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Abstract— Vehicle accidents are the primary cause of fatalities 
worldwide. Most often, experiencing fatigue on the road leads to 
operator errors and behavioral lapses. Thus, there is a need to 
predict the cognitive state of drivers, particularly their fatigue 
level. Electroencephalography (EEG) has been demonstrated to be 
effective for monitoring changes in the human brain state and 
behavior. Thirty-seven subjects participated in this driving 
experiment and performed a perform lane-keeping task in a 
visual-reality environment. Three domains, namely, frequency, 
temporal and 2D spatial information, of EEG channel location 
were comprehensively considered. A 4D convolutional neural 
network (4D CNN) algorithm was then proposed to associate all 
information from the EEG signals and the changes in the human 
state and behavioral performance. 4D CNN achieves superior 
forecasting performance over 2D CNN, 3D CNN and shallow 
networks. The results showed a 3.82% improvement in the RMSE, 
a 3.45% improvement in the error rate, and a 11.98% 
improvement in the correlation coefficient with 4D CNN 
compared with 3D CNN. The 4D CNN algorithm extracts the 
significant theta and alpha activations in the frontal and posterior 
cingulate cortices under distinct fatigue levels. This work 
contributes to enhancing our understanding of deep learning 
methods in the analysis of EEG signals. We even envision that deep 
learning might serve as a bridge between translation neuroscience 
and further real-world applications. 
 

Index Terms—EEG, driving, response time, deep learning, 
convolutional neural network 

I. INTRODUCTION 
riving safety is an important public issue. According to the 
World Health Organization, over 1.2 million people 
worldwide die in car accidents each year, while 20 to 50 

million people are nonfatally injured in car accidents [1]. 
Lapses in attention and other behavioral errors of drivers are 
responsible for 90% of such accidents [2]. If this urgent issue is 
not improved, road traffic injuries could become the seventh 
leading cause of death across the world by 2030 [3]. Among 
these issues, this study focuses on driving while drowsy, which 
results in a considerable number of road traffic fatalities and 

                                                
 

 

nonfatal injuries every year. There is a need to monitor drivers’ 
fatigue levels to control and reduce road traffic injures. 
  Previous studies have demonstrated that drowsy driving is 
highly correlated with behavioral lapses before accidents [4]–
[7]. There are two major approaches for monitoring drowsy 
driving. One approach targets the behavior of drivers by 
detecting the movement of the steering wheel or the deviation 
of the vehicle [8]. The other approach is to monitor 
physiological parameters, such as the driver’s heart rate, 
breathing, brain waves and respiratory rate [9]. 
Electroencephalography (EEG) has been shown to be a reliable 
indicator of human cognitive states. Many EEG-based driver 
assistance systems [8]–[15] have been proposed for observing 
the driving behaviors or fatigue levels of drivers. Some systems 
apply statistical models based on knowledge from previous 
research. The others apply machine learning methods, such as 
support vector machines (SVM) [10], Gaussian mixture models 
[16] and neural networks (NN) [13]. These studies suggest that 
EEG is a feasible tool for monitoring driving behavior by 
connecting the driver’s cognitive state with response time.  

Recently, several deep learning methods have exhibited high 
research value in many fields. Especially, the capacity of auto-
feature learning shows great success in computer vision society 
[23], [24]. Compared with shallow algorithms, deep learning 
algorithms learn the high-level features from raw data by using 
multiple stacked layers. Recently, several EEG studies have 
adopted deep learning algorithms [42-46]. Liu et al. applied a 
convolutional neural network (CNN) to motor imagery tasks 
[25]. Hajinoroozi et al. tried to predict drivers’ cognitive states 
(drowsy or alert) with a channel-wise convolutional neural 
network (CCNN) [26]. Lu et al. utilized restricted Boltzmann 
machines (RBM) for motor imagery tasks [27]. The researchers 
leverage the power of deep learning to explore the differences 
of brain dynamics as performing specific tasks or experiencing 
changes of cognitive state. 

However, how to better leverage the knowledge of EEG 
signals for different models has become a problem. In previous 
studies [17]–[20], frequency bands of EEG signals were shown 
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to reflect psychological states [17], [18]. Dissanayaka’s study 
showed that the power of the alpha band increased when the 
participants were drowsy [19]. Temporal information is also 
essential in the EEG analysis; connections of adjacent 
timeframes represent a trend in brain dynamic states [21]. 
Spatial information from EEG channels has received attention 
in recent studies. Studies have shown that the cognitive 
workload is strongly connected with the frontal and parietal 
lobes [35], [38]. In Hooi’s study, EEG signals were converted 
into a topographical image (topo-image), which is one method 
used to combine the electrode positions into an EEG readout 
[22]. Previous studies [40], [41] showed various techniques for 
processing multidimension data for cognitive workload 
assessment. Another approach for simultaneously processing 
multi-information is 3D CNN [23]. In 2013, a 3D CNN 
algorithm was proposed to process video data [23], [33]. These 
studies performed three-dimensional convolution and 
effectively extracted motion features embedded in the spatial 
and temporal domains. The performance of 3D CNN is 
promising over many applications.  

To better use the knowledge from the three domains, a CNN-
based deep learning algorithm named 4D CNN was applied to 
predict fatigue levels during a driving task. The strategy used 
for the utilization of spatial information as a topo-image in the 
analysis helps narrow down the position of significant features 
in the brain-lobe view. Temporal information is also preserved 
for tracking the signal trends. With this advantage, we are able 
to monitor the activated brain area over time. In this study, 
response times (RTs) were recorded to evaluate the cognitive 
performance of drivers, and the system took 6-second baseline 
EEG signals as the input data to predict the RTs. 

II. MATERIALS AND METHODS 

A. Experimental Design 
The data used in this study were recorded at the Brain 

Research Center (BRC), National Chiao Tung University 
(NCTU), Hsinchu, Taiwan. The experimental task was lane-

keeping. The experiment was conducted in a 360-degree 
virtual-reality laboratory with a motion platform using a 
response-detecting steering wheel (Fig. 1), which simulates the 
real-world driving environment [11], [28]. The vehicle in the 
experiment was set at 100 km/h on a four-lane road at night. 
The vehicle deviated randomly from the position at the center 
of the cruising lane (3rd lane, as shown in Fig. 2). The 
participants were asked to drive the vehicle back to the center 
of the lane using the steel wheel as soon as possible when the 
participant became aware of the deviation. There was one 
resting period between two continuous trials, and this period 

 
Figure 1: Experimental environment: (a) a 360-degree virtual-reality lab with a 
motion platform in BRC, NCTU. (b) The experimental setup: the computer used 
for recording can synchronize all response and brain dynamics from the 
participants and the relevant events from the experimental scenario and thus 
detects the responses of the participants. 

 
Figure 2: Experimental scenario in this study. The cruising car randomly drifted to the left (2nd) or right (4th) lane, and the participants were asked to control 
the car back to the cruising (3rd) lane. We used 6-second EEG data before the event onset (baseline, marked by bold green lines) as the input data for 4D CNN, 
and the period between the event onset and the response onset was defined as the response time. The period between two continuous trials was approximately 
7 to 12 seconds.  
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was one random number from 7 to 12 seconds to avoid 
participants’ expectation of coming deviation. The RT was 
measured to evaluate the driver’s driving performance in the 
study. RT is the latency between the onset of the deviation and 
the onset of the response (as shown in Fig. 2). A high RT 
indicates that the participant is relatively drowsy in this VR-
highway driving scenario, and a low RT indicates that the 
participant that is relatively alert. 

The driving experiment was conducted in the early 
afternoon (13:00–15:00) after lunch, when the circadian rhythm 
of drowsiness is at its peak [29]. In addition, the VR-highway 
scene was monotonous, and the task demand was low to induce 
drowsiness [11], [30], [31]. Under such conditions, the subjects 
had difficulty regulating attention and performance, which 
resulted in long RTs [32]. If the participants did not properly 
react to the designed tasks during the alert situation, the related 
data were excluded from the subsequent analyses.  

The entire dataset included 71 sessions from 37 healthy 
participants, and there were 60 EEG epochs in each session. The 
participants did not have any history of psychological or sleep 
disorders. All EEG data were collected through a 32-channel 
EEG cap with Neuroscan system, including 30 regular channels 
and two reference channels. The impedances of the electrodes 

were all less than 5 kΩ, and the sampling rate of the EEG 
signals was 500 Hz. To ensure that the brain state of the 
participants would not be affected by external factors, 
consumption of alcohol or caffeinated drinks and strenuous 
exercise were prohibited for the one week prior to the 
experiments. All participants were clearly informed about the 
operation of the related equipment and the procedure of the 
experiment and had practiced the procedure sufficiently before 
participating in the experiment. Furthermore, before the 
experiment, all of the subjects were asked to read and sign an 
informed consent form. Finally, this experiment was approved 
by the Institutional Review Board of the Veterans General 
Hospital, Taipei, Taiwan. 

B. Data processing 

   Fig. 3 shows the diagram for processing EEG signals 
including three major components, EEG data pre-processing, 
feature extraction, and Data Arrangement for 4D CNN. 

EEG data pre-processing 
We applied EEGLAB for EEG data pre-processing [39]. 

EEGLAB is an open source Matlab toolbox and widely applied 
to EEG data processing [11], [29], [34], [36], [39]. The noises 
associated with eye movements and muscle activities were 
removed manually, followed by 250-Hz downsampling, a high-
pass filter (1 Hz) and a low-pass filter (50 Hz). The EEG signals 
were later segmented into a 6-second baseline signal, which 
began 6 seconds before event onset [11], [29]-[31]. To 
eliminate inter-subject differences, the measured RTs and EEG 
dynamics were normalized by the trails with 10% fastest RTs 
in every single subject [11], [12]. The datasets collected from 
each individual subject were then normalized by subtracting the 
mean and dividing by the standard deviation. 

Feature Extraction 
The EEG signals were then transformed into a 4D format 

that included a frequency power of 1-20 Hz, 6-second temporal 
information and a two-dimension topo-image. The bottom of 
Fig. 3 shows the data structure of our 4D input data, and each 
topo-image was converted from the frequency power of all 30 
EEG channels in one single timeframe using the linear 
interpolation function of EEGLAB [39], one of the most 
powerful EEG analysis toolboxes in MATLAB. This 
interpolation is able to map the scalp data into a 2D view, and 
each topology image depicts the power distributions for one 
specific frequency and one single timeframe. The more details 
about temporal information, power distributions and channel 
locations are as the following paragraphs.  
  The major advantage of EEG signals is high temporal 
resolution. To capture cognitive changes within consecutive 
time points, temporal convolution was introduced in this study. 
A previous study [33] demonstrated that motion patterns on 
video were successfully extracted by temporal convolution in 
the consecutive images. Following this path, 4D CNN uses data 
from a 1-second time window as one input frame, and the 
overlap between two input frames was 600 milliseconds. 
  In previous EEG studies [32], [34]- [37], frequency 
oscillations in the delta (1-4 Hz) theta (4-7 Hz), alpha (8-13 Hz) 
and low beta (13-20 Hz) bands were significant indicators for 
monitoring cognitive performance. Especially, the power 

   
Figure 3: Structure of data pre-processing and feature extraction in the 4D 
CNN algorithm. For each trial, the re-sampling, bandpass filter and noise 
removal were adopted to the 6-second EEG baseline. FFT was then applied 
to translate the frequency information. Each of the 2D topo-images included 
the frequency power of 30 EEG channels in a single timeframe. 
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oscillations in theta and alpha bands were highly associated 
with sustained attention [17]–[20]. However, most EEG studies 
observe the data orientation by averaging in one frequency band. 
There is a high possibility of ignoring essential information due 
to the elimination of fluctuations in frequency bands. To 
explore hidden information in frequency domains, this study 
considered the frequencies between 1 and 20 Hz. Fast Fourier 
Transform (FFT) was adopted. 

Data Arrangement for 4D CNN 
Fig. 3 shows the 4D data format of input data. The human 

brain is dominated by four major lobes, the frontal, parietal, 
temporal and occipital lobes. Each lobe is responsible for 
distinct cognitive functions [9], [31]-[34]. Electrodes are placed 
around the scalp to acquire brain information, and a 32-channel 
EEG cap was used in this study. In a previous study [22], the 
approach of using the topographic map (topo-map) was shown 
to be effective for tracking brain activity, which implies that the 
signals are inseparably associated with the electrode positions. 
To include channel location in the input data, a 2D topology 
image with a size of 32×32. For each trial, the brain dynamics 
6 seconds before the deviation were extracted as the baseline 
signals. The extracted baseline signals were segmented into 
overlapping 1000-ms samples that were advanced in 600-ms 
steps, which totally resulted in 13 samples from each 6000-ms 
baseline. For each sample, 20 frequency bins (1 Hz - 20 Hz) 
were extracted by FFT. The feature dimension of each 1000-ms 
sample is 20 (20 frequency bins). By organizing input data into 
a 4D format, we were able to access the hidden information in 
the three domains (spatial, frequency and temporal domains) 
with a size of 32*32*20*13. 

The strength of learning visual patterns from local 
neighboring area (pixel) saves us from designing hand-craft 
feature extractors [23]. A typical CNN structure is composed of 
convolutional layers, pooling layers and fully connected layers. 
Along with dataflow, the low-level features (edges, lines, 
corners) are combined, evolved into high-level features and 
form abstract interpretations. 

C. 4D CNN 
This study proposes a 4D CNN for forecasting driving 

performance. 4D CNN is a CNN-based deep learning algorithm 
that is designed for the analysis of EEG signals, which includes 
more data dimensions than 2D and 3D CNNs. At the 
convolutional layer, 4D convolution is performed and defined 
as follows: 

 

𝑣𝑣𝑖𝑖𝑖𝑖
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where 𝑣𝑣𝑖𝑖𝑖𝑖

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the unit of the 𝑤𝑤, 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 positions 
of the feature map between the 𝑖𝑖th and 𝑗𝑗th layers; 𝑏𝑏𝑖𝑖𝑖𝑖 is the 
bias between the two layers; 𝑚𝑚 represents the 𝑚𝑚𝑡𝑡ℎ filter in 
the convolutional layer; 𝑃𝑃, 𝑄𝑄, 𝑅𝑅 and S are the kernel size of 
the filters; 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝are the kernel weights at the 𝑝𝑝𝑝𝑝𝑟𝑟 position of 
the 𝑚𝑚𝑡𝑡ℎ  filter; and relu is an activation function for 
accelerating the convergence speed during training [23]. 

Each unit in the output feature map is the result of the inner 
product of kernels and feature map of the previous layer, where 
𝑣𝑣(𝑖𝑖−1)𝑖𝑖

(𝑤𝑤+𝑝𝑝)(x+q)(y+r)(𝑤𝑤+𝑝𝑝) is the feature map of the previous layer. 
Bias and kernel weights are trained by backpropagation, 
following the same approach as in CNN. In the pooling layer, a 
4D pooling layer is adopted to down-sample the data points of 
the feature maps.  

In the current study, the 4D CNN net was designed as nine 
layers including an input layer, a convolutional layer (16 filters), 
a max-pooling layer, a convolutional layer (32 filters), a max-
pooling layer, a convolutional layer (64 filters), a max-pooling 
layer, a fully connected layer (128 nodes) and an output layer. 
All of the activation functions in the convolutional layers and 
the fully connected layer were applied using rectified linear 
units (ReLUs).  

The 4D CNN algorithm was trained through 
backpropagation with a batch size of eight. The optimizer was 
Adaptive Moment Estimation (ADAM). The initial learning 

Table 1: Configuration of 4D CNN, 3D CNN, CNN, ANN and LSTM 
 

 4D CNN 3D CNN CNN ANN,  
LSTM 

Input layer 

1st convolutional layer 16 kernels at size 3×3×3×3 16 kernels at size 3×3×3 16 kernels at size 3×3 

128 nodes 

1st max-pooling layer kernel size 2×2×2×2 kernel size 2×2×2 kernel size 2×2 

2nd convolutional layer 32 kernels at size 3×3×3×3 32 kernels at size 3×3×3 32 kernels at size 3×3 

2nd pooling layer kernel size 2×2×2×2 kernel size 2×2×2 kernel size 2×2 

3rd convolutional layer 64 kernels at size 3×3×3×3 64 kernels at size 3×3×3 64 kernels at size 3×3 

3rd pooling layer kernel size 2×2×1×1 kernel size 2×1×1 kernel size 2×1 

Fully connected layer 128 nodes 128 nodes 128 nodes 

Output layer 
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rate was 0.001 and was divided by five when the validating 
error improvement (10% of the training data) was less than 1%. 

D. Evaluation Criteria 
This study compared the system performance with state-of-

the-art algorithms, namely, 3D CNN, CNN, artificial neural 
network (ANN), support vector regression (SVR) and Long 
Short-Term Memory (LSTM). Table 1 lists the structures and 
parameters of 4D CNN, 3D CNN, CNN, ANN and LSTM. To 
ensure comparability, the network configurations for 4D CNN, 
3D CNN and CNN are identical, e.g., the width of the 
convolutional layer is 1. The only difference is the kernel size 
for fitting with input data. For input data, the 4D CNN 
algorithm uses a 4D topo-image of size 32×32×20×13 (x-axis 
and y-axis of the topo-image, timeframes and frequency bins). 
3D CNN and LSTM takes data of size 32 × 13 × 20 (EEG 
channels, timeframes and frequency bins). CNN, ANN and 

SVR takes in 2D images of size 32×20 (EEG channels and 
frequency). 

In the experiments, leave-one-subject-out cross validation 
was used. Seventy sections (4200 epochs) were taken as the 
training set, 10% of the training set was used as the validation 
set (420 epochs), and one section was used as the testing set (60 
epochs). These steps were repeated 71 times to complete the 
cross validation (71 experimental sessions). To prevent 
overfitting, this study adopted an early stop: the training was 
terminated if there was no significant improvement in the 
validation performance for consecutive 700 iterations. 

The root mean square error (RMSE), correlation coefficient 
and the error ratio between the predicted driving performance 
and the ground truth (the observed driving performance) were 
introduced to evaluate the performance. The RMSE represented 
the standard deviation between the predicted driving 
performance and ground truth. The error ratio and correlation 

Table 2: Results of 4D CNN, 3D CNN, CNN, ANN, LSTM and SVR 
 

Model 
RMSE Error rate Correlation coefficient Number of 

trainable 
parameters Average Improvement Average Improvement Average Improvement 

ANN 0.619±0.137 8.89 % 0.316±0.047 10.40 % 0.210±0.186 31.65% 76,928 

CNN 0.599±0.149 5.91 % 0.297±0.061 4.88 % 0.217±0.171 27.47% 121,857 

LSTM 0.616±0.145 8.50 % 0.318±0.045 10.96 % 0.106±0.082 161% 373,377 

SVR 0.620±0.249 9.00 % 0.317±0.047 10.74 % 0.216±0.135 28.11% — 

3D CNN 0.586±0.136 3.82 % 0.293±0.052 3.45 % 0.247±0.187 11.98% 1,544,481 

4D CNN 0.564±0.139 — 0.283±0.066 — 0.277±0.182 — 2,830,465 

 

 
Figure 4: Performance of (a) RMSE (b) correlation coefficient among all models. Star indicates p-value is less than 0.05. 



 6 

coefficient were used to evaluate the overall performance, 
which is calculated as follows: 
 
|𝑜𝑜𝑏𝑏𝑜𝑜𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑜𝑜 𝑜𝑜𝑟𝑟𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑜𝑜𝑟𝑟𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝𝑟𝑟 − 𝑝𝑝𝑟𝑟𝑟𝑟𝑜𝑜𝑖𝑖𝑝𝑝𝑝𝑝𝑟𝑟𝑜𝑜 𝑜𝑜𝑟𝑟𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑜𝑜𝑟𝑟𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝𝑟𝑟|

𝑜𝑜𝑏𝑏𝑜𝑜𝑟𝑟𝑟𝑟𝑣𝑣𝑟𝑟𝑜𝑜  𝑜𝑜𝑟𝑟𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑜𝑜𝑟𝑟𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝𝑟𝑟
 

 
  4D CNN was programmed using Python 2.7 and 
TensorFlow 1.0 and was run on a cluster with 128 GB RAM, 
2400 MHz, DDR4, Intel Xeon E5-2680 v3 CPU and NVIDIA 
Quadro K2200 GPU to boost the training speed. 

III. RESULTS AND DISCUSSION 

A. Prediction Performance 
  Table 2 shows the predicted driving performance obtained 
with 4D CNN, 3D CNN, CNN, ANN, SVR and LSTM. The 
first two columns show the RMSE values and improvement 
rates. The RMSE of 4D CNN was 0.5638±0.1391, which 

corresponds to an improvement in performance of 3.82%, 
5.91%, 8.89%, 9.00% and 28.11% compared with 3D CNN, 
CNN, ANN, SVR and LSTM, respectively. The error rate of 4D 
CNN also outperformed the error rates of the other algorithms: 
the error rate of 4D CNN was 3.45% better than that of 3D CNN 
and 4.88% better than that of CNN. Similarly, 4D CNN showed 
10.4% and 10.74% improved error rates compared with those 
of the shallow algorithms ANN and SVR, respectively, and a 
10.96% improvement in the error rate compared with LSTM. 
4D CNN also showed a relatively high correlation coefficient 
among the other models. 

To evaluate whether the improvement was statistically 
significant, the RMSE and correlation coefficient were 
evaluated using a T-test, as shown in Fig. 4. A star indicates a 
p-value less than 0.05. As shown in Fig. 4(a), the RMSE 
performance of 4D CNN was significantly different compared 
with that of the other models. The same finding was obtained 

 
Figure 5: The topo-images of brain activity. (a)-(d) show the topo-images of delta band for four trails. (e)-(h) show the topo-images of theta band for four 
trails. (i)-(l) show the topo-images of alpha band for four trails. (m) A comparison of the predicted RT of 4D CNN (orange line) and the true RT (black line) 
in a single session. 
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for the correlation coefficients of the other models, with the 
exception of 3D CNN, as illustrated in Fig. 4(b). 

B. Changes in the Human Brain 
It is worth investigating whether the features learned by 4D 

CNN can effectively predict the fatigue level. Thus, we focused 
on exploring the relationships between the changes in driving 
performance and human brain dynamics. In the following 
discussion, we show the topo-images in the delta, theta and 
alpha bands under alert and drowsy conditions. 

Fig. 5(m) depicts the true driving performance (black line) 
and predicted driving performance by 4D CNN (orange line) in 
one session. To investigate the brain dynamics under good 
driving performance (shorter RTs) and bad driving performance 
(long RTs), four EEG epochs were selected for further 
discussions. Epochs 13 and 24 were selected due to the short 
real RTs. Epochs 29 and 32 listed longer real RTs. The 
predicted RTs and the real RTs for these four selected EEG 
epochs are listed in Fig. 5. Moreover, there were two EEG 
epochs (epoch 13 and epoch 29) with large errors (bad 
performance) and two trials (epoch 24 and epoch 32) with small 
predicted errors (good performance). The participant might not 
feel drowsy while responding to the car deviation in EEG epoch 
13 since there were low real RTs in the previous and following 
EEG epochs. Therefore, the participant may still be at a high 
arousal level, and the low RT was predicted based on the 
recorded EEG signals. In EEG epoch 29, a large difference 
between the real RT and predicted RT was discovered. The 
trend in real RTs was increased from epoch 24, and the 
increased trend indicates that the participant might start to feel 
drowsy. However, the participant may still handle the lane-
keeping task with accepted performance as he/she notices the 
deviation in the beginning of EEG epoch. One can have similar 
experiences in real life; for example, one can still maintain the 
car to avoid accidents despite feeling tired. In this case, low real 
RT and brain patterns with a low level of arousal should be 
recorded. In this study, the RTs were predicted based on the 
brain dynamics and the 4D CNN model. The high predicted RT 
can be imaged in this trained 4D CNN model since the recorded 
brain patterns in EEG epoch 29 might indicate that the 
participant already feels sleepy. 

Brain Dynamics 
Fig. 5(a)-(l) depict the human brain changes in the selected 

EEG epochs with long and short RTs to explore the 
relationships between brain dynamics in specific bands and 
driving performance. Fig. 5(a)-(d), (e)-(h), and (i)-(l) show the 
topo-images of the delta (1-3 Hz), theta (4-7 Hz) and alpha (8-
13 Hz) bands, respectively. The subfigures in the second and 
third rows were extracted from the EEG epoch with a small 
difference between the real RTs and predicted RTs. On the 
other hand, the subfigures in the first and fourth rows list the 
brain patterns in the EEG epochs with large differences between 
the predicted RTs and real RTs. 

According to previous studies, the brain dynamics in the 
theta and alpha bands are positively correlated with the 
attentional demands or levels of arousal [31], [38]. In particular, 
researchers have mainly focused on the changes in the frontal 
and posterior cingulate cortex (parietal and occipital lobes) 
[36]-[38]. The longer predicted RTs in epochs 32 (2.37 seconds) 

and 29 (2.65 seconds) show that the brain patterns can be linked 
to the related phenomenon at a low level of arousal. In EEG 
epochs 32 (Fig. 5(f) and (j)) and 29 (Fig. 5(h) and (j)), the higher 
posterior theta, frontal alpha, and posterior alpha can also be 
observed. On the other hand, the brain dynamics in epochs 13 
(1.56 seconds) and 24 (1.27 seconds) are associated with a high 
level of arousal due to the shorter predicted RTs. The decreased 
posterior theta and alpha activations can also be extracted 
through the proposed 4D CNN model (ref. Fig. 5(e), (i), (g) and 
(k)). In short, the proposed 4D CNN obtained a higher RT while 
there were increased theta and alpha activations in the posterior 
region. These results in Table 2 and Fig. 5 show that 4D CNN 
has better ability to extract the significant brain features for 
forecasting driving performance.  

Deep learning is a powerful tool which can be applied to 
various fields. In the current research, the EEG patterns with 
spatial (32 channels, two dimensions), frequency (1-20 Hz, one 
dimension) and temporal (13 frames, one dimension) 
information have been used. As the results are shown in Table 
2, the performance is the best but more trainable parameters are 
also required. The time cost for EEG feature processing and 
driving performance prediction is associated with capabilities 
of hardware. Previous researches indicated the normal driving 
performance (without drowsiness) was in the range of 0.6 – 1.2 
second [31], [34]-[36]. In this experiment, it takes 0.1441 ± 
0.0036 second for EEG feature processing and 0.2197 ± 0.0075 
second for driving performance prediction on the well-trained 
4DCNN model which is less than the real driving performance 
in the awake situation. There is no doubt that the processing 
time of applying 4DCNN model on driving performance 
estimation can be further improved with state-of-the-art 
technology such as cloud, fog and parallel computing. 
Moreover, the size of data set is relatively small. First, the size 
of data set is relatively small. There are totally 71 experimental 
sessions from 37 participants in the current research. The 
subjective difference is always a big problem in modelling 
biosignals and brain-computer interface, especially the real-life 
application. We will conduct large scale experiment to collect 
more physiological information in a long-term period. Second, 
more cognitive tasks can be included to simulate the real 
driving environment in which the changes of cognitive 
workload, stress or fatigue can be assessed for building more 
stable models. Finally, the 71 experimental sessions are 
collected in one VR-based driving scenario. However, the real-
world applications are the goals in near future. Therefore, some 
real-world experiments will be conducted to test the 
performance and stability as getting ethics approval from 
Institutional Review Board. 

IV. CONCLUSION 
  This study proposes a 4D CNN-based algorithm to forecast 
driver performance based on recorded EEG signals. This 4D 
CNN approach helps narrow down the position of significant 
features and preserve the signal trend for monitoring purposes. 
To demonstrate the capability of 4D CNN, three indexes 
(RMSE, error rate and correlation coefficient) were evaluated 
for comparison purposes. The RMSE of 4D CNN was improved 
compared with those of 3D CNN, CNN, ANN, SVR and LSTM 
by 3.82%, 5.91%, 8.89%, 9.00% and 8.5%, respectively. 
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Meanwhile, the error rate of 4D CNN was better than the error 
rates of 3D CNN, CNN, ANN, SVR and LSTM by 3.45%, 
4.88%, 10.4%, 10.74% and 10.96%, respectively. The analysis 
of the correlation coefficients showed the competitive 
performance of 4D CNN compared with the other models. The 
P-values of the RMSE and correlation coefficient demonstrated 
the significant improvement of the application of 4DCNN over 
the other methods. The relationships between the changes in 
driving performance and human brain dynamics were also 
explored through the characteristics of the CNN. These results 
indicate that 4D CNN can extract essential features from high-
dimensional EEG data to accurately forecast the fatigue level. 
Based on the final performance and these significant features, 
we envision that deep learning might open a new branch 
between translation neuroscience and real-world applications, 
but the current research is far from real-life application. In 
further research, we will leverage the pretrained model and 
image processing technologies to build a closed-loop system for 
monitoring the fatigue level and detecting the onset of lane 
deviation, respectively. This new research might benefit real-
world applications (e.g., autonomous driving) in the near future. 
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