
1

A Tensor Network based Decision Diagram for
Representation of Quantum Circuits
Xin Hong, Xiangzhen Zhou, Sanjiang Li, Yuan Feng, and Mingsheng Ying

Abstract—Tensor networks have been successfully applied in
simulation of quantum physical systems for decades. Recently,
they have also been employed in classical simulation of quantum
computing, in particular, random quantum circuits. This paper
proposes a decision-diagram style data structure, called TDD
(Tensor Decision Diagram), for more principled and convenient
applications of tensor networks. This new data structure provides
a compact and canonical representation for quantum circuits. By
exploiting circuit partition, the TDD of a quantum circuit can be
computed efficiently. Furthermore, we show that the operations
of tensor networks essential in their applications (e.g., addition
and contraction), can also be implemented efficiently in TDDs.
A proof-of-concept implementation of TDDs is presented and its
efficiency is evaluated on a set of benchmark quantum circuits.
It is expected that TDDs will play an important role in various
design automation tasks related to quantum circuits, including
but not limited to equivalence checking, error detection, synthesis,
simulation, and verification.

I. INTRODUCTION

Google’s recent demonstration of quantum supremacy on
its 53-qubit quantum processor Sycamore [3] has confirmed
that quantum computers can indeed complete tasks much
more efficiently than the most advanced traditional computers.
Quantum devices of similar sizes have also been developed
at IBM, Intel, IonQ, and Honeywell. It is widely believed
that quantum processors with several hundreds qubits will very
likely appear in the next 5-10 years. Several quantum algorithms
have been proposed to further demonstrate practical usability
of these NISQ (noise intermediate-scale quantum) devices [14],
[20], [19]. The rapid growth of the size of quantum computing
hardware motivates people to develop effective techniques for
synthesis, optimisation, testing and verification of quantum
circuits.

Mathematically, quantum circuits can be represented as
unitary matrices, which transform initial quantum states (rep-
resented as vectors) to desired output states. The size of this
matrix representation grows exponentially with the size of
the quantum system, which makes it a great challenge to
even simulate a quantum random circuit with a modest size
and a shallow depth. In order to alleviate the challenge and
to provide a compact, canonical, and efficient representation
for quantum functionalities, several decision diagram style

Xin Hong, Sanjiang Li, Yuan Feng and Mingsheng Ying are with Centre
for Quantum Software and Information (QSI), Faculty of Engineering and
Information Technology, University of Technology Sydney, NSW 2007,
Australia.
E-mail: {sanjiang.li, yuan.feng, mingsheng.ying}@uts.edu.au

Xiangzhen Zhou is with Centre for Quantum Software and Information
(QSI), University of Technology Sydney, NSW 2007, Australia and State Key
Lab of Millimeter Waves, Southeast University, Nanjing 211189, China.

data structures have been proposed, including the Quantum
Information Decision Diagram (QuIDD) [26] and the Quantum
Multiple-Valued Decision Diagrams (QMDD) [24]. The QuIDD
is a variant of the Algebraic Decision Diagram (ADD) [4]
by restricting values to complex numbers, which are indexed
by integers, and interleaving row and column variables in
the variable ordering. In contrast, the QMDD partitions a
transformation matrix into four submatrices of equal size, which
in turn are partitioned similarly, and uses shared nodes to
represent submatrices differing in only a constant coefficient.

Evaluations in [24] showed that QMDDs offer a compact
representation for large unitary (transformation) matrices. Con-
sequently, they provide a compact and canonical representation
for the functionality of quantum circuits. Indeed, QMDDs
have been successfully used in simulation [34] and equivalence
checking [10], [9] of quantum circuits as well as verifying
the correctness of quantum circuits compilation [28]. On the
other hand, using QMDDs to represent quantum circuits has
the following two drawbacks. First, any gate must be extended
to act on the whole set of qubits when constructing its QMDD
representation. To be specific, in an n-qubit circuit we have
to tensor each k-qubit gate with the identity matrices on the
remaining n− k qubits [24]. Note that in practical quantum
circuits, basic gates are usually 1- or 2-qubit ones. These
operations sometimes could be clumsy and time-consuming,
and the obtained QMDD can be less compact. For example,
while a CX gate is represented as a QMDD with only 4 nodes,
in a quantum circuit with 20 qubits, it requires a 40-node
QMDD to represent the CX gate between the first and the
last qubits. Second, the computation of QMDD representation
of a quantum circuit has to be done following the gate order,
typically from left to right, which prevents us from exploiting
the special topological structure presented in many practical
circuits.

Tensor network provides a more flexible way to represent
quantum circuits, from which the functionality of the circuit
can be computed in essentially any order, while the QMDD
simulation of quantum circuits corresponds to contracting the
tensors (representing individual quantum gates in the circuit)
sequentially from left to right in their original order. Indeed, for
a quantum circuit with low tree-width, by exploiting an optimal
contraction order, the tensor representation of the quantum
circuit can be computed in time polynomial in the size of the
circuit [18].

While it is NP-hard to find an optimal contraction order
in general, one may exploit heuristics like circuit partition,
which was recently demonstrated as very useful for simulating
quantum circuits in, e.g., [25]. The key idea is, as depicted

ar
X

iv
:2

00
9.

02
61

8v
1

 [
qu

an
t-

ph
]

 6
 S

ep
 2

02
0

2

Fig. 1. Example of cutting CX gate.

in Fig. 1, ‘cutting’ the tensor representing a CX gate into
two tensors, one called COPY and the other XOR [5]. Here,
COPY takes value 1 if the values of the three indices are
identical and 0 otherwise; XOR takes value 1 if the values
a, b, c of the three indices satisfy a ⊕ b ⊕ c = 0 and takes
value 0 otherwise. Obviously, this ‘cut’ operation is the reverse
operation of tensor contraction. Note that it seems difficult, if
not impossible, to incorporate the circuit partition technique
in the QMDD or QuIDD data structure of quantum circuits.

The aim of this paper is to define a novel decision diagram,
called Tensor Decision Diagram (TDD for short), which can
potentially be used together with QMDD in a complementary
manner so that the drawbacks of QMDD discussed above
could be partially remedied. TDD is inspired by the success
of tensor networks in classical simulation of quantum circuits
in the last few years. By observing that quantum circuits are a
special class of tensor networks, Pednault et al. [25] exploited
the flexibility of tensor computations with circuit partition
and tensor slicing methods, and broke the 49-qubit barrier of
that time in the simulation of quantum circuits. Later on, the
size and depth of quantum circuits which can be simulated
employing tensor network and the simulation time have been
significantly improved (see e.g. [6], [17], [11], [12], [16]). To
further extend this flexibility in a more principled way, we
propose TDD as a new data structure for tensor networks.
Furthermore, tensors are essentially multidimensional linear
maps with complex values, which also enjoy Boole-Shannon
style expansions. This observation leads us to design TDD as
decision diagram.

TDDs have several important features that warrant their
applicability. Analogous to the well-known decision diagram
ROBDD for Boolean functions [8], redundant nodes or nodes
representing the same tensor in a TDD can be removed or
merged so that shared nodes are used as much as possible. The
thus reduced form of TDD provides, up to variable ordering,
a unique representation for the functionality of a quantum
circuit. A reduced TDD F is a rooted direct acyclic graph
which has one terminal node labeled with 1 and zero or many
non-terminal nodes. The root node has a unique incoming edge
which bears the ‘weight’ of the tensor F represents, whose
magnitude equals to the maximum norm of the tensor. Each
non-terminal node has two outgoing edges, called its low- and
high-edges, one of which has weight 1, the other has weight
w with |w| ≤ 1. We present an efficient algorithm to generate
the reduced TDD representation of a quantum functionality
(e.g., a quantum gate or a part of a quantum circuit). Moreover,
we show that basic TDD operations such as addition and

Fig. 2. The matrix representations of the H, T, and CX gate.

contraction can be implemented efficiently.
As QMDD, TDD provides a universal, compact and canoni-

cal representation for quantum circuits, which is vital in various
design automation tasks. Generating the TDD representation
of a quantum circuit can, for example, verify its correctness.
A byproduct of our evaluation indeed shows that the widely
used ‘qft_10’ and ‘qft_16’ circuits1 are incorrect as their TDD
representations are the same as the identity unitary.

In the remainder of this paper, after a brief review of quantum
circuits and QMDD in Sec. II and of tensor networks in Sec. III,
we introduce our new data structure TDD in Sec. IV. The
construction and implementation of basic tensor operations are
presented in Sec. V. After that, we show how to compute the
TDD representation of a quantum circuit in a circuit partition
way in Sec. VI. Experimental results are reported and analysed
in Sec. VII. The last section concludes the paper and briefly
discusses several topics for future research.

II. BACKGROUND

For convenience of the reader, we review some basic
concepts about quantum circuits and the Quantum Multi-value
Decision Diagram (QMDD) in this section.

A. Quantum Circuits

In classical computation, data are represented by a string of
bits. When sending through a classical circuit, the state of the
input data will be transformed by a sequence of logical gates.
In quantum computing, the counterpart of bit is called qubit.
The state of a qubit is often represented in Dirac notation

|ϕ〉 := α0 |0〉+ α1 |1〉 , (1)

where α0 and α1 are complex numbers, called the amplitudes
of |ϕ〉, and |α0|2 + |α1|2 = 1. We also use the vector
[α0, α1]ᵀ to represent a single-qubit state. In general, an n-
qubit quantum state is represented as a 2n-dimensional complex
vector [α0, α1, . . . , α2n−1]ᵀ.

The evolution of a quantum system is described by a
unitary transformation. In quantum computing, it is usually
called a quantum gate. A quantum gate has a unique unitary
matrix representation in a predefined orthonormal basis. Fig. 2

1https://github.com/iic-jku/ibm_qx_mapping/tree/master/examples

https://github.com/iic-jku/ibm_qx_mapping/tree/master/examples

3

Fig. 3. The QMDD representation of the controlled-T gate, where the weight
of an edge is omitted if it is 1.

shows several such examples. The state after applying a
specific transformation can be obtained by multiplying the
corresponding unitary matrix and the vector that represents
the input quantum state. For example, the output state resulted
from applying a Hadamard gate to an input state [α0, α1]

ᵀ is
calculated as follows

1√
2

[
1 1
1 −1

] [
α0

α1

]
=

1√
2

[
α0 + α1

α0 − α1

]
.

More generally, an n-qubit quantum gate is represented as a
2n × 2n-dimensional unitary transformation matrix.

A quantum circuit consists of a set of qubits and a sequence
of elementary quantum gates. Given an input state to the qubits
involved, the quantum gates in a quantum circuit are applied
to the input state in a sequential manner. Clearly, a quantum
circuit describes a quantum functionality and is also represented
as a 2n × 2n-dimensional unitary transformation matrix.

B. Quantum Multi-value Decision Diagram

Quantum Multi-value Decision Diagram (QMDD) [21] is
a decision diagram based data structure which provides a
compact and canonical representation for quantum states and
transformation matrices.

The main idea of QMDD is to recursively partition a 2n×2n

transformation matrix into submatrices till matrix elements are
reached. The QMDD of M is constructed as follows: First, we
introduce a root node, representing the original matrix. The root
node has four successors, denoting the submatrices obtained by
partitioning M into four with the same size. Each child node
is then further expanded in the same manner. Suppose, in some
step, a node corresponding to a matrix element is obtained.
Then this node is regarded as a terminal node labelled 1,
while its corresponding matrix element will be assigned as
the weight of its incoming edge. The thus obtained decision
diagram may have redundant nodes and weight-0 edges. After
proper normalisation and reduction, we have a reduced decision
diagram representation of M , which is unique up to the order
of variables.

Example 1. Shown in Fig. 3 is the QMDD representation of
the controlled-T gate, where the node labeled with y0 represents
the original matrix representation of the controlled-T gate and
the two 0 attached to it represent the upper right and bottom left
sub-matrices which are all 0-matrices. The two nodes labeled

with y1 represent the upper left and bottom right sub-matrices
which are, respectively, the identity matrix and the matrix of
the T gate.

III. TENSOR AND TENSOR NETWORK

Before describing our data structure TDD, let us briefly
recall the basic idea and notations of tensor networks.

A. Basic concepts

A tensor is a multidimensional linear map associated with
a set of indices. In this paper, we assume that each index
takes value in {0, 1}. That is, a tensor with index set I =
{x1, . . . , xn} is simply a mapping φ : {0, 1}I → C, where
C is the field of complex numbers. Sometimes, to emphasise
the index set, we denote such a tensor by φx1...xn

or φ~x,
and its value on the evaluation {xi 7→ ai, 1 ≤ i ≤ n} by
φx1...xn

(a1, . . . , an), or simply φ~x(~a) or even φ(~a) when there
is no confusion. The number n of the indices of a tensor
is called its rank. Scalars, 2-dimensional vectors, and 2 × 2
matrices are rank 0, rank 1, and rank 2 tensors, respectively.

The most important operation between tensors is contraction.
The contraction of two tensors is a tensor obtained by summing
up over shared indices. Specifically, let γ~x,~z and ξ~y,~z be
two tensors which share a common index set ~z. Then their
contraction is a new tensor φ~x,~y with

φ~x,~y(~a,~b) =
∑

~c∈{0,1}~z
γ~x,~z(~a,~c) · ξ~y,~z(~b,~c). (2)

Another useful tensor operation is slicing, which corresponds
to the cofactor operation of Boolean functions. Let φ be a
tensor with index set I = {x, x1, . . . , xn}. The slicing of φ
with respect to x = c with c ∈ {0, 1} is a tensor φ|x=c over
I ′ = {x1, . . . , xn} given by

φ|x=c(~a) := φ(c,~a) (3)

for any ~a ∈ {0, 1}n. We call φ|x=0 and φ|x=1 the negative
and positive slicing of φ with respect to x, respectively. We
say an index x ∈ I is essential for φ if φ|x=0 6= φ|x=1.

A tensor network is an undirected graph G = (V,E)
with zero or multiple open edges, where each vertex v in V
represents a tensor and each edge a common index associated
with the two adjacent tensors. By contracting connected tensors
(i.e., vertices in V), with an arbitrary order, we get a rank m
tensor, where m is the number of open edges of G. This tensor,
which is independent of the contraction order, is also called the
tensor representation of the tensor network. Interested readers
are referred to [18] and [5] for more detailed introduction.

B. Quantum circuits as tensor networks

The quantum state of a qubit x with vector representation
[α0, α1]ᵀ can be described as a rank 1 tensor φx, where
φx(0) = α0 and φx(1) = α1. Moreover, a single-qubit gate
with input qubit x and output qubit y can be represented as a
rank 2 tensor φxy . Note that for tensor representation, we do not
distinguish between input and output indices, information about
which can be naturally implied when tensors are interpreted as

4

T • T

H X H

Fig. 4. A quantum circuit.

Fig. 5. A tensor network which is equivalent to the circuit shown in Fig. 4.

gates or circuits. For example, the tensor representation of a
Z-gate, with x the input and y the output qubit, is φxy(00) = 1,
φxy(01) = φxy(10) = 0, φxy(11) = −1. Likewise, an n-qubit
gate is represented as a rank 2n tensor.

A little thought shows that a quantum circuit is naturally a
tensor network if we view gates as tensors as above. In such
a tensor network, each vertex (tensor) represents a quantum
state or a quantum gate and each edge a common index of
two adjacent tensors. The functionality of any quantum circuit
involving n qubits is naturally represented as a tensor of rank
2n, by contracting all the tensors involved, instead of a 2n ×
2n transformation matrix. This shift of perspective not only
decreases our cognitive load, potentially, it will also provide a
more concise representation of quantum functionality.

Example 2. Consider the circuit shown in Fig. 4. Regarding
each gate as a tensor (cf. Fig. 2), Fig. 5 shows the tensor
network representation of the circuit. By contracting the tensor
network, we obtain the tensor representation of the circuit

φx0x3y0y3
(a0a3b0b3) =

1∑
a1,a2,b1,b2=0

T(a0a1)H(b0b1)CX(a1b1a2b2)T(a2a3)H(b2b3). (4)

It is straightforward to check that this tensor indeed gives the
functionality of the circuit presented in Fig. 4. For example,
φx0x3y0y3(1111) = −i corresponds to the fact that the circuit
maps |11〉 to −i |11〉.

Given a tensor φ~x and xi, xj ∈ ~x, if φ~x(~a) = 0 whenever
ai 6= aj , we slightly abuse the notation to use an identical
index for both xi and xj . For example, the tenor for Z gate

Fig. 6. A tensor network with hyper-edge (denoted by the dotted line), which
is also equivalent to the circuit shown in Fig. 4.

can be written as φxx with φxx(0) = 1 and φxx(1) = −1.
Similarly, CX gate can be represented as a tensor φxxy1y2 with
φxxy1y2(abc) = a · (b⊕ c) + a · b⊕ c, where a, for example,
is the complement of a. In [25], edges formed by identical
indices are called hyper-edges.

Example 3. For the tensor network shown in Fig. 5, the four
indices x0, x1, x2, x3 can all be represented by the same index
x0 since the two T gates are diagonal and the CX gate is
block diagonal. Thus, the tensor network can be modified as the
graph shown in Fig. 6, where the dotted line is a hyper-edge
and the corresponding tensor becomes φx0x0y0y3

.

IV. TENSOR DECISION DIAGRAM

To fully exploit the benefit of tensor representation of
quantum circuits and the circuit partition technique, a suitable
data structure for tensors is desired. In this section, we introduce
such a data structure — Tensor Decision Diagram (TDD).

A. Basic Definition

To begin with, we observe that any tensor φ can be expanded
with respect to a given index in the style of Boole-Shannon
expansion for classical Boolean circuits.

Lemma 1. Let φ be a tensor with indices in I . For each x ∈ I ,

φ = x · φ|x=0 + x · φ|x=1, (5)

where x(c) := 1− x(c) for c ∈ {0, 1}.

Note that in above we regard each index x ∈ I as the identity
tensor with only one index x, which maps 0 to 0 and 1 to 1.

Recursively using the Boole-Shannon expansion, a tensor
can be naturally represented with a decision diagram.

Definition 1 (TDD). A Tensor Decision Diagram (TDD) F
over a set of indices I is a rooted, weighted, and directed
acyclic graph F = (V,E, index, value, low, high, w) defined
as follows:
• V is a finite set of nodes which is partitioned into non-

terminal nodes VN and terminal ones VT . Denote by rF
the unique root node of F;

• index : VN → I assigns each non-terminal node an index
in I;

• value : VT → C assigns each terminal node a complex
value;

• both low and high are mappings in VN → V which
assign each non-terminal node with its 0- and 1-successors,
respectively;

• E = {(v, low(v)), (v, high(v)) : v ∈ VN} is the set of
edges, where (v, low(v)) and (v, high(v)) are called the
low- and high-edges of v, respectively. For simplicity, we
also assume the root node rF has a unique incoming
edge, denoted er, which has no source node;

• w : E → C assigns each edge a complex weight. In
particular, w(er) is called the weight of F , and denoted
wF .

A TDD is called trivial if its root node is also a terminal node.

5

Fig. 7. A TDD representation of the tensor in Example 3.

For convenience, we often call a terminal node with value c
a terminal c node or simply terminal c if it is unique. The size
of a TDD F , written size(F), is the number of non-terminal
nodes of F . As each non-terminal node has two outgoing
edges, there are altogether 1 + 2× size(F) edges, including
er, in F .

The following example shows how a tensor can be trans-
formed to a TDD using the Boole-Shannon expansion.

Example 4. Fig. 7 gives the TDD obtained by directly applying
the Boole-Shannon expansion to the tensor φx0x0y0y3

in Eq. 4,
where and in all illustrations in this paper we omit the weight of
an edge if it is 1. Each terminal node bears a value which, when
multiplying with weights along the path to the root node (which
happen to be all 1 in this example), corresponds to the value
of φ under the evaluation specified by the path. For example,
the terminal node with value i corresponds to the value of
φ under the evaluation {x0 7→ 1, y0 7→ 0, y3 7→ 0}. Each
non-terminal node v acts as a decision node and represents
an index x, while its low- and high-edges denote evaluations
which evaluate x to 0 and, respectively, 1.

Conversely, let us see how each node v of a TDD F naturally
corresponds to a tensor Φ(v). If v is a terminal node, then
Φ(v) := value(v) is a rank 0 tensor, i.e., a constant; if v is a
non-terminal node, then

Φ(v) := w0 · xv · Φ(low(v)) + w1 · xv · Φ(high(v)), (6)

where xv = index(v), and w0 and w1 are the weights on the
low- and high-edges of v, respectively. Comparing Eq. 6 with
the Boole-Shannon expansion in Lemma 1, we immediately
have

Φ(v)|xv=c = wc · Φ(vc), (7)

where c ∈ {0, 1}, v0 = low(v), and v1 = high(v).
Finally, the tensor represented by F itself is defined to be

Φ(F) := wF · Φ(rF). (8)

Recall here that rF and wF are the root node and the weight
of F , respectively.

An efficient manipulation of general TDDs seems impossible.
Following [8], we restrict our discussion to ordered TDDs.

Definition 2. A TDD F is called ordered if there is a linear
order ≺ on I such that index(v) ≺ index(low(v)) and
index(v) ≺ index(high(v)) for every non-terminal node v,
provided that both low(v) and high(v) are non-terminal as
well. If this is the case, we say F is a ≺-ordered TDD.

For simplicity, we abuse the notation slightly by assuming
x ≺ index(v) for all x ∈ I and all terminal nodes v ∈ VT .

Like ROBDDs, the size of the TDD representation strongly
relies on the selected variable order. For example, the tensor
φ = (x1 · x2) + (x3 · x4) + (x5 · x6) can be represented
as a TDD with 6 non-terminal nodes under the order ≺1:=
(x1, x2, x3, x4, x5, x6), but its TDD representation under ≺2:=
(x1, x3, x5, x2, x4, x6) requires at least 2× (1 + 21 + 22) = 14
internal nodes (cf. [22, Ch.3]). While finding an optimal order
is NP-hard, there are efficient heuristic methods that have been
devised for ROBDDs, which may also be extended to TDDs.

B. Normalisation

A tensor may have many different TDD representations.
For example, let F be a TDD with root node rF and weight
wF 6= 0. A different TDD representing the same tensor can be
constructed by multiplying wF by 2 and dividing the weights
of the low- and high-edges of rF by 2. In order to provide
a canonical representation, we first introduce the notion of
normal tensors.

Definition 3 (normal tensor). Let φ be a tensor with index set
I = {x1, . . . , xn} and ≺ a linear order on I . We write

‖φ‖ := max
~a∈{0,1}I

|φ(~a)| (9)

for the maximum norm of φ. Let ~a∗ be the first element in
{0, 1}I (under the lexicographical order induced by ≺) which
has the maximal magnitude under φ, i.e.,

~a∗ = min{~a ∈ {0, 1}I : |φ(~a)| = ‖φ‖}. (10)

We call ~a∗ the pivot of φ. A tensor φ is called normal if either
φ = 0 or φ(~a∗) = 1. Note that tensors with maximum norm 1
are not necessarily normal.

The following lemma shows that any tensor can be uniquely
normalised.

Lemma 2. For any tensor φ which is not normal, there exists
a unique normal tensor φ∗ such that φ = p · φ∗, where p is a
nonzero complex number.

Proof. Since φ is not normal, we have φ 6= 0. Let p = φ(~a∗)
where ~a∗ is the pivot of φ. Then φ∗ := 1

p ·φ is a normal tensor
which satisfies the condition. Furthermore, suppose there is
another normal tensor φ′ such that φ = p′ ·φ′ for some complex
number p′. Then we have φ = p · φ∗ = p′ · φ′. Obviously, we
have |p| = |p′| and, by definition, φ∗ and φ′ also share the same
pivot ~a∗ with φ. It then follows that φ∗(~a∗) = φ′(~a∗) = 1.
Thus p = p′, and φ∗ = φ′.

The uniqueness of the normal tensor in the above lemma
suggests the following definition.

Definition 4. A TDD F is called normal if Φ(v) is a normal
tensor for every node v in F .

It is worth noting that as normal TDDs may still have
arbitrary weights, tensors represented by normal TDDs do not
have to be normal. Normal TDDs enjoy some nice properties
collected in the following two lemmas.

6

Lemma 3. Every terminal node of a normal TDD F has
value 0 or 1. Moreover, let v be a non-terminal node of F
with Φ(v) 6= 0, and w0 and w1 the weights on its low- and
high-edge. Then we have either w0 = 1 or w1 = 1.

Proof. The terminal case is clear by definition. Suppose the
index set of F is {x1, . . . , xn} and x1 ≺ . . . ≺ xn. For a non-
terminal node v, let φ, φl, and φh denote Φ(v),Φ(low(v)),
and Φ(high(v)), respectively. Then φ = w0 ·xi ·φl+w1 ·xi ·φh
by Eq. 6, where xi = index(v). Note that φ is a tensor over
{xi, . . . , xn} and both φl and φh can be regarded as tensors
over {xi+1, . . . , xn}.

Let ~a∗ be the pivot of φ. Suppose ~a∗ = 0~b∗ for some
~b∗ ∈ {0, 1}n−i; that is, ~a∗ takes value 0 at index xi. Then by
1 = φ(~a∗) = w0 · φl(~b∗), we have |w0| ≥ 1 from the fact that
φl is normal. On the other hand, let ~c be the pivot of φl. Then
from φ(0~c) = w0 · φl(~c) = w0 and the fact that φ is normal,
we have |w0| ≤ 1. Thus |w0| = 1 and |φl(~b∗)| = 1. Now for
any ~b ∈ {0, 1}n−i which is less than ~b∗ in the lexicographic
order, we have |φl(~b)| = |φ(0~b)| < |φ(~a∗)| = 1, as 0~b is less
than 0~b∗ = ~a∗. Thus by definition, ~b∗ is actually the pivot of
φl. So φl(~b∗) = 1 and hence w0 = 1.

The case when ~a∗ takes value 1 at index xi is analogous.

Lemma 4. Suppose F and G are two normal TDDs such that
Φ(F) = Φ(G). Then we have wF = wG and Φ(rF) = Φ(rG).

Proof. By Eq. 8, we have Φ(F) = wF · Φ(rF) and Φ(G) =
wG · Φ(rG). Because Φ(rF) and Φ(rG) are normal tensors
and Φ(F) = Φ(G), by Lemma 2, we know wF = wG and
Φ(rF) = Φ(rG).

For any non-normal TDD F , we can transform it into a
normal one by applying the following two rules.

Normalisation Rules.
NR1: If v is a terminal node with a nonzero value value(v) 6= 1,

then set its value to 1, and change the weight w of each
incoming edge of v to value(v) · w.

NR2: Suppose v is a non-terminal node such that Φ(v) 6= 0
is not normal but both Φ(low(v)) and Φ(high(v)) are
normal. Let w0 and w1 be the weights on the low- and
high edges of v respectively. If Φ(low(v)) 6= 0 and either
Φ(high(v)) = 0 or |w0| ≥ |w1|, we set w to be w0.
Otherwise, set it to be w1. Divide w0 and w1 by w and
multiply the weight of each incoming edge of v by w.

Let F be a non-normal TDD. We first apply NR1 to every
terminal node of F to make it normal. Furthermore, if a non-
terminal node v of F represents a non-normal tensor but both
its successors represent normal tensors. Then, it is easy to see
that after applying NR2 to v, this node itself represents a normal
tensor. This gives a procedure to transform F into a normal
TDD in a bottom-up manner. Furthermore, the transformation
can be done within time linear in the size of F .

Theorem 1. Applying a normalisation rule to a TDD does not
change the tensor it represents. Moreover, a TDD is normal if
and only if no normalisation rule is applicable.

Proof. The first part of the theorem follows from Eq. 6, and
the second directly from the definitions.

(a) (b)

(c)

Fig. 8. Normalisation of the TDD shown in Fig. 7.

Example 5. Applying NR1 to the two terminal nodes labeled
with i and −i in the TDD in Fig. 7, we have the TDD as shown
in Fig. 8 (a). Then, applying NR2 to the right two y3 nodes
gives the TDD in Fig. 8 (b). The normalised TDD, shown in
Fig. 8 (c), is obtained by applying NR2 to the right y0 node.

We have seen how to transform an existing TDD into a
normal one. In contrast, the following theorem provides a way
to construct a normal TDD directly from a given tensor.

Theorem 2. Let I = {x1, x2, ..., xn} be a set of indices and
≺ a linear order on it. For any tensor φ with index set I , there
exists a ≺-ordered normal TDD F such that Φ(F) = φ.

Proof. We prove the result by induction on the cardinality of I .
If |I| = 0, the tensor is a constant and the conclusion clearly
holds after possible application of NR1. Suppose the statement
holds for tensors with up to n indices. We show it is also
true for tensors with n + 1 indices. Let I = {x1, ..., xn+1}
be the index set and, without loss of generalisation, assume
x1 ≺ x2 ≺ ... ≺ xn+1. Given an arbitrary tensor φ over I , by
the Boole-Shannon expansion, we know

φ = x1 · φ0 + x1 · φ1,

where φc := φ|x1=c for c ∈ {0, 1}. Since φc is a tensor over n
indices, by induction hypothesis, there is a ≺′-ordered normal
TDD Fc such that φc = Φ(Fc), where ≺′ is the restriction of
≺ on I \ {x1}. Let rc be the root node and wc := wFc

the
weight of Fc. Then we have φc = Φ(Fc) = wc · Φ(rc). Next,
we introduce a new root node v with weight 1 on its incoming
edge. Set low(v) and high(v) to be r0 and r1 respectively.
Furthermore, set the weights on the low- and high-edges of v to
be w0 and w1, respectively. The thus constructed TDD, denoted
by F , is ≺-ordered and, after applying the normalisation rule
NR2 on v, normal. By Eq. 6, we have Φ(F) = φ.

C. Reduction

7

As can been seen from Fig. 8, normal TDDs may still have
redundant nodes. For example, the first and the third y3 nodes
of the normal TDD in Fig. 8(c) have the same low- and high-
edges and thus represent the same tensor. This fact motivates
us to further introduce:

Definition 5. A TDD F is called reduced if it is normal and
1) no node represents the 0 tensor, i.e., Φ(v) 6= 0 for every

node v in F;
2) all edges weighted 0 point to the (unique) terminal 1;

and
3) no two different nodes represent the same tensor, i.e.,

Φ(u) 6= Φ(v) for any two nodes u 6= v in F .

The following lemma shows that every non-terminal node
of a reduced TDD F is labelled with an essential variable of
the tensor represented by F .

Lemma 5. Suppose F is a reduced TDD of a non-constant
tensor φ over index set I . Then every non-terminal node of F
is labelled with an index that is essential to φ.

Proof. Suppose v is a non-terminal node of F which is labelled
with a non-essential index x. Let φ′ = Φ(v). Then φ′|x=0 =
φ′|x=1. From Eq. 7, φ′|x=0 = w0 · Φ(low(v)) and φ′|x=1 =
w1 · Φ(high(v)), where w0 and w1 are the weights on the
low- and high-edges of v, respectively. It follows by Lemma 2
that Φ(low(v)) = Φ(high(v)) and w0 = w1 since they are
both normal. Note that low(v)) and high(v) may be identical.
From Lemma 3, we have w0 = w1 = 1 and thus Φ(v) =
x ·Φ(low(v)) + x ·Φ(high(v)) = Φ(low(v)). This shows that
we have two nodes, viz. v and low(v), representing the same
tensor, which contradicts the assumption that F is reduced.

The following definition of sub-TDDs is useful in our later
discussion. Recall that we assume x ≺ index(v) for all x ∈ I
and all terminal nodes v.

Definition 6. Let F be a reduced TDD over a ≺-linearly
ordered index set I . Let x ∈ I , and x � index(rF). We define
sub-TDDs Fx=0 and Fx=1 of F as follows.

1) If x ≺ index(rF), then Fx=0 = Fx=1 = F;
2) If x = index(rF), Fx=0 is defined as the TDD rooted

at low(rF) with weight wF · w(rF , low(rF)), i.e., the
weight of the low-edge of rF multiplied by the weight
of F . Analogously, we have Fx=1.

Corresponding to the Boolean-Shannon expansion for tensors
(cf. Eq. 5), we have

Lemma 6. Suppose F is a reduced TDD on I , x ∈ I and
x � index(rF). Then we have

Φ(F) = x · Φ(Fx=0) + x · Φ(Fx=1). (11)

Now we are ready to prove the canonicity of reduced TDDs.
Two TDDs F and G are said to be isomorphic, denoted F h G,
if they are equal up to renaming of the nodes; that is, there
exists a graph isomorphism between F and G which preserves
node indices, edge weights, and values on terminal nodes.
Furthermore, it maps low-edges to low-edges and high-edges
to high-edges.

Theorem 3 (canonicity). Let I be an index set and ≺ a linear
order on I . Suppose F and G are two ≺-ordered, reduced
TDDs over I with Φ(F) = Φ(G). Then F h G.

Proof. We prove this by induction on the cardinality of I .
First, reduced TDDs of any constant tensor are clearly unique.
In particular, from 1) and 2) of Definition 5, the 0 tensor is
represented by the reduced TDD with weight 0 which has a
unique node, viz. terminal 1.

Suppose the statement holds for any tensor with at most n
indices. We prove it also holds for tensors with n+ 1 indices.
From Φ(F) = Φ(G), we have by Lemma 4 that Φ(rF) =
Φ(rG) and wF = wG . In addition, by Lemma 5, rF and rG
are labeled with essential indices. They must be the same as,
otherwise, the smaller one in the order ≺ is not essential for
either F or G. Let x be this variable. By Lemma 6, we have

Φ(F) = x · Φ(F|x=0) + x · Φ(F|x=1)

Φ(G) = x · Φ(G|x=0) + x · Φ(G|x=1).

Since Φ(F) = Φ(G), it holds that Φ(F|x=c) = Φ(G|x=c) for
c ∈ {0, 1}. By the induction hypothesis, we have Fc h Gc.
This, together with the fact that index(rF) = index(rG),
implies that F h G.

A reduced TDD can be obtained by applying the following
reduction rules on any normal TDD in a bottom-up manner.

Reduction rules.
RR1: Merge all terminal 1 nodes. Delete all terminal 0 ones, if

exist, and redirect their incoming edges to the (unique)
terminal and reset their weights to 0.

RR2: Redirect all weight-0 edges to the terminal. If these include
the incoming edge of the root node, then the terminal
becomes the new root. Delete all nodes (as well as all
edges involving them) which are not reachable from the
root node.

RR3: Delete a node v if its 0- and 1-successors are identical and
its low- and high-edges have the same weight w (either 0
or 1). Meanwhile, redirect its incoming edges to terminal
1 if w = 0 and, if otherwise, to its successor.

RR4: Merge two nodes if they have the same index, the
same 0- and 1-successors, and the same weights on the
corresponding edges.

Theorem 4. A normal TDD is reduced if and only if no
reduction rule is applicable.

Proof. Clearly, a normal TDD F is not reduced if at least one
reduction rule is applicable as, otherwise, we shall have either
a node representing tensor 0 or two nodes representing the
same tensor.

On the other hand, suppose no reduction rule is applicable to
F . We show by induction on the depth of F that F is reduced.
First, from the fact that RR1 and RR2 are not applicable, F
must have a unique terminal node with value 1, and all edges
weighted 0 have been redirected to it.

Assume there exist non-terminal nodes which represent
tensor 0 and v is such a node with the ≺-largest label.
By our assumption and that label(v) ≺ label(low(v)) and

8

(a) (b)

Fig. 9. Reduction of the normalised TDD shown in Fig. 8(c)

label(v) ≺ label(high(v)), we have Φ(low(v)) 6= 0 and
Φ(high(v)) 6= 0. Now, as Φ(v) = 0, the weights on the
low- and high-edges of v must both be 0, which however
activates either RR2 or RR3 and thus a contradiction with our
assumption.

Suppose there are two non-terminal nodes v and v′ with
Φ(v) = Φ(v′). Let Fv and Fv′ be the sub-TDDs of F
rooted at v and v′ respectively (but set their weights to be
1). Note that no reduction rule is applicable to either Fv

or Fv′ , since otherwise it is also applicable to F . Then by
induction hypothesis, they are both reduced. Furthermore, we
have Φ(Fv) = Φ(v) = Φ(v′) =Φ(Fv′), and from Theorem 3,
Fv h Fv′ . Then index(v) = index(v′) and w0 = w′0,
where w0 and w′0 are the weights on the low-edges of v
and v′, respectively. Furthermore, it follows from Eq. 6 that
Φ(low(v)) = Φ(low(v′)). By induction hypothesis, we have
low(v) = low(v′). Similarly, we can prove that high(v) =
high(v′) as well. That is, RR4 is applicable to v and v′ and
thus also a contradiction with our assumption.

In summary, we have shown that F is reduced.

The following theorem guarantees that the reduced TDD of
a tensor can be obtained by applying the reduction rules.

Theorem 5. Let F be a normal TDD representing tensor φ.
Applying a reduction rule to F does not change the tensor it
represents. Moreover, the reduced TDD of φ can be obtained
from F by applying the reduction rules till no one is applicable.

Proof. It is routine to show that applying any reduction rule
to a normal TDD does not change the tensor it represents.
Suppose F is a normal TDD that is not reduced. Applying
the reduction rules in a bottom-up manner until no rule is
applicable, by Theorem 4, we obtain a reduced TDD that
also represents φ = Φ(F). As reduced TDDs are unique (see
Theorem 3), this gives the reduced TDD of φ.

As each application of a reduction rule removes some nodes,
the reduced TDD has the minimal number of nodes.

Corollary 1. Let F be a normal TDD of a tensor φ. Then F
is reduced if and only if size(F) ≤ size(G) for all normal
TDDs of φ.

Example 6. Consider the normalised TDD shown in Fig. 8(c).
Applying RR1 to merge all terminal 1 nodes and delete all

terminal 0 nodes gives the TDD shown in Fig. 9 (a). Then,
further applying RR4 to merge the first and the third as well as
the second and the fourth y3 nodes, we have the reduced TDD
as shown in Fig. 9 (b), which provides a compact representation
for the circuit in Fig. 5.

Remark 1. As Boolean functions are special tensors, each
Boolean function also has a unique reduced TDD representa-
tion, which can be obtained by performing the reduction rule
RR1 on its ROBDD representation if we assign weight 1 to
each ROBDD edge.

V. ALGORITHMS

This section is devoted to algorithms for constructing the
corresponding reduced TDD from a given tensor and key
operations such as addition and contraction of TDDs. All
of these algorithms are implemented in a recursive manner.
Every time a new node is generated, we apply normalisation
and reduction rules locally to this node, implemented by
calling the reduce procedure. In this way, it can be guaranteed
that the TDDs obtained are all reduced. It is also worth
noting that motivated by [7], to avoid redundancy, in our real
implementation (not shown in the algorithms) all the nodes
are stored in a hash table. Whenever a new node is about to
be generated, we first check if such a node (with the same
index, successors and weights on the corresponding edges)
already exists in the table. If yes, the node is returned directly;
otherwise, a new one is created and added into the hash table.

A. Generation
Algorithm 1 shows the process of generating the reduced

TDD of a tensor. The time complexity of the construction is
linear in |V |, the number of nodes in the constructed TDD.

Algorithm 1 TDD_generate(φ)

Input: A tensor φ over a linearly ordered index set I .
Output: The reduced TDD of φ.
1: if φ ≡ c is a constant then
2: return the trivial TDD with weight c
3: end if
4: x← the smallest index of φ
5: tdd← an empty TDD
6: tdd.root← a new node v with index x
7: v.low ← TDD_generate(φ|x=0)
8: v.high← TDD_generate(φ|x=1)
9: tdd.weight← 1

10: return reduce(tdd)

We emphasise that, if an index is repeated in the tensor, for
example φxxy , then the two successors of the node representing
φxxy will be φ00y and φ11y . In other words, we construct the
TDD as if it is the tensor φxy. When tensor operations are
concerned, however, both x indices will be involved.

Example 7. Consider the CX gate shown in Fig. 6, which
is represented by a tensor φx0x0y1y2

. The reduced TDD of
φx0x0y1y2 is shown in Fig.10 (b), where the index x0 only
appears once with the two successors representing the tensor
φ00y1y2

and φ11y1y2
.

9

(a) (b)

Fig. 10. Two TDDs of the CX gate with indices x0, y1, y2: (a) general form,
(b) reduced form.

B. Addition

Let F and G be two reduced TDDs over index set I . The
summation of F and G, denoted F + G, is a reduced TDD
with the corresponding tensor Φ(F) + Φ(G). For any x ∈ I
with x � index(rF) and x � index(rG), by the TDD version
of the Boole-Shannon expansion (cf. Eq. 11), we have

Φ(F) + Φ(G) = x · (Φ(Fx=0) + Φ(Gx=0))

+ x · (Φ(Fx=1) + Φ(Gx=1)).

Recall here Fx=c (resp. Gx=c) is the sub-TDD as defined in
Definition 6 for c ∈ {0, 1}.

Motivated by this observation, Algorithm 2 implements
the Add operation for TDDs, in a node-wise manner. The
time complexity is O(|F| · |G|), where |F| and |G| denote the
numbers of nodes in the two TDDs respectively.

Algorithm 2 Add(F ,G)

Input: Two reduced TDDs F and G.
Output: The reduced TDD of Φ(F) + Φ(G).
1: if rF = rG then
2: tdd← F
3: tdd.weight← wF + wG
4: return tdd
5: end if
6: x← the smaller index of rF and rG
7: tdd← an empty TDD
8: tdd.root← a new node v with index x
9: v.low ← Add(Fx=0,Gx=0)

10: v.high← Add(Fx=1,Gx=1)
11: tdd.weight← 1
12: return reduce(tdd)

C. Contraction

Contraction is the most fundamental operation in a tensor
network. Many design automation tasks of quantum circuits
are based on contraction. In this subsection, we consider how
to efficiently implement the contraction operation via TDD.

Let F and G be two reduced TDDs over I , and var a
subset of I denoting the variables to be contracted. Write cont
for both tensor and TDD contractions. For any x ∈ I with

x � index(rF) and x � index(rG), we have by definition
Eq. 2 that if x ∈ var, then cont (Φ(F),Φ(G), var) equals

1∑
c=0

cont(Φ(Fx=c),Φ(Gx=c), var\{x});

otherwise, it equals

x · cont(Φ(Fx=0),Φ(Gx=0), var)

+ x · cont(Φ(Fx=1),Φ(Gx=1), var).

Algorithm 3 gives the detailed procedure for TDD contrac-
tion. The time complexity is O(|F|2 · |G|2), while |F| and |G|
denote the numbers of nodes in F and G, respectively.

To conclude this section, we would like to point out that the
tensor product of two TDDs F and G with disjoint essential
indices can be regarded as a special case of contraction. In
particular, we have

Φ(F ⊗ G) = cont(Φ(F),Φ(G), ∅),

and the time complexity of using Algorithm 3 to compute
F ⊗ G becomes |F| · |G|.

A special case which arises often in applications is when,
say, every index in F precedes any index in G under the order
≺. For this case, to compute the tensor product of F and
G, all we need to do is to replace the terminal node of F
with the root node of G, multiply the weight of the resulting
TDD with the weight of G, and perform normalisation and
reduction if necessary. Since we do not need to touch G, the
time complexity is simply O(|F|).

Algorithm 3 cont(F ,G, var)
Input: Two reduced TDDs F and G, and the set var of

variables to be contracted.
Output: The reduced TDD obtained by contracting F and
G over var.

1: if both F and G are trivial then
2: tdd← F
3: tdd.weight← wF · wG · 2len(var)
4: return tdd
5: end if
6: x← the smaller index of rF and rG
7: L← cont(Fx=0,Gx=0, var\{x})
8: R← cont(Fx=1,Gx=1, var\{x})
9: if x ∈ var then

10: return Add(L,R)
11: else
12: tdd← an empty TDD
13: tdd.root← a new node v with index x
14: v.low ← L
15: v.high← R
16: tdd.weight← 1
17: return reduce(tdd)
18: end if

VI. TWO PARTITION SCHEMES

Unlike QMDD and QuIDD, the TDD of an input quantum
circuit can be calculated very flexibly. In particular, there is

10

Fig. 11. Partition Scheme I, where only one CX cut is allowed each time.

no need to expand a quantum gate to an n-qubit form (by
tensoring an identity matrix) when processing it during the
simulation of the circuit. In general, the TDD representation of a
quantum circuit can be obtained by contracting the TDDs of the
individual gates in the circuit in any order. For quantum circuits
with low tree-width, following an optimal contraction order
will enable us to obtain the TDD representation in polynomial
time [18].

In this paper, we use the original qubit order (or its inverse),
scan the circuit qubit by qubit, and then rank the indices
following the circuit order. That is, given two indices x and x′

appearing in the circuit, suppose qi and qj are the qubits that
x and x′ are on. Then we set x ≺ x′ if either i < j, or i = j
and x is to the left of x′ on the qubit wire qi. For example,
the selected order for the circuit shown in Fig. 11 is

≺ :=(x0, x0,1, x0,2, y0, x1, x1,1, x1,2, y1, x2, ..., y2, x3, ..., y3).

Our approach of computing the TDD of a quantum circuit
includes two steps. First, we partition the circuit into several
parts; second, we calculate the TDD of each part separately
and then combine them together through contraction.

While finding the optimal partition scheme is attractive, it
is also a very challenging task. We observe that some simple
strategies are already able to reduce the resource consumption
significantly during the computation process. In the following,
we introduce two straightforward partition schemes.

The first partition scheme divides the circuit horizontally
into two parts from the middle (so that the qubit wires are
divided into two parts, the upper and the bottom) and then
cuts it vertically whenever k CNOT gates are separated by the
horizontal cut, where k is chosen to ensure that the rank of
each part of the circuit is smaller than 2n.

Example 8. Consider the circuit shown in Fig. 11 and set
k = 1, i.e., we allow only one CX cut at a time. The circuit
is divided into four parts as shown by the dotted lines. In
the contraction process, we first calculate the TDDs of the
four parts separately. Then, contracting the left (right, resp.)
two TDDs gives the TDD of the left (right, resp.) half of the
circuit. Finally, we contract these two TDDs and obtain the
TDD of the whole circuit. If we set k = 2, then no vertical cut
is required and the circuit is partitioned into two parts: the
top half and the bottom half. The same TDD can be obtained
by contracting the TDDs of the top and the bottom halves.

Fig. 12. Partition Scheme II, where only one CX cut is allowed each time
and part C involves up to 2 qubits.

When there are too many CX cuts, the above partition scheme
is not efficient as we may need to contract too many high rank
tensors. Our second partition scheme allows us to circumvent
this obstacle by introducing fewer vertical partitions. First, we
horizontally divide the circuit from the middle. However, every
time when we have accumulated k1 CX cuts, we allow a third
small block, i.e., an extra C part, involving at most k2 qubits
in the middle of the circuit. When the number of qubits of the
C part reaches k2, we introduce a vertical cut as in the first
scheme. The second scheme is a generalisation of the scheme
used in [17], where no vertical partition is introduced.

Example 9. Consider the circuit given in Fig. 11 again.
Suppose we allow one CX cut every time, and limit the number
of qubits in part C to two. Then the circuit can be partitioned
into five parts as illustrated in Fig. 12. We then compute and
contract the TDDs in the order of A, B, C for every block
split by the vertical lines. The TDD of the whole circuit is then
obtained by contracting the TDDs of these blocks in sequence.

Now we make a simple comparison of the above contraction
methods. Suppose we compute the TDD (or QMDD) repre-
sentation of the circuit in Fig. 11 in the original circuit order.
We need in essence to calculate eight (8, 2, 1)-contractions,
five (8, 4, 2)-contractions, one (6, 2, 0)-contraction, and two
contractions between tensors with rank ≤ 4, where an (m,n, r)-
contraction is a contraction between a rank m tensor and a
rank n tensor over r common indices. In comparison, Partition
Scheme I requires one (8, 8, 4)-contraction, two (5, 5, 1)-
contractions, five (5, 2, 1)-contractions, and nine contractions
between tensors with rank ≤ 4; while Partition Scheme II
requires one (8, 8, 4)-contraction, one (8, 4, 2)-contraction, one
(5, 5, 1)-contraction, and 14 contractions between tensors with
rank ≤ 4.

VII. NUMERICAL RESULTS

To demonstrate the effectiveness of TDD as an efficient
data structure for the representation and manipulation of
quantum functionalities, we experimentally simulated a set
of 100 benchmark circuits using TDD with the two partition
schemes introduced in Sec. VI. The benchmarks we used are
obtained from [33]. The numbers of qubits and gates in these
benchmarks range from 3 to 16 and 5 to 986, respectively.
In our experiments, for the first partition scheme, we set the
parameter k as bn/2c, where n is the number of qubits in the
input circuit. Similarly, for the second partition scheme, we

11

TABLE I
DATA SUMMARY FOR ALL BENCHMARK CIRCUITS

QMDD TDD
No part. Part. Sch. I Part. Sch. II

Time 5512.16 6201.54 1628.53 1335.99
node num. (final∗) 9309 19959 19959 19959
node num. (max∗) 24033 49399 26676 25681
ratio (max/final∗) 2.58 2.50 1.34 1.29

*Results about the circuit ‘cnt3-5_18’ are excluded here.

set the two parameters k1 and k2 as bn/2c and bn/2c + 1,
respectively.

We implemented TDD using Python and all experiments
were executed on a laptop with Intel i7-1065G7 CPU and 8
GB RAM. Our implementation is far from being optimal. In
particular, it assumes a naive and fixed linear order for all
TDDs. Nevertheless, in order to provide a rough comparison
with the state-of-the-art data structure — QMDD [24], we also
implemented QMDD using Python in a straightforward way,
without adopting the optimisation techniques used in its C++
implementation [24]. In our experiments, the QMDD of each
input circuit is obtained by multiplying them in the circuit order.
Our experimental results show that both implementations of
QMDD generate the same representation for each benchmark
circuit. Source code and detailed empirical results are available
at Github.2

Table I summarises the experimental results of our TDD
implementation on these benchmark circuits and, due to space
limitation, we leave the detailed results for individual circuits
in the Appendix. We note that, for only one circuit, viz., the
16-qubit circuit ‘cnt3-5_180’, the QMDD representation is not
obtained within 3600 seconds. The same happens when we try
to compute its TDD without using partition. Surprisingly, the
TDD representation can be obtained within 56 seconds if using
either partition scheme. In total, the QMDD calculation takes
5512.16 seconds, which is about 11% less than the time for
calculating TDD without using any partition. Meanwhile, the
time consumptions for TDD calculation with partition schemes
1 and 2 are just 1628.53 and 1335.99 seconds, which are,
respectively, 70% and 75% less than that of QMDD, and 74%
and 78% less than that of TDD without partition.

In principle, the TDD representation of a quantum circuit
has about twice the number of nodes as the circuit’s QMDD.
This is because every non-terminal node in a TDD has two
successors while a non-terminal node in a QMDD has four.
Our experimental results show that the total node number
of all final TDDs is 19959, which is just slightly above
twice of that of QMDD. As a consequence, this shows that
the TDD representation is indeed compact. Furthermore, the
simulation time is closely related to the size of QMDDs/TDDs
generated in the simulation process. Table I also suggests that
TDD simulation with either partition scheme has in average
smaller intermediate diagrams than QMDD simulation and
TDD simulation without partitions.

2https://github.com/XinHong-uts/A-Tensor-Network-Based-Decision-
Diagram

VIII. CONCLUSION

We proposed a novel data structure TDD which provides a
compact and canonical representation for quantum functional-
ities and can be used in many design automation tasks, e.g.,
simulation and equivalence checking, for quantum circuits. This
data structure inherits several important properties of tensor
networks and supports basic tensor operations like addition
and contraction efficiently. It also allows us to compute the
representation of quantum circuits in a more flexible way.
As demonstrated by empirical experiments on real quantum
circuits, by combining with circuit partition, we can reduce the
time consumption greatly for some benchmarks when compared
with a straightforward python implementation of QMDD.

Future work will consider the following problems. First, our
implementation of TDD is far from being optimal. How to
optimise the circuit partition scheme or, more general, the
contraction order is an interesting open problem. Second,
the TDD representations of the same tensor may have quite
different sizes if different index orders are used. Take the circuit
‘sym6_316.qasm’ as an example. The TDD with the original
qubit order has only 1228 nodes, while the one reported in
Table II, using the inverse order, has 3670 nodes. We will
also consider methods of constructing more compact TDDs by
searching for good index orders. To this end, a standard method
is to gradually transform one TDD into another by changing the
order of two adjacent indices. We will improve the performance
of the TDD data structure in the follow-up research so that it can
be more conveniently applied to the calculation of quantum
circuits and tensor networks. A third line of research is to
apply the TDD data structure in applications like equivalence
checking, simulation, error detection of quantum circuits.

REFERENCES

[1] Luca Amarú, Pierre-Emmanuel Gaillardon, Robert Wille, and Giovanni
De Micheli. Exploiting inherent characteristics of reversible circuits for
faster combinational equivalence checking. In 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 175–180.
IEEE, 2016.

[2] Henrik Reif Andersen. An introduction to binary decision diagrams.
Lecture notes, available online, IT University of Copenhagen, page 5,
1997.

[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A Buell, et al. Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779):505–510, 2019.

[4] R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. Algebric decision diagrams
and their applications. Formal methods in system design, 10(2-3):171–206,
1997.

[5] Jacob Biamonte. Lectures on quantum tensor networks. arXiv preprint
arXiv:1912.10049, 2019.

[6] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, and Hartmut
Neven. Simulation of low-depth quantum circuits as complex undirected
graphical models. arXiv preprint arXiv:1712.05384, 2017.

[7] Karl S Brace, Richard L Rudell, and Randal E Bryant. Efficient
implementation of a bdd package. In 27th ACM/IEEE design automation
conference, pages 40–45. IEEE, 1990.

[8] Randal E Bryant. Graph-based algorithms for boolean function manipu-
lation. Computers, IEEE Transactions on, 100(8):677–691, 1986.

[9] Lukas Burgholzer and Robert Wille. Advanced equivalence checking for
quantum circuits. arXiv preprint arXiv:2004.08420, 2020.

[10] Lukas Burgholzer and Robert Wille. Improved dd-based equivalence
checking of quantum circuits. In 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 127–132. IEEE, 2020.

12

[11] Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun
Shi. Classical simulation of intermediate-size quantum circuits. arXiv
preprint arXiv:1805.01450, 2018.

[12] Zhao-Yun Chen, Qi Zhou, Cheng Xue, Xia Yang, Guang-Can Guo, and
Guo-Ping Guo. 64-qubit quantum circuit simulation. Science Bulletin,
63(15):964–971, 2018.

[13] Edmund M Clarke, Masahiro Fujita, and Xudong Zhao. Multi-
terminal binary decision diagrams and hybrid decision diagrams. In
Representations of discrete functions, pages 93–108. Springer, 1996.

[14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm, 2014.

[15] Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network
contraction. arXiv preprint arXiv:2002.01935, 2020.

[16] Cupjin Huang, Fang Zhang, Michael Newman, Junjie Cai, Xun Gao,
Zhengxiong Tian, Junyin Wu, Haihong Xu, Huanjun Yu, Bo Yuan, et al.
Classical simulation of quantum supremacy circuits. arXiv preprint
arXiv:2005.06787, 2020.

[17] Riling Li, Bujiao Wu, Mingsheng Ying, Xiaoming Sun, and Guangwen
Yang. Quantum supremacy circuit simulation on sunway taihulight. IEEE
Transactions on Parallel and Distributed Systems, 31(4):805–816, 2019.

[18] Igor L Markov and Yaoyun Shi. Simulating quantum computation by
contracting tensor networks. SIAM Journal on Computing, 38(3):963–981,
2008.

[19] Dmitri Maslov, Jin-Sung Kim, Sergey Bravyi, Theodore J Yoder, and
Sarah Sheldon. Quantum advantage for computations with limited space.
arXiv preprint arXiv:2008.06478, 2020.

[20] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-
Guzik. The theory of variational hybrid quantum-classical algorithms.
New Journal of Physics, 18(2):023023, Feb 2016.

[21] D Michael Miller and Mitchell A Thornton. Qmdd: A decision diagram
structure for reversible and quantum circuits. In 36th International
Symposium on Multiple-Valued Logic (ISMVL’06), pages 30–30. IEEE,
2006.

[22] Paul Molitor and Janett Mohnke. Equivalence checking of digital circuits:
fundamentals, principles, methods. Springer Science & Business Media,
2007.

[23] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum
information, 2002.

[24] Philipp Niemann, Robert Wille, David Michael Miller, Mitchell A
Thornton, and Rolf Drechsler. Qmdds: Efficient quantum function
representation and manipulation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(1):86–99, 2015.

[25] Edwin Pednault, John A Gunnels, Giacomo Nannicini, Lior Horesh,
Thomas Magerlein, Edgar Solomonik, Erik W Draeger, Eric T Holland,
and Robert Wisnieff. Breaking the 49-qubit barrier in the simulation of
quantum circuits. arXiv preprint arXiv:1710.05867, 2017.

[26] George F Viamontes, Igor L Markov, and John P Hayes. Improving gate-
level simulation of quantum circuits. Quantum Information Processing,
2(5):347–380, 2003.

[27] Shiou-An Wang, Chin-Yung Lu, I-Ming Tsai, and Sy-Yen Kuo. An
xqdd-based verification method for quantum circuits. IEICE transactions
on fundamentals of electronics, communications and computer sciences,
91(2):584–594, 2008.

[28] Robert Wille, Stefan Hillmich, and Lukas Burgholzer. Efficient and cor-
rect compilation of quantum circuits. In IEEE International Symposium
on Circuits and Systems, 2020.

[29] Shigeru Yamashita and Igor L Markov. Fast equivalence-checking for
quantum circuits. In 2010 IEEE/ACM International Symposium on
Nanoscale Architectures, pages 23–28. IEEE, 2010.

[30] Mingsheng Ying. Foundations of Quantum Programming. Morgan
Kaufmann, 2016.

[31] Mingsheng Ying and Yuan Feng. An algebraic language for distributed
quantum computing. IEEE Transactions on Computers, 58(6):728–743,
2009.

[32] Alwin Zulehner, Stefan Hillmich, and Robert Wille. How to efficiently
handle complex values?: Implementing decision diagrams for quantum
computing. In 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–7. IEEE, 2019.

[33] Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient
methodology for mapping quantum circuits to the ibm qx architectures.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 38(7):1226–1236, 2018.

[34] Alwin Zulehner and Robert Wille. Advanced simulation of quantum
computations. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 38(5):848–859, 2018.

APPENDIX
DETAILED EMPIRICAL RESULTS

13

TABLE II
EXPERIMENT DATA

Benchmarks QMDD TDD No. Part. TDD Part. Sch. I TDD Part. Sch. II

Name Qubit
num

Gate
num Time node

num. max
node

num. final Time node
num. max

node
num. final Time node

num. max Time node
num. max

graycode6_47 6 5 0.02 12 12 0.03 30 30 0.02 30 0.03 30
ex1_226 6 7 0.03 12 12 0.02 22 22 0.02 22 0.02 22
xor5_254 6 7 0.04 12 12 0.02 22 22 0.02 22 0.02 22
4gt11_84 5 18 0.07 22 22 0.07 38 38 0.06 38 0.04 38
ex-1_166 3 19 0.05 10 9 0.06 22 17 0.06 22 0.05 22
4mod5-v0_20 5 20 0.16 28 22 0.12 54 38 0.15 48 0.12 48
ham3_102 3 20 0.05 10 10 0.05 20 20 0.06 20 0.04 20
4mod5-v1_22 5 21 0.17 28 16 0.14 54 34 0.19 54 0.14 54
mod5d1_63 5 22 0.27 34 19 0.23 46 29 0.15 46 0.12 46
4gt11_83 5 23 0.12 26 26 0.14 60 60 0.13 60 0.10 60
4gt11_82 5 27 0.13 26 18 0.16 56 46 0.16 56 0.10 56
rd32-v0_66 4 34 0.21 14 9 0.24 30 21 0.19 28 0.13 30
4mod5-v0_19 5 35 0.31 30 19 0.26 58 39 0.32 50 0.19 50
mod5mils_65 5 35 0.31 26 19 0.25 40 39 0.27 39 0.17 39
3_17_13 3 36 0.12 13 10 0.13 24 20 0.17 24 0.13 24
4mod5-v1_24 5 36 0.25 30 28 0.25 58 50 0.25 58 0.17 58
alu-v0_27 5 36 0.23 42 30 0.35 76 58 0.28 76 0.27 70
rd32-v1_68 4 36 0.19 14 9 0.19 30 21 0.20 28 0.14 30
alu-v1_28 5 37 0.26 38 26 0.27 80 52 0.24 68 0.18 68
alu-v1_29 5 37 0.24 34 24 0.21 70 44 0.22 59 0.18 59
alu-v2_33 5 37 0.37 42 26 0.27 78 50 0.25 65 0.25 76
alu-v3_35 5 37 0.30 40 32 0.34 70 66 0.34 70 0.35 66
alu-v4_37 5 37 0.24 42 34 0.28 76 72 0.31 76 0.25 72
miller_11 3 50 0.18 14 11 0.20 24 21 0.27 24 0.23 24
decod24-v0_38 4 51 0.25 18 16 0.33 36 36 0.42 36 0.40 36
alu-v3_34 5 52 0.32 36 32 0.32 68 66 0.45 66 0.40 66
decod24-v2_43 4 52 0.34 21 16 0.36 36 36 0.46 36 0.28 36
mod5d2_64 5 53 0.25 30 16 0.30 56 36 0.32 56 0.25 56
4gt13_92 5 66 0.57 26 26 0.76 58 58 0.56 58 0.42 58
4gt13-v1_93 5 68 0.84 38 26 1.32 72 58 0.88 72 0.73 72
4mod5-v0_18 5 69 0.53 36 20 0.62 70 42 0.54 60 0.40 70
4mod5-v1_23 5 69 0.68 28 19 0.53 62 41 0.55 62 0.37 62
one-two-three-v2_100 5 69 0.96 82 46 1.13 142 90 0.90 142 0.70 142
4mod5-bdd_287 7 70 1.81 111 74 1.42 175 128 1.33 158 0.98 158
one-two-three-v3_101 5 70 0.71 66 46 0.88 128 90 1.09 127 0.83 127
decod24-bdd_294 6 73 0.42 30 17 0.61 74 43 0.59 62 0.42 62
4gt5_75 5 83 0.91 54 42 1.17 102 86 1.34 102 1.15 102
alu-bdd_288 7 84 1.27 44 34 1.37 94 74 1.28 76 1.08 92
alu-v0_26 5 84 0.63 36 23 1.00 68 48 1.10 64 1.35 64
rd32_270 5 84 0.79 24 13 0.83 52 31 0.80 48 0.66 52
decod24-v1_41 5 85 0.56 26 14 0.65 50 29 0.96 50 0.71 50
4gt5_76 5 91 0.69 42 20 1.03 92 48 1.11 92 0.88 92
4gt13_91 5 103 0.63 42 28 1.11 84 64 1.20 84 1.11 84
4gt13_90 5 107 0.68 42 20 1.17 84 48 1.11 84 1.07 84
alu-v4_36 5 115 0.71 36 32 1.26 68 68 1.05 68 1.01 68
4gt5_77 5 131 1.34 44 27 1.81 78 61 1.42 78 1.55 69
one-two-three-v1_99 5 132 0.88 43 43 1.74 85 85 1.29 85 1.38 85
rd53_138 8 132 8.28 138 76 6.60 275 167 4.09 219 3.45 167
one-two-three-v0_98 5 146 1.76 58 42 2.26 110 82 2.08 110 1.84 106
4gt10-v1_81 5 148 1.38 40 33 1.96 80 68 1.94 74 2.07 74
decod24-v3_45 5 150 1.34 35 17 1.89 74 36 1.90 73 2.17 74
aj-e11_165 5 151 2.66 54 19 2.48 104 40 2.52 104 2.46 104
4mod7-v0_94 5 162 1.32 47 29 2.14 91 62 1.74 91 1.62 91
alu-v2_32 5 163 1.20 57 22 1.77 103 52 1.56 97 1.59 103
4mod7-v1_96 5 164 1.49 46 29 2.26 88 62 1.95 80 1.97 79
mini_alu_305 10 173 27.67 866 375 26.30 1730 793 15.42 966 13.32 1730
cnt3-5_179 16 175 273.78 53 48 170.63 109 100 10.88 143 9.97 143
mod10_176 5 178 1.92 50 15 2.45 96 31 2.37 96 2.17 96
4gt4-v0_80 6 179 2.61 74 33 3.59 136 69 2.60 136 2.66 136
4gt12-v0_88 6 194 2.51 102 37 5.02 182 75 3.60 152 3.22 154
qft_10 10 200 32.66 20 11 45.83 55 31 10.20 49 9.26 49
0410184_169 14 211 50.13 57 39 26.45 130 81 13.14 97 9.20 113
sys6-v0_111 10 215 40.22 473 247 38.73 898 535 24.02 681 15.16 536

14

4_49_16 5 217 3.00 50 22 3.91 102 45 3.77 77 3.18 77
4gt12-v1_89 6 228 2.03 50 25 3.89 88 57 4.26 92 3.48 114
rd73_140 10 230 33.35 242 157 35.87 565 379 21.74 379 17.53 443
4gt4-v0_79 6 231 3.41 102 31 5.10 176 69 5.92 116 3.75 156
hwb4_49 5 233 3.20 58 23 4.16 110 47 4.62 98 4.35 98
4gt4-v0_78 6 235 3.21 90 23 5.08 172 55 5.53 116 3.70 156
mod10_171 5 244 3.20 44 17 4.11 86 36 4.22 86 3.59 86
4gt12-v0_87 6 247 3.61 60 31 5.72 142 71 6.02 132 3.66 119
4gt12-v0_86 6 251 3.49 60 23 5.72 142 55 6.00 132 4.09 119
4gt4-v0_72 6 258 3.19 68 31 6.38 133 67 5.40 128 4.84 128
sym6_316 14 270 132.91 5608 1520 199.55 13460 3670 67.41 3670 67.70 3670
4gt4-v1_74 6 273 3.97 82 30 8.37 154 67 6.98 154 6.77 154
rd53_311 13 275 123.18 1332 684 157.22 2836 1536 97.13 2652 57.59 1536
mini-alu_167 5 288 2.95 58 19 5.29 116 41 5.16 116 4.61 116
one-two-three-v0_97 5 290 2.72 55 41 5.89 103 80 5.00 96 4.36 96
rd53_135 7 296 7.99 145 36 17.67 313 78 11.45 221 11.36 221
ham7_104 7 320 3.47 130 130 6.00 238 238 5.24 238 4.65 238
sym9_146 12 328 99.46 719 229 131.88 1738 595 75.86 595 72.93 595
mod8-10_178 6 342 5.03 70 18 8.91 140 40 8.33 117 7.65 136
rd84_142 15 343 722.52 9753 3588 827.38 18111 7115 393.61 8431 405.36 8045
4gt4-v0_73 6 395 6.31 66 23 13.33 148 55 9.85 144 9.33 130
ex3_229 6 403 5.36 44 19 9.67 94 44 10.77 114 8.66 94
mod8-10_177 6 440 7.03 69 21 14.06 147 47 13.20 147 11.79 147
alu-v2_31 5 451 3.51 51 18 9.98 88 44 9.12 88 9.04 88
C17_204 7 467 11.36 82 25 21.44 160 57 19.02 160 19.24 160
rd53_131 7 469 18.07 205 34 38.73 435 82 26.77 387 29.14 322
cnt3-5_180 16 485 >3600.00 - - >3600.00 - - 55.75 296 38.05 286
alu-v2_30 6 504 7.61 103 30 26.57 199 62 24.32 195 23.25 195
mod5adder_127 6 555 9.42 97 51 27.70 190 107 21.01 190 17.48 182
rd53_133 7 580 13.56 73 26 33.79 144 58 20.48 124 19.31 124
majority_239 7 612 7.76 112 16 32.19 218 39 21.97 218 21.79 173
ex2_227 7 631 11.49 106 22 34.64 208 50 30.66 204 28.96 181
cm82a_208 8 650 9.85 114 31 49.94 252 77 68.04 215 27.99 171
sf_276 6 778 11.50 48 19 38.92 107 42 51.83 98 28.78 107
sf_274 6 781 12.24 50 20 41.01 110 44 54.80 102 29.55 110
con1_216 9 954 25.81 178 37 172.95 408 91 179.09 394 118.79 244
wim_266 11 986 113.39 135 62 222.21 333 160 143.13 333 95.99 324
SUM 5512.16 24033 9309 6201.54 49399 19959 1628.53 26776 1335.99 25681

*In our experiments, if the executing time exceeds 3600 seconds, we stopped it.
*In the summation, the terms greater than 3600 were calculated as 3600.
*The node numbers of the circuit ‘cnt3-5_18’ was not counted in the SUM for all the columns.

	I Introduction
	II Background
	II-A Quantum Circuits
	II-B Quantum Multi-value Decision Diagram

	III Tensor and Tensor Network
	III-A Basic concepts
	III-B Quantum circuits as tensor networks

	IV Tensor Decision Diagram
	IV-A Basic Definition
	IV-B Normalisation
	IV-C Reduction

	V Algorithms
	V-A Generation
	V-B Addition
	V-C Contraction

	VI Two partition schemes
	VII Numerical results
	VIII Conclusion
	References
	Appendix: Detailed Empirical Results

