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Abstract

We introduce a quantum generalisation of the notion of coupling in

probability theory. Several interesting examples and basic properties of

quantum couplings are presented. In particular, we prove a quantum

extension of Strassen theorem for probabilistic couplings, a fundamental

theorem in probability theory that can be used to bound the probability

of an event in a distribution by the probability of an event in another

distribution coupled with the first.

1 Introduction

Coupling is a powerful technique in probability theory, with which random vari-
ables can be linked to or compared with each other. It has been widely used in
the studies of random walks and Markov chains, interacting particle systems and
diffusions, just name a few, in order to establish limit theorems about them, to
develop approximations for them, or to derive correlation inequalities between
them [7].

Recently, a very successful application of coupling in computer science was
discovered by Barthe et al. [4] that it can serve as a solid mathematical foun-
dation for defining the semantics of probabilistic relational Hoare logic. This
discovery enables them to develop a series of powerful proof techniques for rea-
soning about relational properties of probabilistic computations, in particular,
for verification of cryptographic protocols and differential privacy [2, 3, 1, 6].
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There is a simple and natural correspondence between probability theory and
quantum theory: probability distributions/density operators (mixed quantum
states), marginal distributions/partial traces, and more. This correspondence
suggests us to explore the possibility of generalising the coupling techniques for
reasoning about quantum systems. We expect that these techniques can help
us to extend quantum Hoare logic [10] for proving relational properties between
quantum programs and further for verifying quantum cryptographic protocols
and differential privacy in quantum computation [11]. But in this paper, we
focus on studying quantum couplings themselves.

Strassen theorem [9] is a fundamental theorem in probability theory that can
be used to bound the probability of an event in a distribution by the probability
of an event in another distribution coupled with the first. The main technical
contribution of this paper is proving an elegant (in our opinion) quantum gen-
eralisation of Strassen theorem.

2 Background and Basic Definitions

2.1 Probabilistic Coupling

For convenience of the reader, we first briefly recall the basics of probabilistic
coupling, following [6]. Let A be a finite or countably infinite set. A sub-
distribution over A is a mapping µ : A → [0, 1] such that

∑

a∈A µ(a) ≤ 1.
In paricular, if

∑

a∈A µ(a) = 1, then µ is called a distribution over A. For a
sub-distribution µ over A, we define:

1. The weight of µ is |µ| =
∑

a∈A µ(a);

2. The support of µ is supp(µ) = {a ∈ A : µ(a) > 0};

3. The probability of an event S ⊆ A is µ(S) =
∑

a∈S µ(a).

Moreover, let µ be a joint sub-distribution, i.e. a sub-distribution over Carte-
sian product A1 × A2. Then its marginals π1(µ), π2(µ) over A1 and A2 are,
respectively, defined by

π1(µ)(a1) =
∑

a2∈A2

µ(a1, a2) for every a1 ∈ A1,

π2(µ)(a2) =
∑

a1∈A1

µ(a1, a2) for every a2 ∈ A2.

Now we can define the notion of coupling.

Definition 1 (Probabilistic Coupling). Let µ1, µ2 be sub-distributions over
A1,A2, respectively. Then a sub-distribution µ over A1×A2 is called a coupling
for (µ1, µ2) if π1(µ) = µ1 and π2(µ) = µ2.

Here are some simple examples of coupling taken from [6].
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Example 1. Let Flip be the uniform distribution over booleans, i.e. Flip(0) =
Flip(1) = 1

2 . Then the following are two couplings for (Flip,Flip):

1. Identity coupling: µid(a1, a2) =

{

1
2 if a1 = a2,

0 otherwise.

2. Negation coupling: µ¬(a1, a2) =

{

1
2 if ¬a1 = a2,

0 otherwise.

More generally, let UnifA be the uniform distribution over a finite nonempty
set A, i.e. UnifA(a) = 1

|A| for every a ∈ A. Then each bijection f : A → A

yields a coupling µf for (UnifA,UnifA):

µf (a1, a2) =

{

1
|A| if f(a1) = a2,

0 otherwise.

Example 2. For any sub-distribution µ over A, the identity coupling for (µ, µ)

is: µid(a1, a2) =

{

µ(a) if a1 = a2 = a,

0 otherwise.

Example 3. For any distributions µ1, µ2 over A1,A2, respectively, the inde-
pendent or trivial coupling is: µ×(a1, a2) = µ1(a1) · µ2(a2).

Obviously, coupling for a pair of distributions is not unique. Then the notion
of lifting can be introduced to choose a desirable coupling.

Definition 2 (Probabilistic Lifting). Let µ1, µ2 be sub-distributions over A1,A2,
respectively, and let R ⊆ A1 ×A2 be a relation. Then a sub-distribution µ over
A1 ×A2 is called a witness for the R-lifting of (µ1, µ2) if:

1. µ is a coupling for (µ1, µ2);

2. supp(µ) ⊆ R.

Whenever a witness exists, we say that µ1 and µ2 are related by the R-lifting
and write µ1R

#µ2.

Example 4. 1. Coupling µf in Example 1 is a witness for the lifting UnifA
{(a1, a2)|f(a1) = a2}

#UnifA.

2. Coupling µid in Example 2 is a witness for the lifting µ =# µ.

3. Coupling µ× in Example 3 is a witness for the lifting µ1T
#µ2, where

T = A1 ×A2.

Proposition 1. 1. Let µ1, µ2 be sub-distributions over A1,A2, respectively.
If there exists a coupling for (µ1, µ2), then |µ1| = |µ2|.

2. Let µ1, µ2 be sub-distributions over the same A. Then µ1 = µ2 if and only
if µ1 =# µ2.
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2.2 Quantum Coupling

With the correspondence of probability distributions/density operators (mixed
quantum states) and marginal distributions/partial traces mentioned in the In-
troduction, we can introduce the notion of quantum coupling. To this end, let
us first recall several basic notions from quantum theory; for details, we refer to
[8].

Suppose that H is a finite-dimensional Hilbert space. Let Herm(H) be the
set of Hermitian matrices in H. Let Pos(H) be the set of positive (semidefinite)
matrices in H, and D(H) ⊂ Pos(H) is the set of partial density operators, i.e.,
positive (semidefinite) matrices with trace one. A positive operator ρ in H is
called a partial density operator if its trace tr(ρ) =

∑

i〈i|ρ|i〉 ≤ 1, where {|i〉}
is an orthonormal basis of H.

We define its support:

supp(ρ) = span{eigenvectors of ρ with nonzero eigenvalues}

= span{|ψ〉
∣

∣ tr(ρ|ψ〉〈ψ|) = 0}⊥.

If A is an observable, i.e. Hermitian operator, in H, then its expectation in state
ρ is 〈A〉ρ = tr(Aρ). Furthermore, let H1,H2 be two Hilbert space. Then partial
trace over H1 is a mapping tr1(·) from operators in H1⊗H2 to operators in H2

defined by
tr1(|ϕ1〉〈ψ1| ⊗ |ϕ2〉〈ψ2|) = 〈ψ1|ϕ1〉 · |ϕ2〉〈ψ2|

for all |ϕ1〉, |ψ1〉 ∈ H1 and |ϕ2〉, |ψ2〉 ∈ H2 together with linearity. The partial
trace tr2(·) over H2 can be defined dually.

Now we are ready to define the concept of coupling.

Definition 3 (Quantum Coupling). Let ρ1 ∈ D(H) and ρ2 ∈ D(H2). Then
ρ ∈ D(H1 ⊗H2) is called a coupling for (ρ1, ρ2) if tr1(ρ) = ρ2 and tr2(ρ) = ρ1.

This is actually a very special case of the famous quantum marginal problem,
see [12, 13, 14, 15] as a very incompleted list for recent development.

Example 5. Let H be a Hilbert space and B = {|i〉} an orthonormal basis of
H. Then the uniform density operator on H is

UnifH =
1

d

∑

i

|i〉〈i|

where d = dimH is the dimension of H. Indeed, the uniform density operator
on H is unique and independent with the choice of orthonormal basis. For each
unitary operator U in H, we write U(B) = {U |i〉}, which is also an orthonormal
basis of H. Then

ρU =
1

d

∑

i

(|i〉U |i〉)(〈i|〈i|U †)

is a coupling for (UnifH,UnifH). In general, for different U and U ′, ρU 6= ρU ′ ,
though they are both the couplings for (UnifH,UnifH).
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Example 6. Let ρ be a partial density operator in H. Then by the spectral
decomposition theorem, ρ can be written as ρ =

∑

i pi|i〉〈i| for some orthonormal
basis B = {|i〉} and pi ≥ 0 with

∑

i pi ≤ 1. We define:

ρid(B) =
∑

i

pi|ii〉〈ii|.

Then it is to see that ρid(B) is a coupling for (ρ, ρ). A difference between this
example and Example 2 is that ρ can be decomposed with other orthonormal
bases, say D = {|j〉}: ρ =

∑

j qj |j〉〈j|. In general, ρid(B) 6= ρid(D), and we can
define a different coupling:

ρid(D) =
∑

j

qj |jj〉〈jj|

for (ρ, ρ).

Example 7. Let ρ1 ∈ D(H1) and ρ2 ∈ D(H2) be density operators. Then
tensor product ρ⊗ = ρ1 ⊗ ρ2 is a coupling for (ρ1, ρ2).

The notion of lifting can also be easily generalised into the quantum setting.

Definition 4 (Quantum Lifting). Let ρ1 ∈ D(H1) and ρ2 ∈ D(H2), and let X
be a subspace of H1⊗H2. Then ρ ∈ D(H1⊗H2) is called a witness of the lifting
ρ1X

#ρ if:

1. ρ is a coupling for (ρ1, ρ2);

2. supp(ρ) ⊆ X .

Example 8. 1. The coupling ρU in Example 5 is a witness for the lifting:

UnifHX (B, U)#UnifH

where X (B, U) = span{|i〉U |i〉} is a subspace of H⊗H.

2. The coupling ρid(B) in Example 6 is a witness of the lifting ρ =#
B ρ, where

=B = span{|ii〉} defined by the orthonormal basis B = {|i〉} is a subspace
of H⊗H. It is interesting to note that the maximal entangled state |Ψ〉 =
1√
d

∑

i |ii〉 is in =B .

3. The coupling ρ⊗ in Example 7 is a witness of the lifting ρ1(H1 ⊗H2)
#ρ2.

As a quantum generalisation of Proposition 1, we have:

Proposition 2. 1. Let ρ1 ∈ D(H1) and ρ2 ∈ D(H2). If there exists a cou-
pling for (ρ1, ρ2), then tr(ρ1) = tr(ρ2).

2. Let ρ1, ρ2 ∈ D(H). Then ρ1 = ρ2 if and only if ∃ orthonormal basis B s.t.

ρ1 =#
B ρ2.
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Proof. Part 1 and Part 2 (⇒) are obvious. Here, we prove Part 2 (⇐). If ρ1 =#
B

ρ2, then there exists a coupling ρ for (ρ1, ρ2) such that supp(ρ) ⊆ span{|ii〉},
where B = {|i〉}. Then we have: ρ =

∑

j pj|Ψj〉〈Ψj | for some |Ψj〉 ∈ span{|ii〉}
and pj . Furthermore, for each j, we can write: |Ψj〉 =

∑

i αji|ii〉. Then it is rou-
tine to show that tr1(|Ψj〉〈Ψj |) = tr2(|Ψj〉〈Ψj |) =

∑

i |αji|
2|i〉〈i|. Therefore, it

holds that ρ1 = tr2(ρ) =
∑

j pjtr2(|Ψj〉〈Ψj |) =
∑

j pjtr1(|Ψj〉〈Ψj |) = tr1(ρ) =
ρ2.

3 Quantum Strassen Theorem

As mentioned in the Introduction, a fundamental theorem for probabilistic cou-
pling is the following:

Theorem 1 (Strassen Theorem). Let µ1, µ2 be sub-distributions over A1,A2,
respectively. Then

µ1R
#µ2 ⇒ ∀S ⊆ A1. µ1(S) ≤ µ2(R(S)) (1)

where R(S) is the image of S under R: R(S) = {a2 ∈ A2|∃a1 ∈ S s.t. (a1, a2) ∈
R}. The converse of (1) holds if |µ1| = |µ2|.

In this section, we prove a quantum generalisation of the above Strassen
Theorem. For this purpose, for any subspace X of H1 ⊗ H2, we use PX and
PX⊥ to denote the projections on X and X⊥ (the ortho-complement of X ),
respectively. We use I1, I2, I12 to denote the identity matrix of H1,H2,H12,
respectively. 〈·, ·〉 is employed to denote the inner product of matrices living in
the same space,

〈A,B〉 = tr(A†B)

Then a quantum Strassen theorem can be stated as follows:

Theorem 2 (Quantum Strassen Theorem). For any two partial density oper-
ators ρ1 in H1 and ρ2 in H2 with tr(ρ1) = tr(ρ2), and for any subspace X of
H1 ⊗H2, the following three statements are equivalent:

1. ρ1X
#ρ2;

2. For all observables (Hermitian operators) Y1 in H1 and Y2 in H2 satisfying
PX⊥ ≥ Y1 ⊗ I2 − I1 ⊗ Y2, it holds that

tr(ρ1Y1) ≤ tr(ρ2Y2). (2)

3. For all positive observables Y1 in H1 and Y2 in H2 satisfying PX⊥ ≥
Y1 ⊗ I2 − I1 ⊗ Y2, it holds that tr(ρ1Y1) ≤ tr(ρ2Y2).

Proof. (1 ⇒ 2 ) Suppose ρ is a witness of the lifting ρ1X
#ρ2. Then for all

observables (Hermition operators) Y1 in H1 and Y2 in H2, if PX⊥ ≥ Y1 ⊗ I2 −
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I1 ⊗ Y2, then we have:

tr(ρ1Y1) = tr(ρ(Y1 ⊗ I2)) (3)

≤ tr(ρ(PX⊥ + I1 ⊗ Y2)) (4)

= tr(ρ(I1 ⊗ Y2)) (5)

= tr(ρ2Y2). (6)

Equalities (3) and (6) are derived from the condition that ρ is a coupling for
(ρ1, ρ2); that is, tr2(ρ) = ρ1 and tr1(ρ) = ρ2, (4) is due to the assumption for
Y1 and Y2, and (5) is trivial as supp(ρ) ⊆ X , so tr(ρPX⊥) = 0.

(2 ⇒ 1 ) Let us first define the semidefinite program (Φ, A,B):

Primal problem

maximize: 〈A,X〉

subject to: Φ(X) = B,

X ∈ Pos (H1 ⊗H2) .

Dual problem

minimize: 〈B, Y 〉

subject to: Φ∗(Y ) ≥ A,

Y ∈ Herm (H1 ⊕H2) .

where:

A = PX , B =

[

ρ1
ρ2

]

,

Φ(X) =

[

tr2(X)
tr1(X)

]

,

Φ∗(Y ) = Φ∗
[

Y1 ·
· Y2

]

= Y1 ⊗ I2 + I1 ⊗ Y2.

To show that the above problems are actually primal and dual, respectively, we
only need to check the following equality:

∀ M, N, 〈Φ(M), N〉 = tr(tr2(M)N1 + tr1(M)N2)

= tr(M(N1 ⊗ I2) +M(I1 ⊗N2))

= 〈M,Φ∗(N)〉.

Moreover, the strong duality holds for this semidefinite program as we can check
that the primal feasible set are not empty and there exists a Hermitian operator
Y for which Φ∗(Y ) > A:

Primal feasible set A = {X ∈ Pos (H1 ⊗H2) : Φ(X) = B} ∋
1

tr(ρ1)
ρ1 ⊗ ρ2

Choose Y = I1 ⊕ I2 ∈ Herm (H1 ⊕H2) , Φ
∗(Y ) = 2I12 > PX .

So, max〈PR, X〉 = min〈B, Y 〉 = min{〈ρ1, Y1〉 + 〈ρ2, Y2〉}. Now, let us consider
the following condition:
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(A): For all observable (Hermitian operators) Y1 in H1 and Y2 in H2

satisfy Y1 ⊗ I2 + I1 ⊗ Y2 ≥ PX , then

〈B, Y 〉 = tr(ρ1Y1 + ρ2Y2) ≥ trρ1.

If condition (A) holds, then min〈B, Y 〉 ≥ trρ1. Still remember that max〈PX , X〉 ≤
trX = trρ1. Due to the strong duality, we have max〈PX , X〉 = trρ1. So, Xmax

which maximizes 〈PX , X〉 must satisfy 〈PX , Xmax〉 = trρ1 = trXmax. Conse-
quently, suppXmax ⊆ X ; in other words, Xmax is a witness of ρ1X

#ρ2. There-
fore, condition (A) ⇒ ρ1R

#ρ2. On the other hand, condition (A) is equivalent
to statement 2 of the theorem. Indeed, this is not difficult to prove as if we
replace Y ′

1 = I1 − Y1 in condition (A), then

Y1 ∈ Herm(H1) ⇐⇒ Y ′
1 ∈ Herm(H1)

Y1 ⊗ I2 + I1 ⊗ Y2 ≥ PX ⇐⇒ I1 ⊗ I2 − PX ≥ Y ′
1 ⊗ I2 − I1 ⊗ Y2

⇐⇒ P⊥
X ≥ Y ′

1 ⊗ I2 − I1 ⊗ Y2

tr(ρ1Y1 + ρ2Y2) ≥ trρ1 ⇐⇒ tr(ρ2Y2) ≥ tr(ρ1I1)− tr(ρ1(I1 − Y ′
1))

⇐⇒ tr(ρ2Y2) ≥ tr(ρ1Y
′
1).

From the above, we can directly derive statement 2 . In summary, we have:
statement 2 ⇔ condition (A) ⇒ ρ1R

#ρ2.

(2 ⇒ 3 ) Obvious.

(3 ⇒ 2 ) We only need to show that, for any two observables Y1 in H1 and
Y2 in H2 satisfy P⊥

X ≥ Y1 ⊗ I2 − I1 ⊗ Y2, there exist two positive observables Y ′
1

in H1 and Y ′
2 in H2 such that P⊥

X ≥ Y ′
1 ⊗ I2 − I1 ⊗ Y ′

2 and

tr(ρ1Y1) ≤ tr(ρ2Y2) ⇐⇒ tr(ρ1Y
′
1) ≤ tr(ρ2Y

′
2).

Note that Y1 and Y2 are Hermitian, so their eigenvalues are real, and we can
define λ = min{eigenvalues of Y1 and Y2}. Choose Y ′

1 = Y1 − λI1 and Y ′
2 =

Y2 − λI2. Obviously, Y ′
1 and Y ′

2 are positive observables, and satisfy

P⊥
X ≥ Y1 ⊗ I2 − I1 ⊗ Y2

= Y1 ⊗ I2 − λI1 ⊗ I2 + λI1 ⊗ I2 − I1 ⊗ Y2

= Y ′
1 ⊗ I2 − I1 ⊗ Y ′

2 .

Moreover, as tr(ρ1) = tr(ρ2), we have

tr(ρ1Y1) ≤ tr(ρ2Y2) ⇐⇒ tr(ρ1Y1)− tr(ρ1λI1) ≤ tr(ρ2Y2)− tr(ρ2λI2)

⇐⇒ tr(ρ1Y
′
1) ≤ tr(ρ2Y

′
2).

Remark:In the above proof, it is indeed naturally to employing the methods
of semidefinite programming. In [6], Hsu deliberately constructs a flow network,
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and then using the max-flow min-cut theorem to prove the Strassen theorem in
the finite case. Essentially, the max-flow min-cut theorem is a special case of the
duality theorem for linear programs (LP). Considering the fact that quantum
states, quantum operations and so on are all described by matrices, similar to
LP, semi-definite programming (SDP) is a powerful and widely used method of
convex optimization in quantum theory. Indeed, when all matrices appeared in
a SDP are diagonal, then the SDP reduces to LP. In the following section, we
will see that in the degenerate case, quantum Strassen theorem also reduces to
the classical Strassen theorem.

4 Classical Reduction of Quantum Strassen The-

orem

At the first glance, Theorem 1 (Strassen Theorem for Probabilistic Coupling)
and Theorem 2 (Quantum Strassen Theorem) are very different. In this section,
we show that Theorem 2 is indeed a quantum generalisation of Theorem 1.

To this end, let µ1 be a sub-distribution over [m] ([m] = {i ∈ N
∣

∣ 1 ≤ i ≤ m})
and µ2 over [n]. And the corresponding degenerate partial density operators
(quantum states) are:

ρ1 =











µ1(1)
µ1(2)

. . .

µ1(m)











, ρ2 =











µ2(1)
µ2(2)

. . .

µ2(n)











in H1 = span{|i〉 : i ∈ [m]} and H2 = span{|j〉 : j ∈ [n]}, respectively. Further-
more, let R ⊆ {(i, j)

∣

∣i ∈ [m], j ∈ [n]} be a classical relation from [m] to [n].
Then the corresponding (quantum relation) subspace of H1 ⊗H2 is defined as

XR = span{|i〉|j〉
∣

∣ (i, j) ∈ R}.

Based on the above definition of the degenerate case, in the rest part of this
section, Proposition 3 shows that the left hand side of Eqn.(1) in Theorem 1
is equivalent to the statement 1 in Theorem 2, while Proposition 4 states the
equivalence of the right hand side of Eqn.(1) in Theorem 1 and the statement
3 in Theorem 2, concluding that Theorem 1 (Strassen Theorem) is indeed a
reduction of Theorem 2 (Quantum Strassen Theorem).

The following proposition indicates that probabilistic lifting is a special case
of quantum lifting.

Proposition 3. µ1R
#µ2 ⇐⇒ ρ1X

#
R ρ2.

Proof. (⇒) Suppose that there is a witness µ of the lifting µ1R
#µ2. We define

the partial density operator:

ρ : 〈i|〈j|ρ|i′〉|j′〉 =

{

µ(i, j) i = i′, j = j′

0 i 6= i′ or j 6= j′
.

9



It is easy to check:

〈i|tr2(ρ)|i
′〉 =

n
∑

j=1

〈i|〈j|ρ|i′〉|j〉 =

{ ∑n
j=1 µ(i, j) = µ1(i) i = i′

0 i 6= i′
,

〈j|tr2(ρ)|j
′〉 =

n
∑

i=1

〈i|〈j|ρ|i〉|j′〉 =

{
∑m

i=1 µ(i, j) = µ2(j) j = j′

0 j 6= j′
.

So, tr2(ρ) = ρ1 and tr1(ρ) = ρ2; that is, ρ is a coupling for (ρ1, ρ2). Furthermore,
we have:

tr(ρPXR
) =

∑

(i,j)∈R

〈i|〈j|ρ|i〉|j〉

=
∑

(i,j)∈R

µ(i, j)

=
∑

(i,j)∈R

µ(i, j) +
∑

(i,j)/∈R

µ(i, j)

= tr(ρ)

Thus, supp(ρ) ⊆ XR, and ρ is a witness of the quantum lifting ρ1X
#
R ρ2.

(⇐) Suppose there is a witness ρ of the quantum lifting ρ1X
#
R ρ2. Let us

construct the joint sub-distribution µ:

µ(i, j) = 〈i|〈j|ρ|i〉|j〉 for all i, j.

It is easy to check:

n
∑

j=1

µ(i, j) =

n
∑

j=1

〈i|〈j|ρ|i〉|j〉 = 〈i|ρ1|i〉 = µ1(i),

m
∑

i=1

µ(i, j) =

m
∑

i=1

〈i|〈j|ρ|i〉|j〉 = 〈j|ρ2|j〉 = µ2(j).

Also, if (i, j) /∈ R, then |i〉|j〉 ⊥ XR, then

µ(i, j) = 〈i|〈j|ρ|i〉|j〉 = tr(ρ|i〉|j〉〈i|〈j|) = 0

as supp(ρ) ⊆ XR. Thus, supp(µ) ⊆ R, and µ is a witness of the lifting µ1R
#µ2.

The following proposition further shows that in the degenerate case,inequality
(2) to (1). Surprisingly, such a reduction can be realized even without the con-
dition of lifting.
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Proposition 4. Two statements are equivalent:

1. For any S ⊆ [m], µ1(S) ≤ µ2(R(S));

2. For all positive observables Y1 in H1 and Y2 in H2 satisfy P⊥
XR

≥ Y1 ⊗
I2 − I1 ⊗ Y2, then

tr(ρ1Y1) ≤ tr(ρ2Y2)

Proof. As ρ1, ρ2 and PXR
are diagonal density operators, so we only need to

consider those Y1 and Y2 which are also diagonal. We use the notation Y1,i =
(Y1)ii and Y2,j = (Y2)jj for simplicity. Then it holds that

P⊥
XR

≥ Y1 ⊗ I2 − I1 ⊗ Y2 ⇐⇒ ∀ i, j

{

Y2,j ≥ Y1,i (i, j) ∈ R
Y2,j ≥ Y1,i − 1 (i, j) /∈ R

Now we need a technical lemma:

Lemma 1. The following two statements are equivalent:

1′. If Z1,i ∈ {0, 1}, Z2,j ∈ {0, 1}, then

∀ i, j

{

Z2,j ≥ Z1,i (i, j) ∈ R
Z2,j ≥ Z1,i − 1 (i, j) /∈ R

⇒

m
∑

i=1

µ1(i)Z1,i ≤

n
∑

j=1

µ2(j)Z2,j

2′. If Y1,i ≥ 0, Y2,j ≥ 0, then

∀ i, j

{

Y2,j ≥ Y1,i (i, j) ∈ R
Y2,j ≥ Y1,i − 1 (i, j) /∈ R

⇒
m
∑

i=1

µ1(i)Y1,i ≤
n
∑

j=1

µ2(j)Y2,j

where Z1, Z2 are also diagonal matrices, and Z1,i = (Z1)ii, Z2,j = (Z2)jj .

For readability, let us first use this lemma to finish the proof of the propo-
sition, but postpone the proof of the lemma itself to the end of this section.
As

tr(ρ1Y1) =

m
∑

i=1

(ρ1)ii(Y1)ii =

m
∑

i=1

µ1(i)Y1,i,

tr(ρ2Y2) =

m
∑

j=1

(ρ2)jj(Y2)jj =

n
∑

j=1

µ2(j)Y2,j ,

it is direct to see that statement 2 of the proposition is equivalent to statement
2′ of the above lemma. For the statement 1′ of the above, we can define the set
S = {i ∈ [m]

∣

∣ Z1,i = 1} and T = {j ∈ [n]
∣

∣ Z2,j = 1}, then it is equivalent to:

∀ S ⊆ [m], T ⊆ [n], R(S) ⊆ T ⇒ µ1(S) ≤ µ2(T ),

which is exactly the statement 1 of the proposition. Therefore, using the above
lemma, we see that statements 1 and 2 in the proposition are equivalent.
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Combining Propositions 3 and 4, we see that Theorem 1 (Strassen Theo-
rem for probabilistic coupling) is a reduction of Theorem 2 (Quantum Strassen
Theorem).

To conclude this section, let us present the following:

Proof of Lemma 1. (2′ ⇒ 1′) This is trivial as statement 1′ is a special case of
statement 2′.

(1′ ⇒ 2′) For any Y1, we can construct a decreasing sequence Z11 > · · · >
Z1k > Z1(k+1) > · · · such that:

Y1 =
∑

k

λkZ1k, λk ≥ 0.

We further define Sk = {i ∈ [m]
∣

∣ Z1k,i = 1} and the corresponding Tk = R(Sk).
Then, {Sk} is a strictly decreasing sequence; that is, Sk ⊃ Sk+1 for all k, and
{Tk} is a non-increasing sequence; that is, Tk ⊇ Tk+1 for all k. Let us also
define Z2k:

Z2k,j =

{

1 j ∈ Tk
0 j /∈ Tk

and a new operator Y2min:

Y2min =
∑

k

λkZ2k.

Note that any pair of Z1k and Z2k satisfy statement 1 ′. Then

m
∑

i=1

µ1(i)Y1,i =

m
∑

i=1

µ1(i)
∑

k

λkZ1k,i =
∑

k

λk

m
∑

i=1

µ1(i)Z1k,i

≤
∑

k

λk

n
∑

j=1

µ2(j)Z2k,j =
n
∑

j=1

µ2(j)
∑

k

λkZ2k,j

=

n
∑

j=1

µ2(j)Y2min,j

Now it suffices to prove that for any Y2 satisfying the condition in statement
2 ′, we have Y2 ≥ Y2min. To show this, let us use I(·) to represent the indication
function, and consider the following two cases:

• Case 1: t /∈ T1. Then of course, ∀ k : t /∈ Tk, so,

Y2min,t =
∑

k

λkZ2k,t =
∑

k

λkI(t ∈ Tk) = 0 ≤ Y2,t
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• Case 2: ∃k such that t ∈ Tk. Suppose kt = max{k : t ∈ Tk}. Then we
have the following two facts: (1) for k ≤ kt, t ∈ Tk and for k > kt. t /∈ Tk;
(2) ∃s ∈ Skt

such that (s, t) ∈ R, and for k ≤ kt, s ∈ Sk. Combining these
two facts, wel have:

Y2,t ≥ Y1,s =
∑

k

λkZ1k,s =
∑

k

λkI(s ∈ Sk)

≥

kt
∑

k=1

λkI(s ∈ Sk) =

kt
∑

k=1

λkI(t ∈ Tk)

=
∑

k

λkI(t ∈ Tk) =
∑

k

λkZ2k,t

= Y2min,t

So, for any Y2 satisfies the condition in statement 2 ′, we have:

n
∑

j=1

µ2(j)Y2,j ≥

n
∑

j=1

µ2(j)Y2min,j ≥

m
∑

i=1

µ1(i)Y1,i.

5 Conclusion

In this paper, we defined the notion of quantum coupling and proved a quan-
tum generalisation of Strassen theorem for probabilistic coupling. It is well-
known that Strassen theorem is true in both the finite-dimensional and infinite-
dimensional cases. However, Theorem 2 (quantum Strassen theorem) was proved
only in the finite-dimensional case. So, an open problem is: whether is quantum
Strassen theorem still valid in the infinite-dimensional case? Another interesting
topic for further study is to use the coupling techniques to study the behaviours
of quantum random walks and quantum Markov chains. As pointed out in the
Introduction, in the future studies, we hope to apply quantum coupling to de-
velop quantum relational Hoare logic and then use it in formal verification of
quantum cryptographic protocols and differential privacy.
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