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Abstract 38 

Objective - We have designed tracking and collision prediction tasks to elucidate the differences 39 

in the physiological response to the workload variations in basic ATC tasks to untangle the 40 

impact of workload variations experienced by operators working in a complex ATC 41 

environment. 42 

Background - Even though several factors influence the complexity of ATC tasks, keeping track 43 

of the aircraft and preventing collision are the most crucial.  44 

Methods - Physiological measures, such as electroencephalogram (EEG), eye activity, and heart 45 

rate variability (HRV) data, were recorded from 24 participants performing tracking and 46 

collision prediction tasks with three levels of difficulty.  47 

Results - The neurometrics of workload variations in the tracking and collision prediction tasks 48 

were markedly distinct, indicating that neurometrics can provide insights on the type of mental 49 

workload. The pupil size, number of blinks and HRV metric, root mean square of successive 50 

difference (RMSSD), varied significantly with the mental workload in both these tasks in a 51 

similar manner.  52 

Conclusion - Our findings indicate that variations in task load are sensitively reflected in 53 

physiological signals, such as EEG, eye activity and HRV, in these basic ATC-related tasks.  54 

Application - These findings have applicability to the design of future mental workload adaptive 55 

systems that integrate neurometrics in deciding not just ‘when’ but also ‘what’ to adapt. Our 56 

study provides compelling evidence in the viability of developing intelligent closed-loop mental 57 

workload adaptive systems that ensure efficiency and safety in ATC and beyond. 58 
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Keywords: Mental workload, EEG, pupil size, blink rate, RMSSD 59 

Précis: This article identifies the physiological correlates of mental workload variation in basic 60 

ATC tasks. The findings assert that neurometrics can provide more information on the task that 61 

contributes to the workload, which can aid in the design of intelligent mental workload adaptive 62 

system. 63 
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 77 

Introduction 78 

People tend to avoid performing tasks that push their capabilities beyond their limits as they find 79 

it frustrating and stressful (Ahlstrom, 2010). However, not all work environments offer that 80 

luxury, which makes it crucial to establish good interaction between the human operator abilities 81 

and work environment (Wickens et al., 2015). Even though human operators can easily adapt to 82 

diverse work environments and perform several tasks and use different equipment 83 

simultaneously, poorly designed work environments cause an overload of sensory information 84 

resulting in excess workload. Air traffic controllers operate in such a complex environment to 85 

ensure a safe and efficient air traffic flow by organising traffic flow in a way that aircraft reach 86 

their destination in a well-organized and expeditious manner. However, as the air traffic 87 

increases, there is a growing need to study the mental factors that ensure the efficiency of air 88 

traffic controllers.  89 

Mental workload is one of the most crucial factors that affects the efficiency of air traffic 90 

controllers as they operate in complex interactive work environments. Electroencephalogram 91 

(EEG) signal has been widely employed to estimate mental workload as the effects of task 92 

demand are clearly visible in EEG rhythm variations (Brookings et al., 1996, Gevins and Smith, 93 

2003, Radüntz and Meffert, 2019). However, EEG features of the mental workload are found to 94 

be task-dependent, therefore, adding other modalities like eye activity data and heart rate data 95 

can help achieve far superior outcomes (Ke et al., 2014, Popovic et al., 2015).  96 
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Once the mental workload of the operator can be reliably assessed, it can be used to drive a 97 

mental workload adaptive system (Prinzel et al., 2000; Schmorrowe et al., 2006). A mental 98 

workload adaptive automation system should be able to conform to the variations in the mental 99 

workload of the operator without them having to explicitly state their needs or triggering the 100 

automation. When human operators and automation team up to achieve better performance and 101 

efficiency, the operator expects automation to behave like a human coworker (Aricò et al., 2017). 102 

Therefore, adaptive automation should be timely, stepping in at the right time and cognitively 103 

empathetic with the operator, helping where it is needed, taking over the task that is currently 104 

overwhelming the operator. However, currently, physiological correlates of the mental workload 105 

are only used to decide “when” to adapt and not “what” to adapt, keeping the strategies 106 

employed by the adaptive automation system still primitive. There is a need to develop 107 

intelligent adaptive systems that can identify what form of automation to use depending on the 108 

type of mental workload experienced by the operator. Nonetheless, there is still a dearth in 109 

evidence that physiological metrics of mental workload can direct to the tasks contributing to 110 

workload.  111 

In this paper we investigated whether the multimodal physiological metrics of mental workload 112 

can provide more information about the task contributing to the workload experienced by the 113 

ATC operator. Even though several factors influence the complexity of ATC tasks (Mogford et 114 

al., 1995, Cummings and Tsonis, 2005), such as environmental, display, traffic and 115 

organisational factors, the main functions for ATC operator are tracking and collision prediction. 116 

Therefore, we designed tracking and collision prediction tasks to elucidate the physiological 117 

effects of workload variations in these basic ATC tasks. We formulated the following four 118 

research hypotheses for our study: 119 
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H1. The three distinct levels of workload defined in both tracking and collision prediction 120 

tasks can yield significant performance degradation with the increasing levels of 121 

workload. 122 

H2. Workload variation in tracking and collision prediction tasks can be reliably assessed 123 

using EEG, eye activity and HRV metrics. 124 

H3. The performance in tracking and collision prediction tasks can be predicted based on the 125 

measured physiological signals. 126 

H4. Physiological response to the workload variations in the tracking and collision prediction 127 

tasks will be distinct across tasks. 128 

 129 

Methods  130 

Participants 131 

Twenty-four participants (age 25 ± 5, 17 males and 7 females, all right-handed) participated in 132 

this experiment after giving written informed consent. The experimental protocol was approved 133 

by the University of Technology Sydney Human Research Ethics Expedited Review Committee 134 

(ETH19-4197).  135 

The EEG data were collected using SynAmps2 Express system (Compumedics Ltd., VIC, 136 

Australia) with 64 Ag/AgCl sensors system. Eye activity data was collected using Pupil Labs 137 

Pupil Core (Berlin, Germany). The Blood Volume Pulse (BVP) data was recorded using 138 

Empatica E4 (Empatica Srl, Milano, Italy). The real-time synchronisation of events from the task 139 
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scenario to the EEG, eye activity and BVP data was achieved by the Lab Streaming Layer 140 

(Kothe, 2015). 141 

Experimental Procedures 142 

Our experimental design included two tasks – multiple objects tracking task (Innes et al., 2019) 143 

and collision prediction task. As shown in Figure 1(A), in the tracking task, during the initial 3 144 

seconds, participants look at a fixation cross on the screen followed by a freeze phase, where the 145 

dots, some of which are blue, and the rest are red, remain stationary. The blue dots are the dots 146 

that need to be tracked (hence, ‘targets’). After three seconds of freeze, the blue targets also turn 147 

red so that they are no longer distinctive from the other dots and all the dots start moving. The 148 

participant is asked to keep track of the targets (dots that were initially blue) for 15 seconds. 149 

After this time window all dots stop moving and the participants should indicate the target dots 150 

by clicking on the dots that they have kept track of. The workload levels in this tracking task are 151 

manipulated by varying the number of blue dots and the total number of dots (see Table 1).  152 

As shown in Figure 1(B), in the collision prediction task, there is a fixation cross on the screen 153 

for three seconds. Then there is a three-second-long freeze phase where the dots remain 154 

stationary, after which all the dots start moving. The participant is required to predict the 155 

trajectory of the dots and identify which pair of dots would collide. We have manipulated the 156 

trajectory of the dots such that there will be only one collision in each trial. The participants were 157 

asked to identify the pair of dots that would collide and click on both dots before the collision 158 

happens. The levels of workload were manipulated by varying the number of dots (see Table 1).  159 

Each participant had to perform 108 trials of each task with 36 trials of each workload level. The 160 

type of workload condition in the trials was randomised to avoid any habituation or expectation 161 
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effects. All participants were trained in a training session to familiarise themselves with the162 

tasks. After the training, all participants performed the tasks for ~ 1.5 hours during which EEG,163 

eye activity and HRV data were collected.  164 

 165 

 166 

Figure 1: The experimental design of the tasks. (A) the experimental design of the tracking task and (B) the design167 

of the collision prediction task. The number of dots shown in these diagrams is just for representation purposes. 168 

Table 1: Workload Manipulations in the tracking and collision prediction tasks 169 

TASK WORKLOAD 

LEVEL 

WORKLOAD MANIPULATION 

Tracking Dots Total Number of Dots 

 

Tracking Task 

Low 1 10 

Medium 3 12 

he 

G, 

gn 
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High 5 15 

                                  WORKLOAD MANIPULATION 

Total Number of Dots 

Collision 

Prediction 

Task 

Low 6 

Medium 12 

High 18 

Data Analysis 170 

Behavioural and Performance Data Analysis 171 

For the tracking task, each participant's performance was evaluated by examining the tracking 172 

accuracy.  173 

�������� 
������� 
 ������ �	 
������
� ������� ����

����
 ������ �	 ���� �� �����
     (1) 174 

In case of the collision prediction trials, the performance was determined using the time before 175 

collision and collision miss proportion rate. The time before collision is the time period between 176 

when the participant clicks on either one of the colliding dots and when the collision happens 177 

(see Supplementary Figure 1). A collision miss was considered to happen when the participant 178 

was unable to identify which pair of dots would collide and, hence, did not click on either of the 179 

dots before the collision. The collision miss proportion rate for a particular workload level of the 180 

collision prediction task is the ratio of the number of collision prediction misses to the total 181 

number of collisions in that specific workload level.  182 

��������� ���������� ���� ���������� ���� 
 ������ �	 ������ 
�

����� �����������

����
 ������ �	 
�

������
  (2) 183 
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EEG Preprocessing 184 

EEG data were preprocessed (see Supplementary Figure 2) using EEGLAB v2020.0 toolbox 185 

(Delorme and Makeig, 2004) in MATLAB R2019a (The Mathworks, Inc., Natick, MA, USA). 186 

EEG data were down-sampled to 250 Hz, and a band-pass filter of 2–45 Hz was applied. 187 

Channels with three seconds or more flat line were removed using the clean_flatline function.  188 

Noisy channels were identified and removed using the clean_channels function in EEGLAB. On 189 

an average 3±1 channels were removed and these channels were restored by interpolating the 190 

data from neighbouring channels using the spherical spline method from the EEGLAB toolbox. 191 

Continuous artifactual regions were removed using the EEGLAB function, pop_rejcont. Then 192 

window cleaning was performed using the clean_windows function in EEGLAB. After these 193 

artifact removal steps, two EEG datasets were extracted, one comprising tracking trials and one 194 

with the collision prediction trials. Each participant had 34±2 high workload, 35±1 medium 195 

workload and 34±1 low workload tracking trials, and 32±2 high workload, 33±2 medium 196 

workload and 33±1 low workload collision prediction trials. 197 

Tracking and collision prediction datasets were decomposed using Independent Component 198 

Analysis (ICA), performed using EEGLAB’s runica algorithm (Delorme and Makeig, 2004). 199 

Finally, we employed ICLabel (Pion-Tonachini et al., 2019), an automatic IC classifier to 200 

identify and reject components related to heart, line noise, eye, muscle, channel noise and other 201 

activities.  202 

IC Clustering 203 
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EEGLAB STUDY structure (Delorme et al., 2011) was used to manage and process data 204 

recorded from multiple participants. A Study was created for each task, and each Study had one 205 

group (with 24 participants) with three conditions corresponding to the three levels of workload. 206 

For each participant, only those ICs that had a residual variance (RV) less than 15% and inside 207 

the brain volume were chosen, which was achieved using Fieldtrip extension (Oostenveld et al., 208 

2011). The k-means clustering algorithm (Hartigan and Wong, 1979) was used to cluster 209 

independent components across all participants to clusters based on two equally weighted 210 

(weight = 1) criteria:      (1) scalp maps and (2) their equivalent dipole model locations, which 211 

was performed using DIPFIT routines (Oostenveld and Oostendorp, 2004) in EEGLAB. Frontal 212 

and parietal brain regions have been reported to reflect the changes in workload (Brookings et 213 

al., 1996; Aricò et al., 2017), and as both our tasks also manipulate the visual load, we 214 

particularly focused on the frontal, parietal and occipital clusters of brain activity. Talairach 215 

coordinates (Lancaster et al., 2000) of the fitted dipole sources of these clusters were identified 216 

to select frontal, parietal and occipital clusters.  217 

The grand-mean IC event-related spectral power changes (ERSPs) for each condition was 218 

subsequently calculated for each cluster. The three seconds of fixation phase in each tracking and 219 

collision prediction epoch was taken as the baseline to see the changes in power spectra during 220 

the task. ERSPs for frontal, parietal and occipital clusters for both tracking and prediction tasks 221 

were examined. To compare the ERSP of different workload conditions, permutation-based 222 

statistics, implemented in EEGLAB, was used with Bonferroni correction and significance level 223 

set to p = .05. Also, for the frontal, parietal and occipital cluster, each ICs' spectral powers were 224 

calculated using EEGLAB’s spectopo function, which uses Welch’s periodogram method 225 

(Welch, 1967) on each 2-s segment using a Hamming window with 25% overlap for a range of 226 
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frequencies from 2 to 45 Hz. For each IC, the power spectral density (PSD) at different 227 

frequency bands were examined to identify the correlates of mental workload. 228 

Eye Activity data 229 

Pupil Core software, Pupil Capture provides the pupil size for the left and right eye separately 230 

along with the associated confidence value, which represents the quality of the detection result. 231 

All data points where the confidence of the pupil size was less than 0.8 were removed from the 232 

data. The pupil size data was normalised using the baseline data (defined as the three seconds of 233 

fixation period in each tracking and collision prediction epoch). The number of blinks during 234 

each trial was also extracted from the pupil size measurement when the pupil size and confidence 235 

of the measurement, reported by the Pupil Capture software, suddenly dropped to zero. 236 

Heart Rate Variability  237 

Inter-beat-interval (IBI) time series was computed from the Blood Volume Pulse (BVP) data of 238 

each tracking and collision prediction trial. Root Mean Square of the Successive Differences 239 

(RMSSD) was computed by detecting peaks of the BVP and calculating the lengths of the 240 

intervals between adjacent beats. 241 

����� 
 ��

�
∑ �������  ����!��

���             (3) 242 

RMSSD data was also normalised by considering the three seconds of fixation period in each 243 

tracking and collision prediction epoch as the baseline.  244 

Statistical Analysis 245 
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Statistical analyses were carried out using the SPSS (IBM SPSS 26.0; Chicago, IL, U.S.A.) 246 

statistical tool. In order to investigate the differences in the performance, EEG, eye activity and 247 

HRV parameters across participants in the three workload levels of tracking and collision 248 

prediction tasks, one-way repeated-measures analysis of variance (ANOVA) was conducted with 249 

workload level as the within-subjects factor. Mauchly’s test was implemented to test for 250 

sphericity. We performed Greenhouse-Geisser correction if sphericity was not satisfied (p < .05). 251 

If the main effect of the ANOVA was significant, post-hoc comparisons were made to determine 252 

the significance of pairwise comparisons, using Bonferroni correction. Finally, multiple linear 253 

regression was performed to relate EEG, eye activity and HRV metrics to the performance in the 254 

tracking and collision prediction tasks. EEG power, eye activity and HRV metrics were all 255 

entered as predictors using the enter method, and the performance in the task was the dependent 256 

variable. 257 

Results 258 

Behavioural and Performance Measures 259 

A repeated-measures ANOVA showed that tracking accuracy decreased significantly with 260 

increasing levels of workload [F(2, 54) = 239.910, p < .001, ηp
2 = .899], as shown in Figure 261 

2(A).  262 

For the collision prediction task, the time before collision and collision prediction miss 263 

proportion rate was considered. A repeated-measures ANOVA results showed that time before 264 

collision decreased significantly with increasing workload [F(1.497, 40.406) = 132.688, p < .001,  265 

ηp
2 = .831] and the collision prediction miss proportion increased with increasing levels of 266 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


15 

 

workload [F(1.593, 43.009) = 116.338, p < .001, ηp
2 = .812], as shown in Figure 2(B1) and267 

2(B2).  268 

 269 

270 

Figure 2: (A) shows the tracking accuracy of all the participants in the tracking task for the three levels of workload.271 

(B) shows the performance of all participants in the collision prediction task for the three levels of workload. (B1)272 

shows the mean time before collision for all the participants in the low, medium, and high workload conditions. (B2)273 

shows the collision prediction miss proportion rate for the three levels of workload.  274 

EEG Results 275 

nd 

 

ad. 

1) 

2) 
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Independent Source Clusters 276 

The frontal, parietal and occipital clusters for both tracking (refer Figure 3) and collision 277 

prediction task (see Figure 4) were selected based on the location of fitted dipole sources 278 

(Oostenveld and Oostendorp, 2004).  279 

ERSP Changes with Mental Workload 280 

Figures 5 illustrates frontal, parietal and occipital clusters’ ERSP changes for three workload 281 

conditions: low, medium and high during the tracking task. Statistical analysis on ERSP changes 282 

of the frontal cluster (Figure 5(A)) revealed a significant increase in theta power with increasing 283 

levels of workload. However, no significant spectral power variations were observed at the 284 

parietal cluster. Figure 5(B) shows the ERSP changes at the occipital cluster, which revealed a 285 

significant decrease in alpha power with increasing levels of workload.  286 

Figure 6 illustrates the frontal, parietal and occipital clusters’ ERSP changes for three workload 287 

conditions in the collision prediction task. Statistical analysis on ERSP changes of the frontal 288 

cluster showed a significant increase in theta power with increasing levels of workload (Figure 289 

6(A)). The ERSP changes at the parietal cluster (Figure 6(B)) revealed a significant increase in 290 

the theta power and a significant decrease in the alpha power with increasing level of workload. 291 

The ERSP changes at the occipital cluster (Figure 6(C)) revealed a significant increase in the 292 

delta and theta power with increasing workload. 293 
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 294 

Figure 3. Frontal [Talairach coordinate: (-1, 41, 27)], Parietal [Talairach coordinate: (4, -51, 39)] and Occipital 295 

[Talairach coordinate: (30, -70, 15)] clusters selected in the tracking task (A) spatial scalp maps; (B) dipole source 296 

locations.  297 

 298 
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Figure 4. Frontal [Talairach coordinate: (-10, 17, 46)], Parietal [Talairach coordinate: (5, -47, 47)] and Occipital 299 

[Talairach Coordinate: (-3, -69, 20)] clusters selected in the collision prediction task (A) spatial scalp maps; (B) 300 

dipole source locations.  301 

 302 

 303 

 304 
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Figure 5: ERSP changes during the tracking task at the (A) Frontal and (B) Occipital Cluster. (A1) shows the ERSP 310 

changes at the frontal cluster during high (first panel) and low (second panel) workload conditions and the third 311 

panel shows the statistically significant difference between high and low workload conditions (p < .05). (A2) shows 312 

the ERSP changes at the frontal cluster during high (first panel) and medium (second panel) workload conditions 313 

and the third panel shows the statistically significant difference between high and medium workload conditions (p < 314 

.05). (A3) shows the ERSP changes at the frontal cluster during medium (first panel) and low (second panel) 315 

workload conditions and the third panel shows the statistically significant difference between medium and low 316 

workload conditions (p < .05). (B1) shows the ERSP changes at the occipital cluster during high (first panel) and 317 

low (second panel) workload conditions and the third panel shows the statistically significant difference between 318 

high and low workload conditions (p < .05). (B2) shows the ERSP changes at the occipital cluster during high (first 319 

panel) and medium (second panel) workload conditions and the third panel shows the statistically significant 320 

difference between high and medium workload conditions (p < .05). (B3) shows the ERSP changes at the occipital 321 

cluster during medium (first panel) and low (second panel) workload conditions and the third panel shows the 322 

statistically significant difference between medium and low workload conditions (p < .05).  323 

 324 
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 331 

 332 

Figure 6: ERSP changes during the collision prediction task at the (A) Frontal, (B) Parietal, (C) Occipital Cluster. 333 

(A1) shows the ERSP changes at the frontal cluster during high (first panel) and low (second panel) workload 334 

conditions and the third panel shows the statistically significant difference between high and low workload 335 

conditions (p < .05). (A2) shows the ERSP changes at the frontal cluster during high (first panel) and medium 336 

(second panel) workload conditions and the third panel shows the statistically significant difference between high 337 

and medium workload conditions (p < .05). (A3) shows the ERSP changes at the frontal cluster during medium (first 338 

panel) and low (second panel) workload conditions and the third panel shows the statistically significant difference 339 

between medium and low workload conditions (p < .05). (B1) shows the ERSP changes at the parietal cluster during 340 

high (first panel) and low (second panel) workload conditions and the third panel shows the statistically significant 341 

difference between high and low workload conditions (p < .05). (B2) shows the ERSP changes at the parietal cluster 342 

during high (first panel) and medium (second panel) workload conditions and the third panel shows the statistically 343 

significant difference between high and medium workload conditions (p < .05). (B3) shows the ERSP changes at the 344 
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parietal cluster during medium (first panel) and low (second panel) workload conditions and the third panel shows 345 

the statistically significant difference between medium and low workload conditions (p < .05). (C1) shows the ERSP 346 

changes at the occipital cluster during high (first panel) and low (second panel) workload conditions and the third 347 

panel shows the statistically significant difference between high and low workload conditions (p < .05). (C2) shows 348 

the ERSP changes at the occipital cluster during high (first panel) and medium (second panel) workload conditions 349 

and the third panel shows the statistically significant difference between high and medium workload conditions (p < 350 

.05). (C3) shows the ERSP changes at the occipital cluster during medium (first panel) and low (second panel) 351 

workload conditions and the third panel shows the statistically significant difference between medium and low 352 

workload conditions (p < .05).  353 

Power Spectral Density Changes with Mental Workload 354 

Figure 7(A1) illustrates that frontal theta PSD increased significantly with increasing levels of 355 

workload in the tracking task [F(2, 46) = 50.931, p < .001, ηp
2 = .822]. As shown in Figure 356 

7(A2), the results of one-way repeated-measures ANOVA showed that occipital alpha PSD 357 

decreased significantly with increasing workload of the tracking task [F(2, 46) = 24.780, p < 358 

.001, ηp
2 = .693].  359 

For the collision prediction task, the frontal cluster’s ICs showed significant increase in theta 360 

PSD with increasing workload (Figure 7B(1)) according to the one-way repeated-measures 361 

ANOVA [F(2, 46) = 8.570, p = .001, ηp
2 = .271]. However, the parietal cluster’s IC's spectral 362 

power showed a significant increase in the theta frequency band [F(2, 46) = 47.764, p < .001, ηp
2 363 

= .675] and a significant decrease in the alpha band [F(2, 46) = 38.639, p < .001, ηp
2 = .627] with 364 

increasing workload, as shown in Figure 7(B2) and Figure 7(B3). One-way repeated-measures 365 

ANOVA results showed that occipital delta [F(1.563, 35.951) = 35.321, p < .001, ηp
2 = .606] and 366 
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theta [F(2, 46) = 39.101, p < .001, ηp
2 = .630] power increased significantly with increasing 367 

workload in the collision prediction task, as shown in Figure 7(B4) and 7(B5). 368 

 369 

 370 

 371 

Figure 7: (A) Normalized Power Spectral Density at the Frontal and Occipital ICs selected in the Frontal and 372 

Occipital clusters for the tracking task. (A1) shows the normalised frontal theta PSD in the low, medium, and high 373 

workload conditions. (A2) shows the normalised occipital alpha PSD for low, medium, and high workload condition 374 

for the tracking task. (B) shows the normalized Power Spectral Density at the Frontal, Parietal and Occipital ICs 375 

selected in the Frontal, Parietal and Occipital cluster for the collision prediction task. (B1) shows the mean frontal 376 
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theta PSD in the low, medium, and high workload conditions. (B2) shows the mean parietal theta PSD for the three 377 

levels of workload. (B3) shows the mean parietal alpha power for different workload conditions and (B4) shows the 378 

mean occipital delta PSD in the low, medium, and high workload conditions. (B5) shows the mean occipital theta 379 

PSD for the three levels of workload condition in collision prediction task. 380 

Eye activity changes with mental workload 381 

As shown in Figure 8(A), pupil size increased with the increasing workload for both tracking 382 

[F(2, 38) = 13.205, p < .001,ηp
2 = .410] and collision prediction tasks [F(2, 46) = 9.276, p < .001, 383 

ηp
2 = .287]. The number of blinks during tracking and collision prediction tasks decreased with 384 

the increasing workload, as shown in Figure 8(B). One-way repeated-measure ANOVA was 385 

conducted to study the effect of workload variations on the number of blinks, which revealed 386 

significant variations in the number of blinks during the tracking task for different workload 387 

conditions [F(2, 46) = 3.624, p = .035, ηp
2 = .136]. The effect of workload on the number of 388 

blinks in the collision prediction task was analysed using one-way repeated-measure ANOVA. It 389 

showed a significant variation in the number of blinks [F(2, 46) = 18.586, p < .001, ηp
2 = .447].  390 

Heart Rate Variability (RMSSD) changes with Mental Workload 391 

Figure 8(C) shows the RMSSD decreased significantly with increasing workload conditions of 392 

the tracking and collision prediction task. For the tracking task, there was a significant change in 393 

the RMSSD for the different workload conditions, as shown by the one-way repeated-measures 394 

ANOVA [F(2, 34) = 10.171, p < .001, ηp
2 = .374]. Results from one-way repeated-measures 395 

ANOVA shows that in the collision prediction task, there was a significant change in the 396 

RMSSD for different workload conditions [F(2, 44) = 4.279, p = .022, ηp
2 = .201]. 397 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


27 

 

 398 

399 

 400 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


28 

 

Figure 8: (A) shows the normalized pupil size of all the participants shows a positive trend with the increasing 401 

workload. (A1) Normalised pupil size in the three workload conditions of the tracking task. (A2) Normalised pupil 402 

size during low, medium, and high workload conditions for the collision prediction task. (B) shows the negative 403 

trend in the number of blinks with the increasing workload. (B1) Number of blinks during different workload 404 

conditions of the tracking task. (B2) Number of blinks during the collision prediction task decreases with increasing 405 

level of workload. (C) shows the declining trend in the normalized RMSSD of all the participants with the 406 

increasing workload. (C1) Normalised RMSSD all the participants in the low, medium, and high workload 407 

conditions of the tracking task. (C2) Normalised RMSSD during collision prediction task for the three levels of 408 

workload.   409 

 410 

Multiple Regression Results 411 

Multiple regression was carried out to investigate whether EEG, eye activity and HRV metrics of 412 

workload could significantly predict the performance in the tracking task. The results of the 413 

regression indicated that the model explained 54.3% of the variance and that the model was a 414 

significant predictor of the tracking performance, F(3, 67) = 26.543, p < .001. While EEG 415 

metrics (p = .001) and eye activity (p < .001) contributed significantly to the model, HRV 416 

metrics did not (p = .125). The final predictive model was: 417 

���"��#���� �� �������� ���� 
418 

0.725  0.067 * ++, #������  0.089 * +�� ������� #������  0.152 * 0�1 #������ 419 

     (4) 420 

In order to determine whether EEG, eye activity and HRV metrics could significantly predict the 421 

performance in collision prediction task, we conducted multiple regression analysis. The results 422 

of the regression indicated that the model explained 61.7% of the variance and that the model 423 
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was a significant predictor of the performance in the collision prediction task, F(3, 68) = 24.324, 424 

p < .001. While eye activity (p = .02) and EEG metrics (p < .001) contributed significantly to the 425 

model, HRV metrics did not (p = .443). The final predictive model was: 426 

���"��#���� �� ��������� ���������� ���� 
 0.055  0.532 * ++, #������  0.276 *427 

+�� ������� #������ 3 0.444 * 0�1 #������       (5) 428 

Discussion 429 

In this study, we designed two simplified tasks based on ATC: tracking and collision prediction 430 

tasks. Although both these tasks represent the basic tasks that ATC operators routinely perform, 431 

we considered them separately to untangle the differences in the physiological response to 432 

workload variations in these tasks.   433 

In order to study workload effects of increasing air traffic, the mental workload in both these 434 

tasks was manipulated by varying the number of dots. It was observed that the performance in 435 

the tracking and collision prediction task deteriorated significantly with increasing levels of 436 

workload. Hence, we can confirm that the workload manipulation (by varying the number of 437 

dots) in both tracking and collision prediction tasks was successful in eliciting significant 438 

performance variations (H1). 439 

In order to assess the mental workload, EEG, eye activity and BVP data were recorded while the 440 

participants performed the tasks. The tracking task demands allocation of attentional resources to 441 

keep track of one, three or five tracking dots moving randomly among distractor dots. Working 442 

memory load is sensitive to increased allocation of attentional resources and is reflected by 443 

increases in frontal theta power (Klimesch et al., 1998; Klimesch, 1999; Gevins and Smith, 444 
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2000). In the tracking task, we observed an increase in the frontal theta power, which confirms 445 

that increased working memory load was experienced with increasing workload levels. Tracking 446 

dots moving among distractor dots also entails working memory mechanisms related to relevant 447 

item maintenance and increases in the memory load. This working memory mechanism was 448 

reflected by a decrease in the alpha power (Gevins et al., 1997; Wilson, 2002 and Puma et al., 449 

2018). The alpha power is also known to decrease with increased memory load (Fournier et al., 450 

1999; Smith et al., 2001; Ryu and Myung, 2005) and task difficulty (Sterman and Mann, 1995; 451 

Ota et al., 1996). Our findings also substantiate this working memory mechanism as the occipital 452 

alpha power decreases with increasing workload levels in the tracking task. 453 

In the collision prediction task, anticipating the trajectory of the dots and predicting whether the 454 

dots would collide requires attention and internal concentration. Delta power is an indicator of 455 

attention or internal concentration in mental tasks, and it has been reported to increase with the 456 

increase in workload (Sterman and Mann, 1995; Harmony et al., 1996; Wilson, 2002). Our 457 

results demonstrate an increase in the delta power at the occipital sites, which validates that there 458 

is an increased allocation of attentional resources with increasing levels of workload in the 459 

collision prediction task. Additionally, keeping a tab on the trajectory of six, 12 or 18 eight dots 460 

adds to the memory load in the participants. Several studies have shown that theta power is 461 

correlated with memory load (Jensen and Tesche, 2002; Jacobs et al., 2006) and working 462 

memory capacity (Klimesch, 1996; Klimesch, 1999; Sauseng et al., 2010). In collision prediction 463 

task, our results reveal a significant increase in the theta power at the frontal, parietal and 464 

occipital clusters, confirming an increase in memory load with increasing levels of workload. 465 

Furthermore, our results indicate that with increasing levels of workload, there is a decrease in 466 

parietal alpha power. This observed alpha band desynchronisation with the increasing workload 467 
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is related to relevant item maintenance in the working memory (Sterman and Mann, 1995; 468 

Gevins et al., 1997; Wilson, 2002; Puma et al., 2018) and is known to decrease with increased 469 

memory load (Fournier et al., 1999; Smith et al., 2001; Ryu and Myung, 2005) and task 470 

difficulty (Sterman and Mann, 1995; Ota et al., 1996). However, in the collision prediction task, 471 

the most significant decrease in the parietal alpha power was observed a few seconds before the 472 

collision. It might be related to the increase in the experienced time pressure (Slobounov et al., 473 

2000) as the participants attempt to identify and click on the colliding pair of dots before the 474 

collision happens. 475 

We also explored eye-related metrics and HRV metrics during workload variations. Eye activity 476 

data was transformed to pupil size and blink rate. Pupil size increased significantly with the 477 

increasing workload in both tracking and collision prediction tasks. The number of blinks also 478 

reduced considerably with the increasing workload in both tasks. Pupil size is a reliable measure 479 

of workload (Marquart et al., 2015) as it dilates with increasing workload. Recarte et al., 2008 480 

show that blink inhibition happens in higher workload conditions and so, the blink rate is 481 

inversely correlated with the attentional levels and workload experienced by the operator 482 

(Brookings et al., 1996, Wilson, 2002, Widyanti et al., 2017). RMSSD was found to be 483 

negatively correlated with the mental workload in both tasks. This decrease in RMSSD with the 484 

increasing workload is widely reported in the literature (Mehler et al., 2011, Heine et al., 2017). 485 

Our results show that EEG power spectra at the frontal, parietal and occipital areas, eye activity 486 

and HRV metrics can reliably and accurately assess the mental workload of the participants in 487 

both tasks. Hence, our second hypothesis (H2) is proved to be true for both tracking and collision 488 

prediction tasks. Relating to our third hypothesis (H3), the multiple regression results showed 489 
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that the performance in the tracking and collision prediction tasks could be predicted from the 490 

EEG, eye related and HRV metrics. 491 

Our results also indicate that even though eye activity and HRV metrics are sensitive to task load 492 

variations, they may not provide any valuable information on the task that causes the variations 493 

in workload. However, the EEG measures were found to be not just sensitive to the workload 494 

variations but also the task type. The increases in workload in the tracking task was reflected by 495 

the increase in frontal theta power and decrease in occipital alpha power. No significant changes 496 

were observed in the parietal theta, alpha, occipital delta, or theta power with the increasing 497 

workload in the tracking task. In the collision prediction task, the increase in workload was 498 

correlated with the increases in frontal theta, parietal theta, occipital delta and theta power and a 499 

decrease in parietal alpha power. No significant variation was observed in the occipital alpha 500 

power during the collision prediction task. The neurometrics correlated with the variations in the 501 

workload of tracking and collision prediction tasks are different, which proves that our fourth 502 

hypothesis (H4) is true. Therefore, neurometrics can help identify the task contributing to the 503 

increase in workload in complex ATC environments at a time instant and define the strategies 504 

that can be used by the workload adaptive system to mitigate this increase. These results provide 505 

evidence that the use of EEG measures in a closed-loop adaptive system can not only aid the 506 

decision of “when” but also “what” form of automation to deploy to mitigate the workload 507 

variations in operators. Hence, the results presented here contribute to the development of 508 

adaptive strategies essential for the design of intelligent closed-loop mental workload adaptive 509 

ATC systems. 510 

Conclusion 511 
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In order to elucidate the impact of basic task load variations that comprise the load variations in 512 

complex ATC tasks, we separately designed two basic ATC tasks: tracking and collision 513 

prediction tasks. EEG spectral power, eye and HRV correlates to mental workload variations for 514 

tracking and collision prediction tasks of air traffic controllers are successfully unravelled. The 515 

differences in neural response to increased workload in the tracking and collision prediction task 516 

indicate that these neural measures are sensitive to variations and type of mental workload and 517 

their potential utility in not just deciding “when” but also “what” to adapt, aiding the 518 

development of intelligent closed-loop mental workload aware systems. This investigation of 519 

physiological indices of workload variation in the basic ATC tasks has applicability to the design 520 

of future adaptive systems that integrate neurometrics in deciding the form of automation to be 521 

used to mitigate the variations in workload in complex ATC systems. 522 

Key points: 523 

• Workload variation in tracking and collision prediction tasks was reliably assessed using 524 

EEG, eye activity and HRV metrics. 525 

• The performance in tracking and collision prediction tasks can be predicted based on the 526 

measured physiological signals. 527 

• Neurometrics of the workload variations in the tracking and collision prediction tasks are 528 

distinct across tasks. 529 

References 530 

Ahlstrom, Ulf. “An eye for the air traffic controller workload.” In Journal if the Transportation 531 

Research Forum, vol. 46, no. 3. 2010. 532 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


34 

 

Aricò, Pietro, et al. "Human factors and neurophysiological metrics in air traffic control: a 533 

critical review." IEEE reviews in biomedical engineering 10 (2017): 250-263. 534 

Boksem, Maarten AS, Theo F. Meijman, and Monicque M. Lorist. "Effects of mental fatigue on 535 

attention: an ERP study." Cognitive brain research 25, no. 1 (2005): 107-116. 536 

Brookings, Jeffrey B., Glenn F. Wilson, and Carolyne R. Swain. "Psychophysiological responses 537 

to changes in workload during simulated air traffic control." Biological psychology 42.3 (1996): 538 

361-377. 539 

Cummings, Mary L., and Chris Tsonis. "Deconstructing complexity in air traffic control." 540 

Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Vol. 49. No. 1. 541 

Sage CA: Los Angeles, CA: Sage Publications, 2005. 542 

Delorme, Arnaud, and Scott Makeig. "EEGLAB: an open source toolbox for analysis of single-543 

trial EEG dynamics including independent component analysis." Journal of neuroscience 544 

methods 134, no. 1 (2004): 9-21. 545 

Delorme, Arnaud, Tim Mullen, Christian Kothe, Zeynep Akalin Acar, Nima Bigdely-Shamlo, 546 

Andrey Vankov, and Scott Makeig. "EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for 547 

advanced EEG processing." Computational intelligence and neuroscience 2011 (2011). 548 

Gevins, Alan, and Michael E. Smith. "Neurophysiological measures of working memory and 549 

individual differences in cognitive ability and cognitive style." Cerebral cortex 10.9 (2000): 829-550 

839. 551 

Gevins, Alan, Michael E. Smith, Linda McEvoy, and Daphne Yu. "High-resolution EEG 552 

mapping of cortical activation related to working memory: effects of task difficulty, type of 553 

processing, and practice." Cerebral cortex (New York, NY: 1991) 7, no. 4 (1997): 374-385. 554 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


35 

 

Gevins, Alan, and Michael E. Smith. "Neurophysiological measures of cognitive workload 555 

during human-computer interaction." Theoretical Issues in Ergonomics Science 4.1-2 (2003): 556 

113-131. 557 

Fournier, Lisa R., Glenn F. Wilson, and Carolyne R. Swain. "Electrophysiological, behavioral, 558 

and subjective indexes of workload when performing multiple tasks: manipulations of task 559 

difficulty and training." International Journal of Psychophysiology 31, no. 2 (1999): 129-145. 560 

Harmony, Thalía, Thalía Fernández, Juan Silva, Jorge Bernal, Lourdes Díaz-Comas, Alfonso 561 

Reyes, Erzsébet Marosi, Mario Rodríguez, and Miguel Rodríguez. "EEG delta activity: an 562 

indicator of attention to internal processing during performance of mental tasks." International 563 

journal of psychophysiology 24, no. 1-2 (1996): 161-171. 564 

Hartigan, John A., and Manchek A. Wong. "Algorithm AS 136: A k-means clustering 565 

algorithm." Journal of the royal statistical society. series c (applied statistics) 28, no. 1 (1979): 566 

100-108. 567 

Heine, Tobias, Gustavo Lenis, Patrick Reichensperger, Tobias Beran, Olaf Doessel, and Barbara 568 

Deml. "Electrocardiographic features for the measurement of drivers' mental workload." Applied 569 

ergonomics 61 (2017): 31-43. 570 

Innes, Reilly J., Nathan J. Evans, Zachary L. Howard, Ami Eidels, and Scott D. Brown. "A 571 

broader application of the detection response task to cognitive tasks and online environments." 572 

Human Factors (2019): 0018720820936800. 573 

Jacobs, Joshua, Grace Hwang, Tim Curran, and Michael J. Kahana. "EEG oscillations and 574 

recognition memory: theta correlates of memory retrieval and decision making." Neuroimage 32, 575 

no. 2 (2006): 978-987. 576 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


36 

 

Jensen, Ole, and Claudia D. Tesche. "Frontal theta activity in humans increases with memory 577 

load in a working memory task." European journal of Neuroscience 15, no. 8 (2002): 1395-578 

1399. 579 

Ke, Yufeng, et al. "An EEG-based mental workload estimator trained on working memory task 580 

can work well under simulated multi-attribute task." Frontiers in human neuroscience 8 (2014): 581 

703. 582 

Keil, Andreas, Matthias M. Müller, Thomas Gruber, Christian Wienbruch, Margarita Stolarova, 583 

and Thomas Elbert. "Effects of emotional arousal in the cerebral hemispheres: a study of 584 

oscillatory brain activity and event-related potentials." Clinical neurophysiology 112, no. 11 585 

(2001): 2057-2068. 586 

Klimesch, Wolfgang. "Memory processes described as brain oscillations in the EEG-alpha and 587 

theta bands." Psycoloquy (1995). 588 

Klimesch, Wolfgang. "Memory processes, brain oscillations and EEG synchronization." 589 

International journal of psychophysiology 24, no. 1-2 (1996): 61-100. 590 

Klimesch, Wolfgang, et al. "Induced alpha band power changes in the human EEG and 591 

attention." Neuroscience letters 244.2 (1998): 73-76. 592 

Klimesch, Wolfgang. "EEG alpha and theta oscillations reflect cognitive and memory 593 

performance: a review and analysis." Brain research reviews 29, no. 2-3 (1999): 169-195. 594 

Kothe, Christian. "Lab streaming layer (LSL)." https://github. com/sccn/labstreaminglayer. 595 

Accessed on October 26 (2014): 2015. 596 

Lancaster, Jack L., Marty G. Woldorff, Lawrence M. Parsons, Mario Liotti, Catarina S. Freitas, 597 

Lacy Rainey, Peter V. Kochunov, Dan Nickerson, Shawn A. Mikiten, and Peter T. Fox. 598 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


37 

 

"Automated Talairach atlas labels for functional brain mapping." Human brain mapping 10, no. 599 

3 (2000): 120-131. 600 

Lin, Chin-Teng, Kuan-Chih Huang, Chih-Feng Chao, Jian-Ann Chen, Tzai-Wen Chiu, Li-Wei 601 

Ko, and Tzyy-Ping Jung. "Tonic and phasic EEG and behavioral changes induced by arousing 602 

feedback." NeuroImage 52, no. 2 (2010): 633-642. 603 

Makeig, Scott, Marissa Westerfield, T-P. Jung, Sonia Enghoff, Jeanne Townsend, Eric 604 

Courchesne, and Terrence J. Sejnowski. "Dynamic brain sources of visual evoked responses." 605 

Science 295, no. 5555 (2002): 690-694. 606 

Marquart, Gerhard, Christopher Cabrall, and Joost de Winter. "Review of eye-related measures 607 

of drivers’ mental workload." Procedia Manufacturing 3 (2015): 2854-2861. 608 

Mehler, Bruce, Bryan Reimer, and Ying Wang. "A comparison of heart rate and heart rate 609 

variability indices in distinguishing single-task driving and driving under secondary cognitive 610 

workload." (2011). 611 

Mogford, Richard H., et al. The Complexity Construct in Air Traffic Control: A Review and 612 

Synthesis of the Literature. CTA INC MCKEE CITY NJ, 1995. 613 

Onton, Julie, Arnaud Delorme, and Scott Makeig. "Frontal midline EEG dynamics during 614 

working memory." Neuroimage 27, no. 2 (2005): 341-356. 615 

Oostenveld, Robert, and Thom F. Oostendorp. "Validating the boundary element method for 616 

forward and inverse EEG computations in the presence of a hole in the skull." Human brain 617 

mapping 17, no. 3 (2002): 179-192. 618 

Oostenveld, Robert, Pascal Fries, Eric Maris, and Jan-Mathijs Schoffelen. "FieldTrip: open 619 

source software for advanced analysis of MEG, EEG, and invasive electrophysiological data." 620 

Computational intelligence and neuroscience 2011 (2011). 621 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


38 

 

Ota, Toshio, Ryoichi Toyoshima, and Toshio Yamauchi. "Measurements by biphasic changes of 622 

the alpha band amplitude as indicators of arousal level." International journal of 623 

psychophysiology 24, no. 1-2 (1996): 25-37. 624 

Pion-Tonachini, Luca, Ken Kreutz-Delgado, and Scott Makeig. "ICLabel: An automated 625 

electroencephalographic independent component classifier, dataset, and website." NeuroImage 626 

198 (2019): 181-197. 627 

Popovic, Djordje, et al. "Sensitive, diagnostic and multifaceted mental workload classifier 628 

(PHYSIOPRINT)." International Conference on Augmented Cognition. Springer, Cham, 2015. 629 

Prinzel, Lawrence J., Frederick G. Freeman, Mark W. Scerbo, Peter J. Mikulka, and Alan T. 630 

Pope. "A closed-loop system for examining psychophysiological measures for adaptive task 631 

allocation." The International journal of aviation psychology 10, no. 4 (2000): 393-410. 632 

Puma, Sébastien, et al. "Using theta and alpha band power to assess cognitive workload in 633 

multitasking environments." International Journal of Psychophysiology 123 (2018): 111-120. 634 

Radüntz, Thea, and Beate Meffert. "User experience of 7 mobile electroencephalography 635 

devices: comparative study." JMIR mHealth and uHealth 7.9 (2019): e14474. 636 

Recarte, Miguel Ángel, et al. "Mental workload and visual impairment: Differences between 637 

pupil, blink, and subjective rating." The Spanish journal of psychology 11.2 (2008): 374. 638 

Rouse, William B. "Adaptive aiding for human/computer control." Human factors 30, no. 4 639 

(1988): 431-443. 640 

Ryu, Kilseop, and Rohae Myung. "Evaluation of mental workload with a combined measure 641 

based on physiological indices during a dual task of tracking and mental arithmetic." 642 

International Journal of Industrial Ergonomics 35, no. 11 (2005): 991-1009. 643 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


39 

 

Sauseng, Paul, Birgit Griesmayr, Roman Freunberger, and Wolfgang Klimesch. "Control 644 

mechanisms in working memory: a possible function of EEG theta oscillations." Neuroscience & 645 

Biobehavioral Reviews 34, no. 7 (2010): 1015-1022. 646 

Schmorrow, Dylan, Kay M. Stanney, Glenn Wilson, and Peter Young. "Augmented cognition in 647 

human–system interaction." Handbook of human factors and ergonomics (2006): 1364-1383. 648 

Slobounov, S. M., K. Fukada, R. Simon, M. Rearick, and W. Ray. "Neurophysiological and 649 

behavioral indices of time pressure effects on visuomotor task performance." Cognitive Brain 650 

Research 9, no. 3 (2000): 287-298. 651 

Smith, Michael E., Alan Gevins, Halle Brown, Arati Karnik, and Robert Du. "Monitoring task 652 

loading with multivariate EEG measures during complex forms of human-computer interaction." 653 

Human Factors 43, no. 3 (2001): 366-380. 654 

Ullsperger, P., A-M. Metz, and H-G. Gille. "The P300 component of the event-related brain 655 

potential and mental effort." Ergonomics 31, no. 8 (1988): 1127-1137. 656 

Welch, Peter. "The use of fast Fourier transform for the estimation of power spectra: a method 657 

based on time averaging over short, modified periodograms." IEEE Transactions on audio and 658 

electroacoustics 15, no. 2 (1967): 70-73. 659 

Widyanti, Ari, Nisha Faradila Sofiani, Herman Rahadian Soetisna, and Khoirul Muslim. "Eye 660 

blink rate as a measure of mental workload in a driving task: convergent or divergent with other 661 

measures?." Eye 8, no. 2 (2017). 662 

Wilson, Glenn F. "An analysis of mental workload in pilots during flight using multiple 663 

psychophysiological measures." The International Journal of Aviation Psychology 12, no. 1 664 

(2002): 3-18. 665 

 666 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.428702doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428702


40 

 

Supplementary Material 667 
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 669 

Figure 1. A schematic diagram describing how time before collision was calculated in the collision prediction task 670 

 671 

672 

     Figure 2. The EEG preprocessing and processing pipeline used for tracking and collision prediction tasks. 673 
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