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Abstract—Spatial navigation is a complex cognitive process 

based on vestibular, proprioceptive, and visual cues that are 

integrated and processed by an extensive network of brain areas. 

The retrosplenial complex (RSC) is an integral part of 

coordination and translation between spatial reference frames. 

Previous studies have demonstrated that the RSC is active during 

a spatial navigation tasks. The specifics of RSC activity under 

various navigation loads, however, are still not characterized. 

This study investigated the local information processed by the 

RSC under various navigation load conditions manipulated by 

the number of turns in the physical navigation setup. The results 

showed that the local information processed via the RSC, which 

was reflected by the segregation network, was higher when the 

number of turns increased, suggesting that RSC activity is 

associated with the navigation task load. The present findings 

shed light on how the brain processes spatial information in a 

physical navigation task.   

 
Index Terms—EEG, spatial navigation, mental workload, 

MoBI 

 

I. INTRODUCTION 

PATIAL navigation is an essential human skill. Without it, 

we would be lost—literally. However, in comparison to 

other areas of the brain, relatively little is known about how 

the human sense of direction works. We know that several 

regions of the brain [1, 2] are involved in integrating and 

translating our movements [3], visual cues, proprioceptive 

information, and other sensory inputs into a mental 

representation of space [4]. One of these brain regions is the 

retrosplenial complex (RSC) [5], which is a central hub 

between the areas of the brain that govern visual processing, 

associations, learning, and memory and is indirectly linked to 

planning and decision-making. The RSC is thought (but not 

confirmed) to act as a bridge between perception and memory 

and may be involved in imagining future events or processing 

scenes. Studies have also shown that the RSC plays an 
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important role in helping us switch between spatial reference 

frames [6, 7]: egocentric (self-centered) navigation, where we 

view the world around us in relation to ourselves, and 

allocentric (world-centered) navigation, where we reference 

one object to another [8]. 

 However, only a few studies have explored brain dynamics 

in spatial navigation in full-body movement due to the 

limitations of brain imaging hardware. The stationary 

experiment involved participants laying still in a functional 

magnetic resonance imaging (fMRI) machine [1]; therefore, 

these experiments were not designed to explore the neural 

mechanisms that contribute to navigation in real-world 

environments. Other studies did involve freely moving 

participants, but the participants were clinical subjects 

suffering from severe epilepsy [9, 10]. 

Moreover, cognitive function depends on sufficient 

configuration among brain regions, reflected by distinct 

connectivity patterns [11]. Thus, examining brain network 

properties could help us better understand the underlying 

mechanism of cognitive function. There is clear evidence of a 

relationship between cognitive performance, network 

segregation and network integration, which are essential 

attributes of the brain network. Notably, a decline in network 

segregation leads to lower cognitive performance [12-15]. 

Nevertheless, many functional connectivity (FC) studies 

have investigated the larger-scale brain network, which may 

not reflect the involvement of each region in task execution. 

Those studies performed analyses at the global level and 

considered all the nodes of the brain to have the same roles, as 

opposed to scrutinizing specific brain regions related to the 

experimental task. Furthermore, brain network segregation 

and integration are not generalized for all tasks and rely on the 

cognitive demand of specific tasks [16]. For instance, at the 

global level, in the N-back experiment, the 2-back showed a 

higher integration than the 0-back [16-18]. Moreover, trial 

accuracy was positively related to network integration [16]. 

However, this feature is not the same for all subnetworks in 

the brain and even contradicts findings in the frontoparietal 

network [18]. 

A few studies have investigated specific brain regions 

related to experimental tasks. A study on sensorimotor 

performance demonstrated that reduced sensorimotor network 

segregation leads to poorer behavioral performance [14]. The 

same relationship between sensorimotor network segregation 

and performance has been found at the whole-brain level [13]. 

Moreover, increased network segregation reflects the greater 
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autonomy of task-related networks and saves resources for 

other cognitive demands [19]. Thus, there might be a 

mechanism to segregate brain tasks related to processing 

cognitive tasks. 

Furthermore, investigating brain activity across a network 

under a specific frequency might rigorously reflect their 

attributions. Theta frequency has been revealed as an 

important mechanism of grid-cell network activity in 

ambulatory navigation [20-22]. In addition, theta frequency 

was modulated and correlated with the mental workload and 

was reflected in the frontal midline region [23]. Therefore, 

examining the network properties under a specific frequency 

in a distinct brain region related to an experimental task may 

reflect a precise mechanism of the brain network in a specific 

task-related brain region [24]. In short, studying a large-scale 

brain network may reflect the whole cognitive stage of the 

brain but might not fully reveal the specific mechanism of the 

task-related brain region. It is necessary to investigate the 

segregation and integration of specific brain regions related to 

the experimental task. 

This study investigated the brain network dynamics of 

healthy human participants during active navigation under 

various workload conditions. To overcome the movement 

restrictions associated with standard brain imaging modalities, 

such as fMRI, we adapted a mobile brain/body imaging 

(MoBI) system [25-27] to give participants the freedom to 

move naturally. We equipped participants with a high-density 

electroencephalogram (EEG) cap synchronized to a head-

mounted virtual reality (VR) display and then asked them to 

walk paths that included several turns and straight segments 

while we recorded EEG signals. At various intervals, 

participants were also asked to point in the direction in which 

a landmark they had previously seen might be (see Fig. 1). 

These physical navigation tasks required the participants to 

track their location and orientation through motor efferences 

and self-motion cues from their visual, vestibular, 

proprioceptive, and kinesthetic systems. Hence, the data we 

gathered allowed us to assess the network segregation and 

integration in the RSC and frontal regions of each walking 

segment during actual navigation. The results showed that the 

segregation of the RSC region increased with a higher number 

of turning points (NT) during physical navigation, reflecting 

that the navigation load modulated RSC segregation. 

 

Fig. 1. The experimental design. (a) Trial representation. At the beginning of the trial, participants had 4 seconds to remember a landmark, which was presented 

approximately 200 meters in front of them. Then, the landmark disappeared (in the rest of the trial), and participants answered the question: “Where is the 

landmark position?” (Resp. 1, green square). Next, participants freely walked in a predefined path with the number of turns points being randomly chosen as 2 or 
3 (walk 1x). Subsequently, participants were asked to recall the landmark position (Resp. 2, green square). Next, participants encoded a set of letters (3, 5, or 7 

letters) (orange square) and then performed the letter-retrieval task (Resp. 3, red square). Then, participants started the second walk (2x) with 2 or 3 turn points. 

After finishing the walk, participants performed the letter-retrieval task (Resp. 4, red square) and spatial-retrieval task (Resp. 5, green square). (b) EEG cap set 
up. (c) The participant responded to a landmark position. 
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II. MATERIALS AND METHODS 

A. Participants 

Eighteen healthy adults (age 27.8 ± 4.2 years, two females) 

participated in this experiment. All participants reported 

normal or corrected-to-normal vision. The participants were 

first provided instructions about the experiment and then 

signed the consent form if they agreed to perform the 

experiment. Each participant received $60 for participating in 

the experiment. The protocol was approved by the University 

of Technology Sydney (UTS).  

B. Data recording 

The scenario was developed under Unity (version 2017.3) 

with the VRTK plugin. The experiment was performed in the 

VR environment using a head-mounted display (HTC Vive 

Pro; 2x 1440 x 1600 resolution, 90 Hz refresh rate, 110° field 

of view) with binocular eye-tracking (Pupil-lab, Berlin, 

Germany). All the data streams from the EEG and VR events 

were synchronized by the Lab Streaming Layer [28]. EEG 

data were recorded from 64 active-wet electrodes with a 

sampling rate of 500 Hz (LiveAmps System, Brain Products, 

Gilching, Germany). Electrodes were placed on an elastic cap 

with an equidistant design (EASYCAP, Herrsching, 

Germany). Data were referenced to an electrode located 

closest to the standard position FCz. The impedance of all 

sensors was kept below 5 kΩ. 

C. Experimental design 

Participants first observed a global landmark that they had 

to remember. Then, the landmark disappeared, and 

participants navigated along a predefined path, including 

several turns to the left or right. The path comprised a straight 

segment and turns. A virtual red sphere floating at eye height 

indicated the endpoint of each straight segment. Participants 

had to walk toward the red sphere, which disappeared upon 

collision. At the end of the first walk, after two or three turns, 

participants performed a spatial-retrieval task, a letter-

encoding task, and a letter-retrieval task. Subsequently, 

participants walked and finished the second walk, including 

two or three turns, which was similar to the first walk. At the 

end of the second walk, participants performed the spatial-

retrieval and letter-retrieval tasks. 

At the beginning of the trial, the participant had 4 seconds 

to remember the landmark position before the landmark 

disappeared. Next, the participant responded to the question 

“where is the landmark location?” by pointing the controller to 

the expected landmark location and clicking the hair trigger of 

a controller (Resp. 1, Fig. 1). After the first response, the 

participant heard a beep sound indicating that they should start 

navigating. During the first walk, the red sphere disappeared 

once the participant reached the sphere position. S/he, then, 

needed to find another red sphere and navigate toward it (walk 

1x, 1 indicating the first walk, and x indicating the number of 

the red sphere, Fig. 1) while keeping track of their spatial 

location. When participants reached the last red sphere, the 

text message “Attention” appeared in front of them and lasted 

for a 3 second period, and the participant stopped walking and 

prepared for the next spatial-retrieval task. 

In this spatial-retrieval task, the participant answered the 

question “where is the landmark location?” by pointing the 

controller to the remembered landmark location and clicking 

the hair trigger of the controller (Resp. 2, Fig. 1). After that, 

they answered the question “where is the starting location?” 

by pointing the controller to select one out of two homing 

arrows that were presented in front of them pointing to the left 

or the right. 

Next, the participant performed the letter-encoding task 

with three distinctive levels of three, five, or seven letters out 

of the 26 letters of the English alphabet in random order. The 

purpose of this letter-encoding task was to increase the 

cognitive mental workload of the participants. The time 

interval between letters was 1 second. Then, the participant 

answered the question of whether a letter belonged to the letter 

list by clicking the hair trigger (yes) or touchpad (no) (Resp. 3, 

Fig. 1). 

After Resp. 3, participants had 2 seconds of rest before 

starting the second walk (the second navigation phase) cued 

by the beep sound; in the second walk, participants were to 

walk toward the red sphere (walk 2x, Fig. 1) while 

memorizing the set of letters and the landmark location. Once 

the second walk was finished, the participant answered the 

question of whether a letter belonged to the letter list (Resp. 4, 

Fig. 1). Then, the participant answered the questions, “where 

is the landmark location?” and “where is the starting 

location?” (Resp. 5, Fig. 1). After that, the participants 

finished the trial and started the next trial once they clicked 

both grip bottoms on the controller based on their readiness. 

Participants performed four learning trials first to 

familiarize themselves with the experiment tasks after 

receiving instructions from the experimenter. Participants then 

started the main experiment once they were ready. The main 

experiment consisted of 3 sessions of 30 trials each. 

Participants had a rest period of 5-10 minutes between 

sessions and 3-10 seconds between trials based on their 

readiness. 

 

Fig. 2. The pipeline for brain network segregation and integration analysis. 
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D. EEG analysis  

All the preprocessing steps were performed in EEGLAB 

(version 14.2.0) [29, 30] (and adapted from Do, et al. [31]) . 

The EEG data were first bandpass filtered (1-100 Hz) and then 

downsampled to 250 Hz. Next, all idle segments with zero 

values in the raw data (continuous data) were removed 

(threshold=3 seconds). Then, the bad channels were identified 

and removed based on the correlations with other channels 

(threshold=0.85) and the abnormal data distributions (standard 

deviation=4), and the missing channels were interpolated by 

applying the sphere method. Next, the noisy portions of the 

continuous data were removed through automatic continuous 

data cleaning based on the spectrum value (threshold=10 dB) 

and power, with a criteria of maximum bad channels 

(maximum fraction of bad channels=0.15) and relative to a 

robust estimate of the clean EEG power distribution in the 

channel ([minimum, maximum]=[-3.5 5]). Next, all the EEG 

channel data was re-referenced to the average. Subsequently, 

adaptive mixed independence component analysis (AMICA) 

was applied to the re-referenced data to decompose them into 

maximally independent components (ICs). Then, the dipole-

fitting routine [32] was applied to identify the locations of the 

ICs. Next, the AMICA solution was copied back to the re-

referenced dataset. The nonbrain components were identified 

and removed by using the IClabel toolbox [33] (with a 

confident threshold > 95%) before extracting data from six 

walking navigation segments with respect to the NT during 

navigation. Then, the bad epochs were identified and removed 

by checking the raw value (threshold = 100 µV). 

E. Functional connectivity  

The data from a trial was epoched into various walking 

segments with respect to the turning point sequence. Then, the 

participant data per walking condition was calculated by 

averaging the walking segment conditions. Finally, the 

participant data for the six walking conditions were used for 

the group analysis.  

First, the distributed source localization was used to address 

the inverse problem. The dipole brain source localization 

activity was estimated from cleaned epoched data, and then 

the brain FC was estimated from the source activity by using 

the Brainstorm toolbox (version 02-Jun-2020) [34]. The 

epoched data were first coregistered with the MRI template 

(“ICBM152” template [35]) and EEG sensor locations (same 

template for all participants) in the same anatomical 

landmarks. Next, the lead field of the cortical mesh (15,002 

vertices, 29984 faces) was estimated by using openMEEG [36, 

37]. The noise covariance matrix was calculated using the idle 

period during the experiment. An atlas-based segmentation 

approach was used to project the EEG data onto an anatomical 

framework consisting of 68 cortical regions identified by 

means of re-segmenting the Desikan-Killiany [38] atlas using 

FreeSurfer [39]. Then, a standardized low-resolution brain 

electromagnetic tomography (sLORETA) method [40] was 

used to reconstruct the regional time series from the 68 brain 

regions. Finally, the FC among regions was estimated by the 

phase-locking value (PLV) (eq. 1) [41] in four various 

frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 

Hz), and beta (12–30 Hz). Then, the highest 10% (of the 

highest PLV values) were kept for further estimating the 

network properties [42], and the remaining PLV values were 

set to zero. 

Phase-locking value: 

 

          𝑃𝐿𝑉(𝑡) =  |
1

𝛿
∫ 𝑒𝑗(𝜑𝑦(𝑡)−𝜑𝑥(𝑡))𝑑𝜏

𝑡+𝛿/2

𝑡−𝛿/2
|                  (1) 

 

where φy(t) and φx(t) indicate the phases of the time series 

signals x and y at time t, respectively, and δ indicates the size 

of the window. PLV values ranged between 0 (no phase-

locking) and 1 (full synchrony). 

F. Network properties  

The network properties (segregation and integration) were 

calculated from the PLV connectivity matrix at each 

frequency of each walking segment. The network segregation 

indicated the local information processing at each node (each 

cortical region) related to the experimental task, while network 

integration indicated the global information exchanged at each 

node (each cortical region) related to the experimental task. 

The network properties were calculated for all walking 

segments of each participant. Then, a statistical test was 

conducted to check the impact of the walking sequence on the 

network properties. In this study, we used the clustering 

coefficient (eq. 2), which reflected local information 

processing in each region [43, 44], to measure segregation and 

the participation coefficient (eq. 3), which reflected global 

information processing in each region [45], to measure 

integration. Both measurements were calculated using the 

Brain Connectivity Toolbox [46]. 

Network segregation: 

                             𝐶𝑖 =
2𝑡𝑖

𝑘𝑖(𝑘𝑖−1)′
                                          (2) 

where ti represents the number of triangles around node i 

and ki indicates the number of edges connected to node i. The 

clustering coefficient is the portion of links among a node's 

neighbors divided by the number of connections that could 

exist between them, which is 0 if no connections exist and 1 if 

all neighbors are connected. 

Network integration: 

                            𝑃𝑖 = 1 − ∑ (
𝑘𝑖𝑠

𝑘𝑖
)

2
𝑁𝑚
𝑠=1                               (3) 
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where Nm indicates the number of modules, kis represents 

the number of edges between node i and the other nodes in 

module s, and ki is the total degree of node i. The participation 

coefficient of a node is close to 0 if all of its links are within 

its own module and 1 if its links are uniformly distributed 

among all the modules. 

III. RESULTS 

A. Behavioral performance 

The absolute value of the angular difference between the 

participant to the landmark vector and the participant’s 

pointing vector was measured as the landmark-pointing error. 

Linear regression was conducted to determine whether the NT 

affected participants' pointing errors. The landmark-pointing 

error (in degrees) was significantly different under different 

NTs using the Friedman test, χ2(5)=53.34, p<0.0001. A 

significant regression equation was found (F(5,96)=9.18, 

p<0.0001), with an R2 of 0.32. Then, the Wilcoxon sign-rank 

test was used to check the significant difference in 

participants’ pointing landmark errors between various NTs 

(Table 1). 

B. Functional connectivity 

The group average FC was estimated across six walking 

segments (Fig. 4, visualized by the BrainNet Viewer [47]). 

Then, the Friedman test was recruited to measure the 

significant differences in the network properties (segregation 

was measured by the clustering coefficient, and integration 

was measured by the participation coefficient) across walking 

segments, followed by the post hoc pairwise Wilcoxon signed-

rank test (FDR-corrected). For network segregation, the 

Friedman test showed significant differences in the frontal 

delta band (χ2(5)=23.18, p=0.00031), frontal theta band 

(χ2(5)=12.93, p=0.024), frontal alpha band (χ2(5)=14.61, 

p=0.012), and RSC theta band (χ2(5)=17.44, p=0.0037). For 

network integration, the Friedman test showed significant 

differences in the frontal theta band (χ2(5)=18.68, p=0.0022). 

Post hoc pairwise Wilcoxon signed-rank (FDR-corrected) 

results showed that there was a significant difference in the 

clustering coefficient in the frontal theta (segment 1 and 

segment 5, p=0.042; segment 2 and segment 5, p=0.042); 

frontal alpha (segment 1 and segment 4, p=0.049; segment 1 

and segment 6, p=0.025; segment 3 and segment 4, p=0.027; 

segment 3 and segment 6, p=0.025), and RSC theta (segment 2 

and segment 6, p=0.011; segment 3 and segment 6, p=0.018; 

segment 4 and segment 6, p=0.007; segment 5 and segment 6, 

p=0.046) values. 

IV. DISCUSSION 

Spatial navigation is a vital aspect of many daily activities 

that require updating position and orientation information as 

well as computing a homing trajectory. The present study 

addressed these processes in an active navigation task under 

various mental workload conditions by manipulating the NT 

that allowed navigators to move through a large virtual space. 

We recorded and analyzed the brain activities of navigating 

participants using the MoBI approach [25-27, 48, 49]. We 

found that participant performance measured by landmark-

pointing errors increased as the navigation load increased, 

which was manipulated by the NT during navigation. In 

addition, we found that this navigation load covaried with 

RSC segregation. When the NT increased, RSC segregation 

increased in the theta band measured by the PLV connectivity 

matrix. 

First, we analyzed participants’ behavior in the landmark 

TABLE 1 

ERRORS IN THE LANDMARK-POINTING TASK 

Number of turning points (NT) p-adjust value 

0 2 0.000046**** 
0 3 0.000046**** 

0 4 0.000046**** 

0 5 0.000046**** 

0 6 0.000046**** 

2 3 1.0 

2 4 0.007** 
2 5 0.1 

2 6 0.075 

3 4 0.000114*** 
3 5 0.1 

3 6 0.003** 

4 5 0.1 
4 6 0.876 

5 6 0.114 

The first and second columns indicate the numbers of turning points, and 

the third column contains the p-values (FDR-adjusted) calculated using the 
Wilcoxon signed-rank tests (*, **, ***, and **** indicate p<.05, p<.01, 

p<.001, and p<.0001, respectively). 

 

 

 

Fig. 3. The landmark-pointing response error (absolute) across walking 
segments with a distinct NT during the navigation trial. The Wilcoxon 

signed-rank tests were used to check for significant differences between 

behavior performance (*, **, ***, and **** indicate p<0.05, p<0.01, 
p<0.001, and p<0.0001, respectively). 
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point task to check the effect of turning points on navigation 

performance. As expected, landmark-pointing errors increased 

as the NT increased (Fig. 3). In other words, the behavioral 

results revealed that an increasing NT led to greater difficulty 

in navigation. Therefore, the NT in this experimental design 

manipulated the navigation load. The possible explanation for 

this decline in path integration performance could be bias from 

the velocity estimation [50] or leaky integration [51]. 

However, in the present study, participants actively ambulated 

from a location to several other locations; thus, the brain can 

receive rich information from the motor efference, visual, 

proprioceptive, vestibular, and kinesthetic systems. Therefore, 

the main corruption factor for this decline in landmark-

pointing performance could be explained by the Stangl, et al. 

[52] model. The accumulating noise in the traveled distance 

increased with the NT, which led to increased error in the 

pointing task. 

Spatial navigation involves several brain regions that 

communicate and exchange information via the brain network. 

The synchronization of cortical oscillations has been believed 

to be a mechanism for this communication and computation 

[53]. Through a specific frequency, a subpopulation of the 

neuronal population will likely be coactivated, interact with 

other regions, and exchange information. Therefore, the 

synchronization among brain regions reflects both the 

segregation of the cortical population for processing incoming 

information and integration among regions for transferring 

information [54]. Thus, we further investigated the brain 

dynamics in each walking segment under specific frequencies, 

which may reflect processing during active navigation. There 

is a growing body of evidence demonstrating that theta-band 

oscillation plays a role in memory encoding [23], retrieval 

[55], and grid-cell generating [9, 10] The theta phase has been 

reported as a plausible mechanism for neuronal computation 

and communication [54]. In addition, theta oscillation was 

reported as an important mechanism for head direction (HD) 

cell activities [22]. Therefore, investigating the brain network 

properties that were analyzed in the theta band might reflect 

the underlying mechanism of the brain regions subserving 

cognitive navigation processing. The results of the network 

segregation further showed that navigation pointing errors 

seems to correspond to frontal segregation (Fig. 5a). A higher 

 

Fig. 4. Functional connectivity of the brain network across six walking segments in the (a) theta band and (b) alpha band. The nodes indicate brain regions (based 

on 68 Desikan-Killiany atlas). The edges indicate a significant connection between nodes; the edge size indicates the strength of the connection. 
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NT led to poorer behavioral performance and a decrease in 

frontal segregation in the theta band. 

Remarkably, in the present work, we found that RSC 

segregation increased with an increased NT at the theta band 

(Fig. 5a). This result revealed that RSC activity was 

modulated by the navigation load (NT). The RSC coordinates 

with the parietal and occipital regions to translate different 

spatial reference frames [8]. In addition, the RSC 

 

Fig. 5. Graph properties at the frontal and retrosplenial complex (RSC): (a) Clustering coefficient (a) and (b) participation coefficient across six walking 

segments in various frequency ranges. Pairwise post hoc Wilcoxon signed-rank tests (FDR-corrected) were used to check for significant differences between 

walking segments (* and ** indicate p<0.05 and p<0.01, respectively). 
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communicates with the hippocampus to update the spatial 

information of the cognitive map, which is in the form of an 

allocentric framework [8, 56]. Furthermore, HD cells are 

present in several regions in the brain, including the RSC [5]. 

HD cells exchange information across the network via theta 

oscillation to modulate grid cell formation in the 

parahippocampus [22]. As a result, considering the brain as a 

complex system, the RSC plays a role as a hub in the brain 

network to coordinate the in and out spatial information. In 

previous studies [6, 7], the experimental setup was performed 

in the stationary condition with only an optical flow visual 

information stimulus, and the head direction activity, which 

obtains input from the vestibular system, might be attenuated. 

In the current study, participants could freely navigate and 

receive richer sensory information via their movements. Thus, 

the activity of the RSC might depend on the amount of spatial 

information that needed to be processed. Therefore, when the 

navigation load increased, the local information processed in 

the RSC was higher, which was measured by the clustering 

coefficient. These study results provide the first evidence that 

RSC activity covaries with spatial information processing. 

V. CONCLUSION 

Altogether, this study explored the behavioral and neural 

dynamics in active spatial navigation under various workload 

conditions. The behavior showed increased errors in the 

landmark-pointing task when the NT increased. We further 

investigated neural activity to determine the underlying 

mechanism of this phenomenon. We found that the local 

information processing via the RSC increased when the NT 

increased, reflecting that the RSC plays an important role in 

coordinating and processing information in active navigation. 

In addition, we also found that the decline in frontal 

segregation was associated with spatial navigation 

performance. These findings demonstrate that brain dynamics 

systematically vary in stationary and physical navigation 

experiments. The change in RSC segregation could be an 

important feature for monitoring navigation workload when 

actively exploring a space. 
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Fig. S1. Network atlas. 
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Fig. S2. Clustering coefficient among various brain networks, including the whole-brain network, frontoparietal network, somatosensory network, visual 

network, and default mode network, across walking segments under various frequencies. 
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Fig. S3. Participation coefficients among various brain networks, including the whole-brain network, frontoparietal network, somatosensory network, visual 
network, and default mode network, across walking segments under various frequencies. 
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