v| and

Sy = {v ∈ {0, 1}n : vjl = yl for every l ∈ [n]}.
In this way, C defines a function C : {0, 1}a × {0, 1}b → [0, 1] that

C(x, y) = ‖My |φx〉‖2,
meaning that C on input x outputs y with probability C(x, y).

Lemma 8.5. Let C1 = (U1, A,B, f) and C2 = (U2, A,B, f), and let 0 < ǫ < 1. If ‖U1 − U2‖2 < ε,
then for every x ∈ {0, 1}|A| and y ∈ {0, 1}|B|:

|C1(x, y)− C2(x, y)| < 3ε.

Proof. We can write U1 = U2 + J with ‖J‖2 < ε. Then:

|C1(x, y)− C2(x, y)| =
∣

∣‖MyU1 |ψx〉‖2 − ‖MyU2 |ψx〉‖2
∣

∣

=
∣

∣

∣
〈ψx| U†

1MyU1 |ψx〉 − 〈ψx| U†
2MyU2 |ψx〉

∣

∣

∣

≤ ‖U†
1MyU1 − U†

2MyU2‖2
≤ ‖(U†

2 + J†)My(U2 + J)− U†
2MyU2‖2

= ‖J†MyU2 + U†
2MyJ + J†MyJ‖2

≤ ‖J‖2 + ‖J‖2 + ‖J‖22
< 2ε+ ε2 < 3ε.

Suppose the unitary operators appearing in G are U1, U2, . . . , Um, and for 1 ≤ i ≤ m, Ui is a
ci-qubit unitary operator, i.e. a 2ci × 2ci unitary matrix. Then the description of circuit C is a
sequence of integers of the form

g1, q1,1, . . . , q1,cg1 ,

g2, q2,1, . . . , q2,cg2 ,

. . . ,
gt, qt,1, . . . , qt,cgt ,

−1,
i1, i2, . . . , ia,
−1,
j1, j2, . . . , jb,
−1,
f1, f2, . . . , fn,
−1.
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The sequence consists of four parts with −1 as the separator.

1. The first part describes U = G1G2 . . . Gt, where Gi = Ugi [qi,1, . . . , qi,cgi ] for 1 ≤ i ≤ t.

2. The second part describes A = {i1, i2, . . . , ia}.

3. The third part describes B = {j1, j2, . . . , jb}.

4. The fourth part describes f such that f(k) = fk for every k /∈ A.

The arguments t, a, b and n are obtained by counting the integers in their corresponding parts.

Definition 8.3. Let M be a QTM and {Cn}∞n=0 a family of quantum circuits, where Cn is an
n-input b(n)-output quantum circuit for every n ∈ N and b(n) = (2tn + 1)⌈log2 |Σ|⌉. We say that
{Cn}∞n=0 simulates M if for every x ∈ {0, 1}∗ and y ∈ {0, 1}∗:

M(x, y) =
∑

extract(tape(z))=y

C|x|(x, z),

where tape(z) denotes the tape that z represents. More precisely, if we write z = z1z2 . . . z2t+1 with
zi ∈ {0, 1}⌈log2|Σ|⌉ for every 1 ≤ i ≤ 2t+ 1 and regard zi as an integer of binary form zi, then

tape(z)(m) =

{

out(zm+t+1) −t ≤ m ≤ t,
# otherwise,

where Σ = {σ0, σ1, . . . , σ|Σ|−1}.

It was proven in [29, 23] that each QTM can be efficiently simulated by a family of quantum
circuits. One of the main results in [29, 23] can be restated in a way convenient for our purpose as
the following:

Theorem 8.6. Let T : N→ N with T (n) ≥ n that is time-constructible (for example, by a RAM).
For every standard QTM M with exact time T (n), one can find:

• three unitary matrices U1, U2, U3 with their elements in C(M)∪ {0, 1}, each of which acts on
at most 6ℓ qubits, where ℓ = 2 + ⌈log2(|Q|+ 1)⌉+ ⌈log2 |Σ|⌉, and

• a classical algorithm A with time complexity O(T (n)2l(T (n))) (considered as a RAM with
cost function l(n) being constant or logarithmic).

such that

1. for every n ∈ N, on input 1n, A outputs the description of a k(n)-qubit n-input b(n)-output
quantum circuit Cn of size O(T (n)2), only using unitary matrices U1, U2, U3, where:

k(n) = (2T (n) + 4)ℓ, b(n) = ⌈log2 |Σ|⌉ (2T (n) + 1);

2. {Cn}∞n=0 simulates M .

Theorem 8.6 also holds for QRAMs instead of RAMs, if T (n) is assumed to be QRAM-time
constructible.

47



8.2.2 The Solovay-Kitaev Algorithm

Our next step is to decompose the unitary matrices U1, U2, U3 given in Theorem 8.6 into the basic
gates H,T and CNOT. Let us first briefly review the Solovay-Kitaev algorithm from [8].

Definition 8.4. A set W of d× d matrices is called universal for SU (d) if:

1. W ⊆ SU (d), i.e. for every U ∈ W, U †U = UU † = I and |U | = 1.

2. For every U ∈ W, we also have U † ∈ W.

3. for every U ∈ SU (d) and ε > 0, there is a sequence U1, U2, . . . , Um ∈ W such that

‖U − Um . . . U2U1‖2 < ε.

Theorem 8.7 (Solovay-Kitaev Theorem [8]). Let W = {U1, U2, . . . , Uk} be universal for SU (d).
Then there is a classical algorithm with time complexity O(logc(1/ε)) for some constant c > 0 that
on input ε > 0 and U ∈ SU (d), outputs a sequence i1, i2, . . . , im ∈ [k] such that

1. ‖U − Uim . . . Ui2Ui1‖2 < ε.

2. m = O(logc(1/ε)).

More explicitly, U is represented by a d× d unitary matrix each of whose elements is described as
a floating point number within a high enough precision whose length is bounded by O(logc(1/ε)).

Now we can use the Solovay-Kitaev algorithm to find good approximations of U1, U2, U3 in
Theorem 8.6 by the basic gates. Since U1, U2, U3 are unitary operators on d = 6ℓ qubits, we choose
the set of basic gates:

G = {CNOT[a, b],H[a], T [a] : 1 ≤ a, b ≤ d, a 6= b},

where CNOT[a, b] denotes a CNOT gate with the a-th qubit as its control qubit and the b-th qubit
as its target qubit, and H[a] and T [a] denote Hadamard and π/8 gates on the a-th qubit. For every
ε > 0, since the matrix elements of U1, U2, U3 are in C(λ(n)) (with λ(n) ≥ n polynomial), we can
compute each element within a high enough precision in O(λ(log(1/ε))c) time. Therefore, using
the algorithm stated in Theorem 8.7, we can decompose U1, U2, U3 into the basic gates H, T and
CNOT within precision ε in O(λ(log(1/ε))c) time.

8.2.3 QRAMs simulate QTMs

Now we can finish the construction of the QRAM P that given ε > 0, simulates a standard QTM
M in the sense that

|P (x, y)−M(x, y)| < ε.

SupposeM is a standard QTM with exact time T (n) and T (n) is QRAM-time constructible. Since
a RAM can be seen as a special QRAM, we can turn the algorithm given in Theorem 8.6 to a
O(T (n)2l(T (n)))-time QRAM P1 that on input 1n, outputs a description of quantum circuit Cn.
By the Solovay-Kitaev algorithm, there is a O(λ(log(1/ǫ))c)-time QRAM P2 that on input ǫ > 0
and U ∈ SU (d) with matrix elements in C(λ(n)), outputs a sequence of basic gates G1, G2, . . . , Gm
of length m = O(logc(1/ǫ)) such that

‖U −Gm . . . G2G1‖2 < ǫ.
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Then the QRAM can be described as follows:
Step 0. We hardcode the three quantum gates U1, U2, U3 in Theorem 8.6 into our QRAM P

for the later use.
Step 1. Read the input string x ∈ {0, 1}∗ and count the length of x, i.e. n = |x|.
Step 2. Apply P1 on input 1n and obtain a description of quantum circuit Cn. According to

Theorem 8.6, there are t = O(T (n)2) gates in Cn, and each of them is an application of the unitary
operator U1, U2 or U3.

Step 3. For each gate Gi in Cn, apply P2 to get an approximation G̃i ofGi such that ‖Gi−G̃i‖ <
ǫ, where ǫ = ε/3t. This takes time O(λ(log(1/ǫ))c). Note that the size of G̃i is O(logc(1/ǫ)). By
replacing each Gi in Cn by G̃i, we obtain a circuit C̃n consisting of only the basic gates H,T and
CNOT. By Lemma 8.5, we have:

∣

∣

∣
Cn(x, y)− C̃n(x, y)

∣

∣

∣
< ε.

Step 4. Simulate C̃n with quantum-type QRAM instructions.
Note that the size of C̃n is O(t logc(1/ǫ)). Therefore, QRAM P has running time

O(t poly(λ(log(1/ǫ)))) = O(T (n)2 poly(λ(log(T (n)/ε)))).

9 Standardisation of QTMs

The aim of this section is to prove the Standardisation Theorem for QTMs (Theorem 2.1).

9.1 Properties of TMs and QTMs

We first present several lemmas about reversible TMs and QTMs needed in our proof of Theorem
2.1. Some of them are from of [3], and some are new. The proofs of those new lemmas are given in
Appendices D - J.

9.1.1 Several Lemmas for TMs

Definition 9.1. A deterministic (classical) TM is said to be oblivious if its running time and head
position at each time step depend only on the length of input. That is, there is a function T : N→ N

and a function pos : N×N→ Z such that on input x ∈ {0, 1}∗, the running time is T (|x|) and the
head position at time t is pos(|x| , t).

We note that a stationary, normal form, oblivious reversible TM is a standard QTM.

Lemma 9.1 (Lemma B.7 of [3]). There is a stationary oblivious reversible TM M such that

x; ǫ
M−→
T

x;x and x;x
M−→
T

x; ǫ,

where T = 2 |x|+ 4.

Lemma 9.2 (Lemma B.6 of [3]). There is a stationary oblivious reversible TM M such that

x; y
M−→
T

y;x,

where T = 2max{|x| , |y|}+ 4.
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Lemma 9.3. For every stationary deterministic TM M , there is a stationary reversible TM M ′

such that
T M−→

T
T ′ =⇒ T ; ǫ; ǫ M ′

−−→
T ′
T ′; @;T h,

where:

1. T h = #$(p0, σ0) . . . (pT−1, σT−1) encodes the history, and pt and σt denote the state and the
symbol at the head position at time t in the execution of M , respectively;

2. T ′ = O(T 2).

Moreover, if M is oblivious, then so is M ′.

Lemma 9.4. Let M be a stationary deterministic TM such that for every input x ∈ {0, 1}∗,

x
M−→
T

M(x).

There is a stationary reversible TM M ′ such that

x; ǫ
M ′

−−→
T ′

x;M(x) and x;M(x)
M ′

−−→
T ′

x; ǫ,

where T ′ = O(T 2). Moreover, if M is oblivious and the length of M(x) only depends on |x|, then
M ′ is oblivious.

Lemma 9.5. Let M1,M2 be two stationary deterministic TMs such that for every x ∈ {0, 1}∗,

x
M1−−→
T1

M1(x) and M1(x)
M2−−→
T2

x.

There is two are stationary reversible TMs N1 and N2 such that

x
N1−−→
T ′

M1(x) and M1(x)
N2−−→
T ′

x,

where T ′ = O(T 2
1 +T

2
2 ). Moreover, if M1 and M2 are oblivious and the length of M(x) only depends

on |x|, then N1 and N2 are oblivious.

Lemmas 9.3, 9.4 and 9.5 are essentially Theorem B.8 and Theorem B.9 in [3], but here they are
slightly strengthed for our purpose.

Lemma 9.6 (Incrementing). There is a stationary oblivious reversible TM M that on input x ∈
{0, 1}+, produces x+ = (x+1) mod 2|x| in O(|x|2) time, where x+1 denotes the arithmetic addition
of x and 1, and |x| denotes the length of x in binary. In other words,

x
M−→
T

x+,

where T = O(|x|2) and depends only on |x|.
Lemma 9.7 (Equality Checking). There is a stationary oblivious reversible TM M that can check
whether the contents in the first and second tracks are equal and puts the outcome in the third track.
Formally, for x, y ∈ {0, 1}+ with |x| = |y|,

x; y; 0
M−→
T

{

x; y; 1 x = y

x; y; 0 x 6= y
,

where T = O(|x|2) and depends only on |x|.
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Lemma 9.8 (Tape Shifting). There is a stationary reversible TM M that copies the first track to
the second track if the content of the first track is shifted left or right by one step. Formally, for
every x ∈ {0, 1}+,

shlx; ǫ
M−→
T

shlx; shlx and shrx; ǫ
M−→
T

shlx; shrx,

where T = 2 |x| + 8. Here, we write shl : Σ# → Σ# for “shift left” and shr : Σ# → Σ# for “shift
right”; that is, (shlT )(m) = T (m+ 1) and (shrT )(m) = T (m− 1) for every T ∈ Σ#.

Lemma 9.9. There are two stationary reversible TMs Mshl and Mshr such that for every x ∈
{0, 1}+,

x
Mshl−−−→
T

shlx and x
Mshr−−−→
T

shrx,

where T = O(|x|2) and depends only on |x|.

9.1.2 Several Lemmas for QTMs

Lemma 9.10 (Dovetailing Lemma, Lemma 4.9 of [3]). For any two well-formed, normal form and
stationary QTMs M1 and M2, there is a well-formed, normal form and stationary QTM M such
that

|T0〉 M1−−→
T1
|T1〉 M2−−→

T2
|T2〉 =⇒ |T0〉 M−−−−→

T1+T2
|T2〉 .

Lemma 9.11 (Reversal Lemma, Lemma 4.12 of [3]). For every well-formed and stationary QTM
M , there is a well-formed and stationary QTM M ′ such that

|T 〉 M−→
T

∣

∣T ′〉 =⇒
∣

∣T ′〉 M ′

−−−→
T+2

|T 〉 .

Lemma 9.12 (Unidirection Lemma, Lemma 5.5 of [3]). For every QTM M = (Q,Σ, δ, q0, qf ) with
time evolution operator U , there is a QTM M ′ = (Q′,Σ, δ′, q0, qf ) with Q ⊆ Q′ and time evolution
operator U ′ such that for every q ∈ Q \ {qf},T ∈ Σ# and ξ ∈ Z, we have

U |q,T , ξ〉 = U ′(P⊥
F U

′)4 |q,T , ξ〉 ,

where P⊥
F = I − PF and PF = |qf 〉Q 〈qf |. Moreover, if M is well-formed, then so is M ′.

Intuitively, the above lemma shows that any (well-formed) QTM can be converted to a (well-
formed) unidirectional QTM with slowdown by a factor of 5.

9.2 Proof of Theorem 2.1

Now we are ready to prove Theorem 2.1. The proof is split into the following five steps:

Step 1. Let ℓ = |T (|x|)| be the length of T (|x|) in binary. By the definition of T (n), there is a
standard QTM M1 such that

x; ǫ; ǫ
M1−−−−−−→

O(T (|x|))
x;T (|x|); 0ℓ.

It can be easily obtained by binding all non-blank symbols in the second track with a 0 symbol in
the third track.

Step 2. After Step 1, suppose the state is q1 (and the head position is 0), we construct a
standard QTM M2 that adds a single symbol 0 into the fourth track by the following transitions:

q1, (∀1,∀2,∀3,#4) → (∀1,∀2,∀3, 0), q2, L
q2, (∀1,∀2,∀3,∀4) → (∀1,∀2,∀3,∀4), q0, R
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Then we have:
x;T (|x|); 0ℓ; ǫ M2−−→

2
x;T (|x|); 0ℓ; 0.

Now the preparation is completed, and we will start from the configuration
∣

∣q0, x;T (|x|); 0ℓ; 0, 0
〉

.

Step 3. Let M be a QTM to be standardised. By Lemma 9.12, we may assume that M is
unidirectional. Let dq be the direction of q, and letMshl andMshr be the reversible TMs constructed
in Lemma 9.9. We construct M3 as follows. For every p ∈ Q \ {qf}, q ∈ Q and τ, σ ∈ Σ with
δ(p, τ, σ, q, dq) 6= 0,

Case 1. dq = R. M3 should include these instructions:

p, (τ,∀2,∀3,∀4) → (σ,∀2,∀3,∀4), (q, 1), R; δ(p, τ, σ, q,R)
(q, 1), (∀1,∀2,∀3,∀4) → (∀1,∀2,∀3,∀4), (q, 2), L; 1
(q, 2), (∀1,∀2,∀3,∀4) → (∀1,∀2,∀3,∀4), (q, 3), L; 1
(q, 3), (∀1,#2,#3,∀4) → (∀1,#2,#3,∀4), (q, 4), R; 1
(q, 4) → (q, 5) : Mshr[2, 3, 4]
(q, 5), (∀1,#2,#3,∀4) → (∀1,#2,#3,∀4), (q, 6), R; 1

(q, 4) and (q, 5) are regarded as the initial state and final state of Mshr, respectively, that shifts the
second, third and fourth tracks right by a cell.

Case 2. dq = L. M3 should include these instructions:

p, (τ,∀2,∀3,∀4) → (σ,∀2,∀3,∀4), (q, 1), L; δ(p, τ, σ, q, L)
(q, 1), (∀1,∀2,∀3,∀4) → (∀1,∀2,∀3,∀4), (q, 2), R; 1
(q, 2) → (q, 3) : Mshl[2, 3, 4]
(q, 3), (∀1,∀2,∀3,∀4) → (∀1,∀2,∀3,∀4), (q, 4), L; 1
(q, 4), (∀1,∀2,∀3,∀4) → (∀1,∀2,∀3,∀4), (q, 5), L; 1
(q, 5), (∀1,#2,#3,∀4) → (∀1,#2,#3,∀4), (q, 6), R; 1

(q, 2) and (q, 3) are regarded as the initial state and final state of Mshl, respectively, that shifts the
second, third and fourth tracks left by a cell.

Now both cases are in state (q, 6). Let Minc and Meq be the RTMs constructed in Lemma 9.6
and Lemma 9.7, respectively. We include the instructions:

(q, 6) → (q, 7) : Minc[3]
(q, 7) → (q, 8) : Meq[2, 3, 4]

The procedure from (q, 6) and (q, 7) performs incrementing on the third track according to Minc.
The procedure from (q, 7) to (q, 8) performs equality checking on the second and third tracks and
puts the result on the fourth track according to Meq. To the end of the simulation at this step, we
include these instructions:

(q, 8), (∀1,∀2,∀3,∀4) → (∀1,∀2,∀3,∀4), (q, 9), L; 1
(q, 9), (∀1,#2,#3,#4) → (∀1,#2,#3,#4), q, R; 1

Note that for every p ∈ Q \ {qf}, T ∈ Σ# and ξ ∈ Z,

|p,T , ξ〉 M−→
1

∑

σ,q

δ(p,T (ξ), σ, q, dq)
∣

∣q,T σξ , ξ + dq
〉

.

We conclude that for every T, t ∈ Z with 0 ≤ t < T − 1,
∣

∣

∣
p,T ; shrξ (T ; t; 0) , ξ

〉

M3−−−→
∆(ℓ)

∑

σ,q

δ(p,T (ξ), σ, q, dq)
∣

∣

∣
q,T σξ ; shrξ+dq (T ; t+ 1; 0) , ξ + dq

〉

.
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For the case t = T − 1,

∣

∣

∣
p,T ; shrξ (T ;T − 1; 0) , ξ

〉

M3−−−→
∆(ℓ)

∑

σ,q

δ(p,T (ξ), σ, q, dq)
∣

∣

∣
q,T σξ ; shrξ+dq (T ;T ; 1) , ξ + dq

〉

.

where ∆(ℓ) = Tsh(ℓ) + Tinc(ℓ) + Teq(ℓ) + 7 = O(log2 T ). Here, shrk T denotes the tape that shifts
T right by k steps, i.e. (shrk T )(m) = T (m− k).

Step 4. QTM M4 is constructed as follows. We introduce a special state qa /∈ Q and set
q′f /∈ Q to be the final state of M ′. Moreover, we need a fifth track and mark @ on the fifth track
to distinguish the usual simulation and the extending procedure. For the final state qf , we include
the instructions:

qf , (∀1,∀2,∀3,∀4,#5) → (∀1,∀2,∀3,∀4,@), (qf , 1), L; 1
(qf , 1), (∀1,#2,#3,#4,#5) → (∀1,#2,#3,#4,#5), qa, R; 1

It takes two steps to transfer state qf to state qa with a marker @ on the fifth track, i.e.

∣

∣

∣
qf ,T ; shrξ (T ; t; z) ; ǫ, ξ

〉

M4−−→
2

∣

∣

∣
qa,T ; shrξ (T ; t; z; @) , ξ

〉

for 0 ≤ t ≤ T and z ∈ {0, 1}.
Now include the instructions of qa as follows:

qa, (∀1,∀2,∀3, 1,@) → (∀1,∀2,∀3, 1,@), q′f , R; 1

qa, (∀1,∀2,∀3, 0,@) → (∀1,∀2,∀3, 0,@), (qa, 1), R; 1
(qa, 1), (∀1,∀2,∀3,∀4,#5) → (∀1,∀2,∀3,∀4,@), (qa, 2), L; 1
(qa, 2), (∀1,∀2,∀3,∀4,∀5) → (∀1,∀2,∀3,∀4,∀5), (qa, 3), L; 1
(qa, 3), (∀1,#2,#3,#4,∀5) → (∀1,#2,#3,#4,∀5), (qa, 4), R; 1
(qa, 4) → (qa, 5) : Mshr[2, 3, 4]
(qa, 5), (∀1,#2,#3,#4,∀5) → (∀1,#2,#3,#4,∀5), (qa, 6), R; 1
(qa, 6) → (qa, 7) : Minc[3]
(qa, 7) → (qa, 8) : Meq[2, 3, 4]
(qa, 8), (∀1,∀2,∀3,∀4,∀5) → (∀1,∀2,∀3,∀4,∀5), (qa, 9), L; 1
(qa, 9), (∀1,∀2,∀3,∀4,@) → (∀1,∀2,∀3,∀4,@), qa, R; 1

We conclude that for η ≤ ξ and 0 ≤ t < T − 1,

∣

∣

∣
qa,T ; shrξ (T ; t; 0) ; shrη @ξ−η+1, ξ

〉

M4−−−→
∆(ℓ)

∣

∣

∣
qa,T ; shrξ+1 (T ; t+ 1; 0) ; shrη @ξ−η+2, ξ + 1

〉

.

For the case t = T − 1, we have

∣

∣

∣
qa,T ; shrξ (T ;T − 1; 0) ; shrη @ξ−η+1, ξ

〉

M4−−−→
∆(ℓ)

∣

∣

∣
qa,T ; shrξ+1 (T ;T ; 1) ; shrη @ξ−η+2, ξ + 1

〉

.

And the case t = T ,

∣

∣

∣
qa,T ; shrξ (T ;T ; 1) ; shrη @ξ−η+1, ξ

〉

M4−−→
1

∣

∣

∣
q′f ,T ; shrξ (T ;T ; 1) ; shrη @ξ−η+1, ξ + 1

〉

.

Dovetailing the four QTMs M1,M2,M3 and M4 will obtain a well-formed, normal form and
unidirectional but not stationary QTM M ′. Since the contents of fifth track allows distinguishing
the result obtained at any time the state |qf 〉 is measured during the execution by the number of @
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in the fifth track, it can be verified thatM ′ satisfies the condition claimed in the theorem statement
(except for that M ′ is not stationary).

Step 5. This step fills meaningless instructions, which will not modify the contents of the first
track, in order to make M ′ stationary. We need three time stamps T1, T2 and T3 with T < T1 <
T2 < T3 = O(T ). In the construction of Step 4, when a single symbol 1 is found in the fourth track,
we still move right (and print @ on the fifth track) until the time accumulator (i.e. the content of
the third track) reaches T1 instead of stopping at state q′f . We may set T1 sufficiently large, e.g.
T1 = 4T , in order to guarantee that the head position at time T1 is positive. Let ξ1 be the head
position at time T1. It should be noted that in order to obtain the current head position, we can
use a new track to maintain the current head position in the simulation of each step by Minc and
Mdec constructed in Lemma 9.6.

Our strategy is to move right until the time accumulator reaches T2 and then move left until
the time accumulator reaches T3 such that the head position at time T3 is 0. Note that the head
position will be ξ1 +T2−T1 at time T2. In order to make the head position at time T3 to be 0, the
condition T3−T2 = ξ1+T2−T1 should hold, i.e. T2 = (T1+T3−ξ1)/2, which allows to compute T2
when the time accumulator reaches T1 (and then ξ1 is known). In order to make the time evolution
unitary, we need three more tracks to print symbol @ for T1, T2 and T3 (similar to Step 4).

We can set appropriate values for T1 and T3 to achieve these, for example T1 = 4T and T3 = 10T .
To see that the constructed QTM is stationary, we give an intuitive explanation here. Let τx be
the running time of M on input x and ξx be the head position of M at time τx, which is also the
head position of M ′ when the state qa is met for the first time. We have |ξx| ≤ τx ≤ T = T (|x|).
After that, our QTM M ′ has four procedures:

Procedure 0. In the simulation of M for time stamp ranged from τx to T , the head position
keeps going right. A symbol @ is printed on each position between ξx and ξ0 of the fifth track,
where ξ0 − ξx = T − τx. We call the fifth track the 0th buffer track.

Procedure 1. After Procedure 0, the head position keeps going right. Another (empty) track,
called the 1st buffer track, is used to print a symbol @ on each position between ξ0 and ξ1, where
ξ1 − ξ0 = T1 − T .

Procedure 2. After Procedure 1, the head position keeps going right. Another (empty) track,
called the 2nd buffer track, is used to print a symbol @ on each position between ξ1 and ξ2, where
ξ2 − ξ1 = T2 − T1 and T2 = (T1 + T3 − ξ1)/2.

Procedure 3. After Procedure 2, the head position keeps going left. Another (empty) track,
called the 3rd buffer track, is used to print a symbol @ on each position between ξ3 and ξ2, where
ξ2 − ξ3 = T3 − T2.

Note that T1 and ξ1 always have the same parity, and T3 = 10T is even, we conclude that T2 is
always integer. Instead, T2 ≥ T3/2 = 5T and T2 ≤ (T1 + T3)/2 = 7T . Therefore, it holds that

T < T1 = 4T < 5T ≤ T ≤ 7T < T3 = 10T.

On the other hand, we have:

ξ3 = ξ2 + T2 − T3 = T2 − T1 + ξ1 + T2 − T3 = 0,

which implies QTMM ′ is stationary. In the simulation of each step of the four procedures, printing
each symbol @ (except the first printed symbol at each procedure) takes exactly ∆(ℓ) steps (see
the construction in Step 4). Therefore, M ′ halts exactly at time T ′ = O(T3∆(ℓ)) = O(T log2 T ),
and M ′ is a standard QTM that simulates M .
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10 Conclusion

In this paper, we formally define the notions of QRAM and QRASP. The relationships between the
computational powers of QRAMs, QRASPs and QTMs are established by overcoming the difficulty
of mismatch between the halting scheme of QTMs and that of QRAMs and QRASPs through a
technique for standardisation of QTMs. These results further help us to clarify the relationships
between complexity classes P, EQRAMP, EQP, BQRAMP and BQP.

The models of QRAMs and QRASPS defined in this paper can be further extended in several
dimensions:

• The addressing adopted in our QRAM model is classical in the sense that an address indicat-
ing which quantum register (qubit) to perform a quantum gate is obtained from a classical
register. This perfectly match the current architecture design of quantum computer, like a
co-processor used together with a classical computer. But one can also conceive a fully quan-
tum computer in the future which utilises only quantum registers but no classical registers.
Such a machine should allow to access simultaneously the data of several different registers
via a superposition of addresses. Indeed, such a notion of quantum addressing was already
introduced in the quantum random access memory model [13], and a possible quantum opti-
cal implementation is also proposed there. A model of QRAMs with quantum addressing is
certainly an interesting topic for future research.

• In QRASPs considered in this paper, a program is stored in classical registers, and thus
treated as classical data rather than quantum data. For a QRASP modelling a fully quantum
computer, however, a program will be encoded as quantum data. Consequently, the quantum
programming paradigm of superposition of programs proposed in [30] can be realised in such
a generalised QRASP model.

• Several new parallel quantum algorithms or parallel implementation of existing quantum
algorithms have been developed, e.g. [4, 6, 20]. On the other hand, a parallel quantum
programming language was defined in [31]. This motivates us to extend our QRAM and
QRASP models to parallel quantum random access machines (PQRAMs), as a quantum
generalisation of PRAMs [15].
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A QRAMs instructions for simulating QRASPs

To obtain a program P ′ consisting of only QRAM instructions from the pseudo-code given in
Algorithm 1, we have to:

1. transfer the if and while statements to QRAM instructions; and

2. replace every variable by a classical register with an explicit index.

We will carefully describe how to transform the pseudo-code given in Algorithm 1 into QRAM P ′

in Subsections A.1-A.4.

A.1 Equality Checking

Given two classical registers a and b, it is a basic operation to check whether their contents are
equal: a = b? We observe that a 6= b if and only if |a− b| > 0. Algorithm 2 provides a simple
method to compare a and b using three extra disposable registers, with the result res = |a− b|.

To simplify the QRAM code, we use res ← |a− b| to indicate the code in Algorithm 2 in the
following discussions.

Algorithm 2 QRAM code for checking whether a = b.

Input: a and b.
Output: res > 0 if a 6= b and 0 otherwise.
1: tmp0 ← a; tmp1 ← b;
2: tmp0 ← tmp0 − tmp1 ;
3: TRA 6 if tmp0 > 0;
4: tmp1 ← 0;
5: tmp0 ← tmp1 − tmp0 ;
6: res ← tmp0 ;
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A.2 Encoding the if and while statements by QRAM instructions

We interpret if and while statements by QRAM instructions in the general case separately.
For if statement, e.g. Algorithm 3, we provide a QRAM interpretation in Algorithm 4.

Algorithm 3 Example code for if a = b.

1: if a = b then
2: label0: statements;
3: else

4: label1: statements;
5: end if

6: label2: statements;

Algorithm 4 QRAM code for if a = b.

1: res ← |a− b|;
2: TRA label1 if res > 0;
3: label0: statements;
4: res ← 1;
5: TRA label2 if res > 0;
6: label1: statements;
7: label2: statements;

For while statement, e.g. Algorithm 5, we provide a QRAM interpretation in Algorithm 6.

Algorithm 5 Example code for while a = b.

1: while a = b do
2: label1: statements;
3: end while

4: label2: statements;

A.3 Replacing every variable by a classical register with an explicit index

In the previous interpretation, there are only three extra classical registers used, namely tmp0 , tmp1
and res . We assign each of the nine classical registers tmp0 , tmp1 , res , IC,AC,flag , op, j, k from
the 0-th to the 8-th classical registers, respectively. Let δ = 9 indicate the offset. Then the array
memory is assigned to begin at the δ-th classical register. More precisely, memory [j] is assigned to
the (δ + j)-th classical register.

A.4 Assertion for valid addressing

In the QRAM construction, accessing to memory [j] is dangerous, because j can be negative but the
address it is assigned to, i.e. (δ + j), could still be valid. Therefore, an assertion is needed before
each access to memory [j]. Algorithm 7 provides a possible solution. We use a QRAM instruction
trick here: before accessing to Xj+δ, we try to access to Xj (in QRAM address) but ignore the
addressing results. This works because if j < 0, Xj will be invalid, then the QRAM terminates
as we want; if j ≥ 0, it goes as if nothing happened (we have accessed to Xj without modifying
anything).

58



Algorithm 6 QRAM code for while a = b.

1: label0: res ← |a− b|;
2: TRA label2 if res > 0;
3: label1: statements;
4: res ← 1;
5: TRA label0 if res > 0;
6: label2: statements;

Algorithm 7 QRAM code for accessing memory [j].

1: tmp1 ← Xj ;
2: tmp0 ← δ
3: j ← j + tmp0 ;
4: res ← Xj ;

B QRASPs instructions for simulating QRAMs

1. Pl is of the form Xi ← C. The QRASP code is

label(l) :LOD, C

STO, i+ δ

2. Pl is of the form Xi ← Xj +Xk. The QRASP code is

label(l) :LOD, 0

ADD, j + δ

ADD, k + δ

STO, i+ δ

3. Pl is of the form Xi ← Xj −Xk. The QRASP code is

label (l) :LOD, 0

ADD, j + δ

SUB, k + δ

STO, i+ δ

4. Pl is of the form Xi ← XXj
. The QRASP code is

label (l) :LOD, δ

ADD, j + δ

STO, a+ 1

LOD, 0

a :ADD, 0

STO, i+ δ
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It is noted that a = label(l) + 8.

5. Pl is of the form XXi
← Xj. The QRASP code is

label (l) :LOD, δ

ADD, i+ δ

STO, a+ 1

LOD, 0

ADD, j + δ

a :STO, 0

It is noted that a = label(l) + 10.

6. Pl is of the form TRA m if Xj > 0. The QRASP code is

label (l) :LOD, 0

ADD, j + δ

BPA, label(m)

7. Pl is of the form READ Xi. The QRASP code is

label (l) :RD, i+ δ

8. Pl is of the form WRITE Xi. The QRASP code is

label(l) :PRI, i+ δ

C TMQ instructions for simulating QRAMs

1. If Pl has the form Xi ← C, the following shows several steps to achieve the simulation with
two work tracks work1 and work2.

(pl, 0) :Mwrite(i)[work1]

(pl, 1) :Mwrite(C)[work2]

(pl, 2) :Mupdate[creg,work1,work2]

(pl, 3) :Mclean[work1]

(pl, 4) :Mclean[work2]

(pl, 5) :transition to (pl+1, 0)
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2. If Pl has the form Xi ← Xj +Xk,

(pl, 0) :Mwrite(j)[work1]

(pl, 1) :Mfetch[creg,work1,work2]

(pl, 2) :Mwrite(k)[work3]

(pl, 3) :Mfetch[creg,work3,work4]

(pl, 4) :Madd[work2,work4,work5]

(pl, 5) :Mwrite(i)[work6]

(pl, 6) :Mupdate[creg,work6,work5]

(pl, 7) :Mclean[work1]

(pl, 8) :Mclean[work2]

(pl, 9) :Mclean[work3]

(pl, 10) :Mclean[work4]

(pl, 11) :Mclean[work5]

(pl, 12) :Mclean[work6]

(pl, 13) :transition to (pl+1, 0)

3. If Pl has the form Xi ← Xj −Xk,

(pl, 0) :Mwrite(j)[work1]

(pl, 1) :Mfetch[creg,work1,work2]

(pl, 2) :Mwrite(k)[work3]

(pl, 3) :Mfetch[creg,work3,work4]

(pl, 4) :Msub[work2,work4,work5]

(pl, 5) :Mwrite(i)[work6]

(pl, 6) :Mupdate[creg,work6,work5]

(pl, 7) :Mclean[work1]

(pl, 8) :Mclean[work2]

(pl, 9) :Mclean[work3]

(pl, 10) :Mclean[work4]

(pl, 11) :Mclean[work5]

(pl, 12) :Mclean[work6]

(pl, 13) :transition to (pl+1, 0)
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4. If Pl has the form Xi ← XXj
,

(pl, 0) :Mwrite(j)[work1]

(pl, 1) :Mfetch[creg,work1,work2]

(pl, 2) :Mfetch[creg,work2,work3]

(pl, 3) :Mwrite(i)[work4]

(pl, 4) :Mupdate[creg,work4,work3]

(pl, 5) :Mclean[work1]

(pl, 6) :Mclean[work2]

(pl, 7) :Mclean[work3]

(pl, 8) :Mclean[work4]

(pl, 9) :transition to (pl+1, 0)

5. If Pl has the form XXi
← Xj ,

(pl, 0) :Mwrite(j)[work1]

(pl, 1) :Mfetch[creg,work1,work2]

(pl, 0) :Mwrite(i)[work3]

(pl, 1) :Mfetch[creg,work3,work4]

(pl, 4) :Mupdate[creg,work4,work2]

(pl, 5) :Mclean[work1]

(pl, 6) :Mclean[work2]

(pl, 7) :Mclean[work3]

(pl, 8) :Mclean[work4]

(pl, 9) :transition to (pl+1, 0)

6. If Pl has the form TRA m if Xj > 0,

(pl, 0) :Mwrite(j)[work1]

(pl, 1) :Mfetch[creg,work1,work2]

(pl, 2) :Mgtz[work2]

(pl, 3) :Mclean[work1]

(pl, 4), 0work2 → #work2, (pl, 5), L

(pl, 4), 1work2 → #work2, (pl, 6), L

(pl, 5), #work2 → #work2, (pl+1, 0), R

(pl, 6), #work2 → #work2, (pm, 0), R

62



7. If Pl has the form READ Xi,

(pl, 0) :Mread[input,work1]

(pl, 1) :Mwrite(i)[work2]

(pl, 2) :Mupdate[creg,work2,work1]

(pl, 3) :Mclean[work1]

(pl, 4) :Mclean[work2]

(pl, 5) :transition to (pl+1, 0)

8. If Pl has the form WRITE Xi,

(pl, 0) :Mwrite(i)[work1]

(pl, 1) :Mfetch[creg,work1,work2]

(pl, 2) :Mgtz[work2]

(pl, 3) :Mappend[output,work2]

(pl, 4) :Mclean[work1]

(pl, 5) :Mclean[work2]

(pl, 6) :transition to (pl+1, 0)

D Proof of Lemma 9.3

Step 1. At the very beginning, we construct a RTM M1 that writes an end marker @ on the
second track and end marker $ on the third track, and then comes back to the initial position with
state q0, by including these instructions:

qa, (∀1,#2,#3) → (∀1,@,#), qb, R
qb, (∀1,#2,#3) → (∀1,#, $), qc, R
qc, (∀1,∀2,∀3) → (∀1,∀2,∀3), qd, L
qd, (∀1,∀2,∀3) → (∀1,∀2,∀3), qe, L
qe, (∀1,∀2,∀3) → (∀1,∀2,∀3), qg, L
qg, (∀1,∀2,∀3) → (∀1,∀2,∀3), q0, R

It is easy to see that

|qa,T ; ǫ; ǫ, 0〉 M1−−→
T1
|q0,T ; @;#$, 0〉 ,

where T1 = 6.
Step 2. We construct RTM M2 as follows. For p ∈ Q \ {qf} and σ ∈ Σ with transition

δ(p, σ) = (τ, q, d) in M , we make transitions to go from p to q updating the first track, i.e. the
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simulated tape of M , and adding (p, σ) to the end of the history. Include these instructions:

p, (σ,@,∀3) → (τ,#2,∀3), (q, p, σ, 1), d
(q, p, σ, 1), (∀1,#2, $) → (∀1,@, $), (q, p, σ, 3), R
(q, p, σ, 1), (∀1,#2,∀′3) → (∀1,@,∀′3), (q, p, σ, 3), R
(q, p, σ, 1), (∀1,#2,#3) → (∀1,@,#3), (q, p, σ, 2), R
(q, p, σ, 2), (∀1,#2,#3) → (∀1,#2,#3), (q, p, σ, 2), R
(q, p, σ, 2), (∀1,#2, $) → (∀1,#2, $), (q, p, σ, 3), R
(q, p, σ, 3), (∀1,#2,∀′3) → (∀1,#2,∀′3), (q, p, σ, 3), R
(q, p, σ, 3), (∀1,#2,#3) → (∀1,#2, (p, σ)), (q, 4), R

When (q, 4) is reached, the tape head is on the first blank after the end of the history (on the third
track). Now we move the tape head back to the position of tape head of M by including these
instructions:

(q, 4), (∀1,#2,#3) → (∀1,#2,#3), (q, 5), L
(q, 5), (∀1,#2,∀′3) → (∀1,#2,∀′3), (q, 5), L
(q, 5), (∀1,#2, $) → (∀1,#2, $), (q, 6), L
(q, 5), (∀1,@,∀′3) → (∀1,@,∀′3), (q, 7), L
(q, 5), (∀1,@, $) → (∀1,@, $), (q, 7), L
(q, 6), (∀1,#2,#3) → (∀1,#2,#3), (q, 6), L
(q, 6), (∀1,@,#3) → (∀1,@,#3), (q, 7), L
(q, 7), (∀1,∀2,∀3) → (∀1,∀2,∀3), q, R

It is easy to see that if |q0,T , 0〉 M−→
T
|qf ,T ′, 0〉, then

|q0,T ; @;#$, 0〉 M2−−→
T2

∣

∣

∣
qf ,T ′; @;T h, 0

〉

,

where

T2 =
T−1
∑

t=0

(

2 [(t+ 3)− pos(T , t)] +
{

5 d(T , t) = L

1 d(T , t) = R

)

= O(T 2),

pos(T , t) and d(T , t) denote the head position and the chosen direction at time t in the execution
ofM starting from tape content T , respectively. We note that d(T , t) = pos(T , t+ 1)− pos(T , t).

Conclusion. The RTM M ′ is obtained by dovetailing the two RTMs M1 and M2 by Lemma
9.10, which immediately yields

T M−→
T
T ′ =⇒ T ; ǫ; ǫ M ′

−−→
T ′
T ′; @;T h,

where T ′ = T1+T2 = O(T 2). Moreover, ifM is oblivious, for every input x ∈ {0, 1}∗, i.e. the initial
tape content is Tx, the running time and the head position of M can be denoted by T = T (|x|)
and pos(T , t) = pos(|x| , t), respectively. It can be seen that the constructed M ′ is also oblivious
by noticing that

1. During the simulation for time t ofM , the head position starts at pos(|x| , t) and goes right to
t+3 and back. The head position of M ′ during the whole execution of this part of simulation
only depends on pos(|x| , t).

2. T2 depends only on pos(|x| , t) because pos(T , t) = pos(|x| , t) and d(T , t) = d(|x| , t) =
pos(|x| , t+1)− pos(|x| , t). Therefore, the running time T ′ = T1 + T2 of M ′ depends only on
|x|.
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E Proof of Lemma 9.4

Let Mh be the constructed RTM corresponding to M in Lemma 9.3 and M−1
h be its reversal by

Lemma 9.11, andMc be the constructed RTM in Lemma 9.1. ThenM ′ is constructed by dovetailing
Mh[1, 2, 3], Mc[1, 4] and M

−1
h [1, 2, 3] by Lemma 9.10. We could verify that:

x; ǫ; ǫ; ǫ
Mh[1,2,3]−−−−−−→

Th
M(x);@;T h; ǫ

Mc[1,4]−−−−→
Tc

M(x);@;T h;M(x)

M−1
h [1,2,3]−−−−−−−→
Th+2

x; ǫ; ǫ;M(x)

and

x; ǫ; ǫ;M(x)
Mh[1,2,3]−−−−−−→

Th
M(x);@;T h;M(x)

Mc[1,4]−−−−→
Tc

M(x);@;T h; ǫ

M−1
h

[1,2,3]−−−−−−−→
Th+2

x; ǫ; ǫ; ǫ

with running time T ′ = Th + Tc + Th + 2 = O(T 2).

F Proof of Lemma 9.5

Let M ′
1 and M ′

2 be the RTMs constructed by Lemma 9.4 and Mswap be the RTM in Lemma 9.2.
N1 is constructed by dovetailing M ′

1[1, 2], Mswap [1, 2] and M
′
2[1, 2]. Verify that

x; ǫ
M ′

1[1,2]−−−−→
T ′
1

x;M1(x)
Mswap [1,2]−−−−−−→
Tswap

M1(x);x
M ′

2[1,2]−−−−→
T ′
2

M1(x); ǫ,

where T ′
1 = O(T 2

1 ), T
′
2 = O(T 2

2 ) and Tswap = O(|x| + |M(x)|). N2 is constructed by dovetailing
M ′

2[1, 2], Mswap [1, 2] and M
′
1[1, 2]. Verify that

M1(x); ǫ
M ′

2[1,2]−−−−→
T ′
2

M1(x);x
Mswap [1,2]−−−−−−→
Tswap

x;M1(x)
M ′

1[1,2]−−−−→
T ′
1

x; ǫ,

G Proof of Lemma 9.6

The proof is immediately shown by giving two oblivious DTMs using Lemma 9.5.

65



Below is an oblivious TM M+:

q0, ∀ → ∀, q1, L
q1, # → #, q2, R
q2, x → x, q2, R
q2, # → #, (q3, 1), L

(q3, 0), 0 → 0, (q3, 0), L
(q3, 0), 1 → 1, (q3, 0), L
(q3, 0), # → #, qf , R
(q3, 1), 0 → 1, (q3, 0), L
(q3, 1), 1 → 0, (q3, 1), L
(q3, 1), # → #, qf , R

It can be verified that M+ increments x by 1 and has running time 2 |x|+ 4 = O(|x|).
Below is an oblivious TM M−:

q0, ∀ → ∀, q1, L
q1, # → #, q2, R
q2, x → x, q2, R
q2, # → #, (q3, 1), L

(q3, 0), 0 → 0, (q3, 0), L
(q3, 0), 1 → 1, (q3, 0), L
(q3, 0), # → #, qf , R
(q3, 1), 0 → 1, (q3, 1), L
(q3, 1), 1 → 0, (q3, 0), L
(q3, 1), # → #, qf , R

It can be verified that M− decrements x by 1 and has running time 2 |x|+ 4 = O(|x|).

H Proof of Lemma 9.7

The proof is immediately shown by giving an oblivious DTM using Lemma 9.5. It is noted that
the given DTM itself is the reversal of it.

The an oblivious TM M= is as below:

q0, (∀1,∀2,∀3) → (∀1,∀2,∀3), q1, L
q1, (∀1,∀2,∀3) → (∀1,∀2,∀3), q2, R
q2, (x1, x2,∀3) → (x1, x2,∀3), q2, R
q2, (#1,#2,#3) → (#1,#2,#3), (q3, 0), L

(q3, 0), (x, x,∀3) → (x, x,∀3), (q3, 0), L
(q3, 0), (0, 1,∀3) → (0, 1,∀3), (q3, 1), L
(q3, 0), (1, 0,∀3) → (1, 0,∀3), (q3, 1), L
(q3, 0), (#1,#2,#3) → (#1,#2,#3), (q4, 0), R
(q3, 1), (x1, x2,∀3) → (x1, x2,∀3), (q3, 1), L
(q3, 1), (#1,#2,#3) → (#1,#2,#3), (q4, 1), R
(q4, 0), (x1, x2, 0) → (x1, x2, 0), q5, L
(q4, 0), (x1, x2, 1) → (x1, x2, 1), q5, L
(q4, 1), (x1, x2, 0) → (x1, x2, 1), q5, L
(q4, 1), (x1, x2, 1) → (x1, x2, 0), q5, L
q5, (∀1,∀2,∀3) → (∀1,∀2,∀3), qf , R
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It can be verified thatM= checks whether x and y are equal and has running time 2 |x|+6 = O(|x|).
Moreover, we have that M=(M=(x; y; z)) = x; y; z.

I Proof of Lemma 9.8

Below is the construction. We use σ to denote any symbol other than #, d to denote both directions
L and R and d̄ to denote the reverse direction of d.

q0, (σ,#) → (σ,#), (qL, 1), L
q0, (#,#) → (#,#), (qR, 1), R

(qd, 1), (σ,#) → (σ,#), (qd, 2), L
(qd, 2), (#,#) → (#,#), (qd, 3), R
(qd, 3), (σ,#) → (σ, σ), (qd, 3), R
(qd, 3), (#,#) → (#,#), (qd, 4), L
(qd, 4), (σ, σ) → (σ, σ), (qd, 4), L
(qd, 4), (#,#) → (#,#), (qd, 5), R
(qd, 5), (σ, σ) → (σ, σ), (qd, 6), d̄
(qL, 6), (σ, σ) → (σ, σ), q7, L
(qR, 6), (#,#) → (#,#), q7, L
q7, (∀,∀) → (∀,∀), qf , R

J Proof of Lemma 9.9

Below is an oblivious TM Mr:

q0, ∀ → ∀, q1, L
q1, # → #, q2, R
q2, x → x, q2, R
q2, # → #, q3, L
q3, x → x, (q4, x), R
q3, # → #, q6, R

(q4, x), ∀ → x, q5, L
q5, ∀ → ∀, q3, L
q6, ∀ → #, q7, L
q7, # → #, qf , R

∀ denotes any symbol in Σ while x denotes any symbol in Σ other than #. It can be verified that
Mr shifts the tape right by a cell and has running time 4 |x|+ 6 = O(|x|).

Below is an oblivious TM Ml:

q0, ∀ → ∀, q1, L
q1, # → #, q2, R
q2, x → x, (q3, x), L
q2, # → #, q5, L

(q3, x) ∀ → x, q4, R
q4 ∀ → ∀, q2, R
q5, ∀ → #, q6, L
q6, x → x, q6, L
q6, # → #, q7, R
q7, ∀ → ∀, qf , R
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It can be verified that Mr shifts the tape left by a cell and has running time 4 |x|+ 6 = O(|x|).
Let M ′

l and M
′
r be the RTMs constructed by Lemma 9.3 corresponding to Ml and Mr, respec-

tively. Let Mc be the RTM in Lemma 9.8. It is noted that for every x ∈ {0, 1}+,

x; ǫ; ǫ; ǫ
M ′

l [1,2,3]−−−−−→
Tl

shlx; @;T hl; ǫ Mc[1,4]−−−−→
Tc

shlx; @;T hl; shlx

and

x; ǫ; ǫ; ǫ
M ′

r[1,2,3]−−−−−→
Tr

shrx; @;T hr; ǫ Mc[1,4]−−−−→
Tc

shrx; @;T hr; shrx.

Moreover, it can by verified that Tl = Tr = O(|x|2).
We note that

shlx; @;T hl; shlx M ′−1
l

[1,2,3]−−−−−−−→
Tl+2

x; ǫ; ǫ; shl x,

shlx; @;T hl; shlx M ′−1
l

[4,2,3]−−−−−−−→
Tl+2

shlx; ǫ; ǫ;x,

shrx; @;T hr; shrx M ′−1
r [1,2,3]−−−−−−−→
Tr+2

x; ǫ; ǫ; shrx,

shrx; @;T hr; shrx M ′−1
l

[4,2,3]−−−−−−−→
Tr+2

shrx; ǫ; ǫ;x.

According to these four cases, we can obtain four RTMs as follows:

x; ǫ
M1

l−−→
T 1
l

shlx;x,

x; ǫ
M2

l−−→
T 2
l

x; shlx,

x; ǫ
M1

r−−→
T 1
r

shrx;x,

x; ǫ
M2

r−−→
T 2
r

x; shrx

with T 1
l = T 2

l = T 1
r = T 2

r = O(|x|2).
We use ML and MR to denote the RTM that moves the tape head left and right, respectively,

without modifying anything. Formally,

|T , ξ〉 ML−−→
3
|T , ξ − 1〉

and
|T , ξ〉 MR−−→

3
|T , ξ + 1〉 .

The running time is 3 because ML and MR should be in normal form, and we achieve this by
making ML go left, left and right and making MR go right, left, right, both of which need three
steps. The construction of ML and MR is trivial. Now we are able to build two RTMs that just
shift left or right the whole tape. Note that

|x; ǫ, 0〉 M1
l−−→

T 1
l

|shlx;x, 0〉 ML−−→
3
|shlx;x,−1〉 M2

r−−→
T 2
r

|shlx; ǫ,−1〉 MR−−→
3
|shlx; ǫ, 0〉 ,

and

|x; ǫ, 0〉 M1
r−−→

T 1
r

|shrx;x, 0〉 MR−−→
3
|shrx;x, 1〉 M2

l−−→
T 2
l

|shrx; ǫ, 1〉 ML−−→
3
|shrx; ǫ, 0〉 .
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